
IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 1

Verification
of Intelligent Controllers
using Model Checking

Charles Pecheur, UC Louvain

(formerly RIACS / NASA Ames)

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 2

Embedded Controllers

• Everywhere
– more and more so

• Dependability is critical
– human risks
– material risks
– economic risks

• Logic (vs. physical) part is increasing

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 3

Process Control
• Partially observable process (hidden state x, estimated by x)

• observability :
infer x from y (and u)

• commandability :
impose x through u

• control theory :
x = physical quantities, differentiable
 linear models, PDI controllers

• logic processes :
x = states, modes, failures, discrete
 state machines, programmable automata

controller

process
x

estimator

u

x

y

ˆ

ˆ

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 4

Verification of Control Systems

• Monitors and commands a process
– in particular, failure diagnosis and recovery

• Complex
– multiple controllers, asynchronism, coupling
– race conditions, feature interaction

• Software
– powerful and flexible but not linear, not continuous

• How to Validate ?
– including "diagnosability" and "recoverability" from failures ?

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 5

Reliability: Hardware vs Software

copies of the same code have
the same bugs

reliability through redundancy

abrupt degradationprogressive degradation

reliability depends on execution,
not on time

reliability varies in time

design flawsfailures due to wear,
environment

identical copiesphysical variability

SoftwareHardware

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 6

Autonomy (at NASA)

Autonomous spacecraft = on-board intelligence (AI)

• Goal: Unattended operation in an
unpredictable environment

• Approach: model-based reasoning
• Pros: smaller mission control crews,

no communication delays/blackouts
• Cons: Verification and Validation ???

Much more complex, huge state space
• Better verification is critical for adoption

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 7

Model-Based Autonomy

• Based on AI technology
• Generic reasoning engine

+ application-specific model
• Model describes (normal and

faulty) behaviour of the process
• Engine selects control actions "on-

the-fly" based on the model
– ... rather than pre-coded decision

rules
– better able to respond to

unanticipated situations

Reasoning
Engine

Domain
Model

commands observations

Process

Controller

model of

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 8

Livingstone

C
om

m
and

Observations

State
update

Model
Controller

Courtesy Autonomous Systems Group, NASA Ames
ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

p=0.01p=0.01

inflow = outflow = 0

p=0.05p=0.05

Livingstone
• Model-based diagnosis system from NASA Ames

– i.e. an advanced state estimator
• Uses a discrete, qualitative model to reason about faults

=> naturally amenable to formal analysis

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 9

A Simple Livingstone Model

V

breaker

bulbmeter

r2=inf
light=off

r2=low
light=off

display=zero

display=v2

r2=normal
light=...

r1=inf r1=low
i = ...(v1,r1,r2)
v2 = ...(v1,r1,r2)

v1=normal

v=zero

cmdIn=off/on/noCommand

display=zero/normal light=off/on

mode=ok0/dead4

mode=ok0/blown1/short4

mode=off0/on0

v2=zero/normal/low
i=zero/normal/high

r1=inf/normal/low

r2=inf/normal/low

8short4dead4on0

1blown1ok0off0

0ok0ok0off0

rankmeterbulbbreaker

Goal: determine modes from observations
Generates and tracks candidates

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 10

Verify Model-Based Control?

Of course, but what exactly?
• The model?
• The engine?
• The whole controller?
• All of the above!

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 11

Verification of the Model

• This is the "application code"
• where the development effort (and bugs) are

• Abstract, concise, amenable to formal analysis
• this is another benefit of model-based approaches
• ... or model-based design in general

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 12

• Model checking = (ideally) exhaustive exploration
of the (finite) state space of a system
– ≈ exhaustive testing with loop / join detection

Model Checking

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification

Controller

Planner DiagnosisExec

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 13

• Symbolic model checking =
– compute sets of states,
– using symbolic representations,
– that can be efficiently encoded and computed.

