
Conservative approach in
conformance checking

Frederic Beal
Tokyo Institute of Technology

Tomohiro Yoneda
National Institute of Informatics

2006/7/2 IFIP WG 10.4 2

Background and Goal

Formal verification of hardware or
software is important

Its cost is too high

Developing some approach to reducing its
cost is important

Goal
Use conservative approach in conformance
checking

allowing false negatives, but guaranteeing that
false positives never appear

2006/7/2 IFIP WG 10.4 3

Conformance Checking

Specification and system are expressed
by the same model

Safety, some restricted liveness, and
some internal properties are checked

System
Specification

input

output

Product of both state spaces should be explored

2006/7/2 IFIP WG 10.4 4

Idea (1)

Use only the state space of the
specification

Guess the internal states of the system
from its interface behavior

System
Specification

input

output

Only the state space of Specification is explored

interface behavior

2006/7/2 IFIP WG 10.4 5

Idea (2)

How to guess the internal states
When an input is given

use forward implication to propagate enabling
condition of events from input to output

eg.) A is given B is enabled if C is enabled

System
Specification

input

output

Only the state space of Specification is explored

2006/7/2 IFIP WG 10.4 6

Idea (3)

How to guess the internal states
When an output is observed

use backward implication to decide the actually
fired events

eg.) A is observed B must have fired

System
Specification

input

output

Only the state space of Specification is explored

2006/7/2 IFIP WG 10.4 7

Why conservative? (1)

Decision
Safety failure

Illegal output is produced

Strong conformance failure
Expected output is not produced

Internal states cannot be determined
exactly

Use a symbol to represent uncertainty to
capture all possible behavior of system

2006/7/2 IFIP WG 10.4 8

Why conservative? (2)

In the guessed system state
if an output event is enabled with some
consistent conditions

it can occur eventually

if uncertainty symbol is propagated to an
output

it may or may not occur

If the output is not ready to occur in specification,
safety failure is reported in both cases

2006/7/2 IFIP WG 10.4 9

Why conservative? (3)

In the guessed system state
if an output event is not enabled

it actually never occurs

if uncertainty symbol is propagated to an
output

it may or may not occur

If the output is enabled in specification,
strong conformance failure is reported in both cases

2006/7/2 IFIP WG 10.4 10

Questions

Does the proposed idea really reduce the
cost of conformance checking?

How often are false negatives produced?

Case study
Verification of asynchronous circuits

2006/7/2 IFIP WG 10.4 11

Verification of asynchronous circuits

a
b

c

d

e

a

b

c

d

e

1100 0100

0110

a-

c+

Specification

System

1100
b-

safety failure

2006/7/2 IFIP WG 10.4 12

State representation

State
Interface signal vector

(a[0], b[1], c[1], e[0])

Enabling conditions for pending transitions
(d+[True], e+[d+ f+])

d+ is already enabled

e+ will be enabled if either d+ or f+ fires

State change
only when specification state changes

2006/7/2 IFIP WG 10.4 13

Forward implication

a
b

c

d

e

0100

1100

1110

a+

c+

Specification

System

(a[0], b[1], c[0], e[0])

()

(a[1], b[1], c[0], e[0])

(d+[True])

(a[1], b[1], c[1], e[0])

(d+[True], e+[d+])

2006/7/2 IFIP WG 10.4 14

Backward implication

a
b

c

d

e

1110

1111

e+

Specification

System

(a[1], b[1], c[1], e[0])

(d+[True], e+[d+])

(a[1], b[1], c[1], e[1])

()

d is assumed to be fired

2006/7/2 IFIP WG 10.4 15

Failure detection

a
b

c

d

e

0100

1100

1000

a+

b-

Specification

System

(a[0], b[1], c[0], e[0])

()

(a[1], b[1], c[0], e[0])

(d+[True])

(a[1], b[0], c[0], e[0])

(d_U[True])

1010

c+

(a[1], b[1], c[1], e[0])

(d_U [True], e_U[d_U])

2006/7/2 IFIP WG 10.4 16

Preliminary experimental results

proposedversify

4.3

0.15

45.7

9.6

3.1317532613FIR3_1mul2

1.652911210IIR_2mul_2

214.847302419FIR5_2mul

44.5538819LMS4_pr11

CPU time (s)#(spec.
states)

#(internal)#(I+O)Circuits

versify: BDD based conformance checker

No false negatives found in proposed
method

2006/7/2 IFIP WG 10.4 17

Future work

Apply it to timed system verification
Forward/Backward implication handling
timing information (DBMs)

Comparison with verifiers based on timed
automata and time Petri nets

