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Background and Goal

Formal verification of hardware or
software is important

Its cost is too high

Developing some approach to reducing its
cost is important

Goal
Use conservative approach in conformance
checking

allowing false negatives, but guaranteeing that
false positives never appear
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Conformance Checking

Specification and system are expressed
by the same model

Safety, some restricted liveness, and
some internal properties are checked

System
Specification

input

output

Product of both state spaces should be explored
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Idea (1)

Use only the state space of the
specification

Guess the internal states of the system
from its interface behavior

System
Specification

input

output

Only the state space of Specification is explored

interface behavior



2006/7/2 IFIP WG 10.4 5

Idea (2)

How to guess the internal states
When an input is given

use forward implication to propagate enabling
condition of events from input to output

eg.) A is given B is enabled if C is enabled

System
Specification

input

output

Only the state space of Specification is explored
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Idea (3)

How to guess the internal states
When an output is observed

use backward implication to decide the actually
fired events

eg.) A is observed B must have fired

System
Specification

input

output

Only the state space of Specification is explored
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Why conservative? (1)

Decision
Safety failure

Illegal output is produced

Strong conformance failure
Expected output is not produced

Internal states cannot be determined
exactly

Use a symbol to represent uncertainty to
capture all possible behavior of system
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Why conservative? (2)

In the guessed system state
if an output event is enabled with some
consistent conditions

it can occur eventually

if uncertainty symbol is propagated to an
output

it may or may not occur

If the output is not ready to occur in specification,
safety failure is reported in both cases
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Why conservative? (3)

In the guessed system state
if an output event is not enabled

it actually never occurs

if uncertainty symbol is propagated to an
output

it may or may not occur

If the output is enabled in specification,
strong conformance failure is reported in both cases 
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Questions

Does the proposed idea really reduce the
cost of conformance checking?

How often are false negatives produced?

Case study
Verification of asynchronous circuits
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Verification of asynchronous circuits
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State representation

State
Interface signal vector

(a[0], b[1], c[1], e[0])

Enabling conditions for pending transitions
(d+[True], e+[d+  f+])

d+ is already enabled

e+ will be enabled if either d+ or f+ fires

State change
only when specification state changes
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Forward implication
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Backward implication
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Failure detection
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Preliminary experimental results
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versify: BDD based conformance checker

No false negatives found in proposed
method
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Future work

Apply it to timed system verification
Forward/Backward implication handling
timing information (DBMs)

Comparison with verifiers based on timed
automata and time Petri nets


