
IFIP WG 10.4 Research Report, Tucson AZ, 19 Feb 2006



SMT Solvers

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I About SMT Solvers: 1



SMT Solvers

• Anything a SAT solver can do, an SMT solver can do better

• SAT solvers are used for

◦ Bounded model checking, and

◦ AI planning,

among other things

John Rushby, SR I About SMT Solvers: 2



SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula often represented as a set of clauses

◦ CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

A solution is A, C, D̄, E (A, D, E is not)

• Do this when there are 1,000,000 variables and clauses

John Rushby, SR I About SMT Solvers: 3



SAT Solvers

• SAT solving is quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

◦ Sustained improvements, honed by competition

• Has become commodity technology

◦ Can think of it as massively efficient search

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states

John Rushby, SR I About SMT Solvers: 4



Bounded Model Checking (BMC)
• Is there a counterexample to property P in k steps or less?

• System specified by initiality predicate I and transition

relation T on states S

• Does there exist assignments to states s0, . . . , sk such that

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

◦ Symbolic model checking uses same representation as

BMC, different backend (BDDs)

• Extends from refutation to verification via k-induction

• Also generates plans (test cases)

◦ counterexample to negation of property

◦ Though specialized planning languages provide better

frontends to the SAT solver than a model checker

John Rushby, SR I About SMT Solvers: 5



Satisfiability Modulo Theories (SMT)

• SAT can encode operations and relations on bounded

integers (bitvector representation), and other finite data

types and structures

• But not unbounded or infinite types (e.g., reals), or

structures (e.g., queues, lists)

• And even bounded arithmetic can be slow

• There are fast decision procedures for these theories

• But they work only on conjunctions of clauses

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does

John Rushby, SR I About SMT Solvers: 6



SMT Solving

• Individual decision procedures decide conjunctions of

formulas in their decided theories

• Combinations of decision procedures (using, e.g.,

Nelson-Oppen or Shostak methods) decide conjunctions over

the combined theories (e.g., arithmetic plus arrays)

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ (A ∨ B) ∧ (C ∨ D) ∧ E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

John Rushby, SR I About SMT Solvers: 7



SMT Solving by “Lemmas On Demand”

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ e.g., x ≤ y ∧ y ≤ x ∧ x 6= y

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment—but isn’t it

expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧ D ⊃ ¬E

• Iterate to termination (e.g., B, D, E: y = 5, y < x: y = 5, x = 6)

• This is called “lemmas on demand” or “DPLL(T)”

• it works really well: yields effective SMT solvers

John Rushby, SR I About SMT Solvers: 8



SMT Solvers

• SMT solvers are being honed by competition

• Various divisions (depending on the theories considered)

◦ Equality and uninterpreted functions

◦ Difference logic (x − y < c)

◦ Full linear arithmetic

◦ . . . for integers as well as reals

◦ Arrays

• Next competition at FLoC (Seattle, Summer 2006)

• SMT solvers enable infinite bounded model checking

◦ And powerful backends to interactive theorem provers

◦ And metric and temporal planning for AI

(demonstrated by Martha Pollack et al using ARIO)

John Rushby, SR I About SMT Solvers: 9



Example: Real Time

• Traditionally hard for automated analysis because continuous

time excludes finite state methods

• Timed automata methods handle continuous time

◦ But defeated by the case explosion when (discrete) faults

are considered

• SMT solvers can handle both dimensions

◦ Timeout automata, k-induction, disjunctive invariants

• E.g., Biphase Mark Protocol for asynchronous communic’n

◦ Clocks at either end have different skew, rates, jitter

◦ So have to encode a clock in the data stream

◦ Used in CDs, Ethernet

◦ Verify parameter values for reliable transmission

John Rushby, SR I About SMT Solvers: 10



Real Time: Biphase Mark (ctd)

• First verified by human-guided proof in ACL2 by J Moore

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

◦ Required 37 invariants, 4,000 proof steps, hours of prover

time to check

• Brown and Pike recently did it with sal-inf-bmc

◦ Three lemmas proved automatically with 1-induction,

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Revealed a bug in published application note

John Rushby, SR I About SMT Solvers: 11



Summary

• SAT can be extended to MaxSAT to deal with inconsistencies

◦ e.g., to find best diagnosis, integrate learners

◦ We have done this

• SMT can be extended similarly to MaxSMT

◦ We are doing this

• SMT also can be extended to maximize any arithmetic

expression, subject to constraints

◦ We are doing this, too

• Anything a SAT solver can do

◦ And anything a constraint solver can do

An SMT solver can do better (we think)

• See ICS and its descendents at fm.csl.sri.com

John Rushby, SR I About SMT Solvers: 12