• Can handle very large state spaces (1050+),
or even infinite domains (continuous time and
variables)

• Example: SMV/NuSMV (Carnegie Mellon/IRST)
– finite state using boolean encoding (BDD, SAT)

Symbolic Model Checking

x=2 ∨ y=1
1 0

x=2

y=1

y

x0 1 2 ...0
1

...

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 14

Livingstone-to-SMV Translator

Livingstone
Model

SMV
Model

Livingstone
Specification

(enriched)

SMV
Specification

(CTL logic)

Livingstone
Trace

SMV
Trace

Livingstone

SMV

T
R
A
N
S
L
A
T
O
R

Diagnosis Verification

• A translator that converts Livingstone models, specs, traces to/from SMV
(in Java)
– SMV: symbolic model checker (both BDD and SAT-based)

allows exhaustive analysis of very large state spaces (1050+)

• Hides away SMV, offers a model checker for Livingstone
• Enriched specification syntax (vs. SMV's core temporal logic)
• Graphical interface, integration in Livingstone development tools

Joint work with Reid Simmons (Carnegie Mellon)

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 15

Verification of Diagnosis Models

• Coding Errors
– e.g. Consistency, well-defined transitions, ...
– Generic
– Compare to Lint for C

• Model Correctness
– Expected properties of modeled system
– e.g. flow conservation, operational scenarios, ...
– Application-specific

• Diagnosability
– Are faults detectable/diagnosable?

• Given available sensors
• In all/specific operational situations (dynamic)

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 16

Diagnosability

• Diagnosis: estimate the hidden state x (incl. failures)
given observable commands u and sensors y.

• Diagnosability: Can (a smart enough) Diagnoser
always tell when Process comes to a bad state?

• Property of the Process (not the Diagnoser)
– even for non-model-based diagnosers
– but analysis needs a (process) model

Controller

Process
x

Diagnoser

u

x̂

y

u1/y1 … un/yn good
badu1/y1 … un/yn

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 17

• Intuition: bad is diagnosable if and only if
there is no pair of trajectories, one reaching a bad state, the
other reaching a good state, with identical observations.
– or some generalization of that: (context, two different faults, ...)

• Principle:
– consider two concurrent copies x1, x2 of the process,

with coupled inputs u and outputs y
– check for reachability of (good(x1) && bad(x2))

• Back to a classical (symbolic) model checking problem !
• Supported by Livingstone-to-SMV translator

x1

x2

u y

Verification of Diagnosability
u1/y1 … un/yn good

badu1/y1 … un/yn

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 18

• Use atmosphere from Mars to make
fuel for return flight.

• Livingstone controller developed at
NASA KSC.

• Components are tanks, reactors,
valves, sensors...

• Exposed improper flow modeling.
• Latest model is 1050 states.

In-Situ Propellant Production

CO2 + 2H2 —> CH4 + O2

Mars
atmosphere

oxidizerfuel

on-board

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 19

X-34 / PITEX

• Propulsion IVHM Technology Experiment (ARC, GRC)
• Livingstone applied to propulsion feed system of space vehicle
• Livingstone model is 4·1033 states

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 20

• "Diagnosis can decide whether the venting valve VR01 is closed or
stuck open (assuming no other failures)"

INVAR !test.multibroken() & twin(!test.broken())
VERIFY INVARIANT !(test.vr01.mode=stuckOpen &

twin(test.vr01.valvePosition=closed))
• Results show a pair of traces with same observations, one leading to

VR01 stuck open, the other to VR01 closed. Application specialists fixed
their model.

PITEX Diagnosability Error
with Roberto Cavada (IRST, NuSMV developer)

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 21

Verification of the Controller

• good model + good engine ≠> good controller
• Heuristics in engine, simplifications in model

• System-level verification
• Controller as black (or grey) box
• Need a model of the environment (test harness)
• Applicable to others than model-based

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 22

Livingstone PathFinder

• An advanced testing/simulation framework for Livingstone applications
– Executes the Real Livingstone Program in a simulated environment (testbed)
– Instrument the code to be able to backtrack between alternate paths

• Scenarios = non-deterministic test cases (defined in custom language)
• Modular architecture with generic APIs (in Java)

– allows different diagnosers, simulators (can use Livingstone), search algorithms
(depth-first, breadth-first, heuristic, random, ...)

• See TACAS'04 paper

sensors

Simulator
commands

& faults

Engine Model

Livingstone

Driver Scenario
(w/ branches)

Search
Engine

get state
set state

single step
backtrack

T
E
S
T
B
E
D

with Tony Lindsey (QSS @ ARC)

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 23

Verification of the Engine

• A (technically complex) computer program
• Use traditional software verification approaches
• Maybe full-blown proof on core algorithms

• Generic, re-used across applications
• More likely to be stable and trustable
• Like compilers, interpreters, virtual machines, etc

Reasoning
Engine

Domain
Model

commands observations

Spacecraft

Controller

model of

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 24

... and Verification of Software

• There is more to it than reasoning engines!
– Device drivers, OS, navigation, communication, ...
– real-time, concurrent, reactive, interrupts, priorities, ...

• All traditional good practices apply
– Sound software engineering practices (requirements,

design, modelling, documentation, reviews, testing,
configuration management, ...)

– Advanced software verification techniques (monitoring,
static analysis, model checking, proofs)

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 25

The Program Verification Spectrum

(adapted from John Rushby)

Expertise

AssuranceWeak Strong

Applicable

Hard

Current

Testing

Runtime
Monitoring

Static
Analysis

Model
Checking

Theorem
Proving

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 26

Software Failure Example 1

Ariane 501 (1996)
• cause : fixpoint arithmetic overflow

in guidance system
• effect : rocket and payload

destroyed, program delayed
• solution : static analysis to detect

potential runtime errors
– This was the driving target for

developing PolySpace

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 27

Software Failure Example 2

Mars Climate Orbiter (1999)
• cause : US/metric unit

incompatibility between
components

• effect : incorrect orbit
insertion trajectory, probe
crashed (and public
embarrassment)

• solution : strong type
checking, rigorous design
practices

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 28

Software Failure Example 3

Remote Agent Experiment (1999)
• cause : missing critical section

in concurrent program
• effect : race condition and

deadlock in flight
– in supervised experiment, no

mission damage

• solution : model checking
– a similar bug was found before

flight using SPIN on another part of
the code

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 29

Human Factors
• Adapt technology to its users

– use their paradigms/languages (translation)
– integrate in their tools and environments
– vision : verification tools as advanced debuggers

• Technology maturation
– From something that works to something that is usable
– Lots of work and time
– Polish the code but also documentation, training, etc

• Space mission adoption
– Space missions take very conservative attitude w.r.t. new

technologies (for good reason)
– No-one wants to be the first adopter
– Usefulness of technology validation missions

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 30

Conclusions

• Verification of control software
– Particularity : control loop, observability/commandability

• In particular, failure diagnosability and recoverability

• Verification of model-based controllers
– Needs advanced verification (because of large state space)
– Facilitates advanced verification (thanks to model)

• Model checking
– Applicable to these problems
– esp. symbolic model checking, esp. to model-based
– Delicate precision/scalability trade-off

• Verification of software
– All other principles still apply

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 31

Perspectives

• Key ideas:
– model-based analysis (model checking)
– partial observability

• Extensions
– from discrete to continuous, real-time, hybrid models
– from fault diagnosis to planning

• Connections
– with classical risk analysis (fault trees, FMEA)
– with man-machine interface issues (observability!)
– with epistemic logics (diagnoser as knowledge agent)

• Keep in touch with reality
– scalability, relevance to practical needs, tools, integration

IFIP 10.4 Meeting, Feb 2006 © Charles Pecheur, UC Louvain 32

References

• On this talk :
Tim Menzies and Charles Pecheur. Verification and
Validation and Artificial Intelligence. In: M. Zelkowitz, Ed.,
Advances in Computers, vol. 65, 2005, Elsevier.

• See also
– http://www.info.ucl.ac.be/~pecheur/publi/
– http://www.info.ucl.ac.be/~pecheur/talks/

