High Integrity of Communications in Networks for Critical Control Systems

A. Youssef, Y. Crouzet A. de Bonneval, J. Arlat

J.-J. Aubert, P. Brot

49th Meeting of IFIP WG 10.4 — Research Reports — Feb. 19, 2006, Tucson, AZ, USA

Context and Motivation

Usage of fully-digital communication networks into critical embedded systems (commercial aircraft architecture)

Baseline

Slow dynamics of the process (more than one erroneous command sustained before leading to an undesired event)
-> Option to (re-)use previous command (even erroneous

Undesired Event (UE) = "Runaway" of the controlled surface -> Discrepancy wrt nominal reference value ≥ 5° [servomechanisms with max. speed movement of 50°/s] Erroneous reference value applied for ≥ 100ms (10 cycles) => UE

Safety requirement "risk of undesired event ≤ 10⁻⁹/h" -> Constraint on communication system integrity "Number of undetected erroneous messages < threshold t"</p>

- Recovery (mitigate issues) -> back-up actions
 - Ensure the correct updating of the reference value to the servomechanism
 - Do not discard too quickly the communication system
 - Do not impair the required safety level

About Recovery and Undesired Event

Re-use of the previous ("correct") command and "filtering":

- SA) launch the recovery after r consecutive processing cycles for which an error has been signaled;
- SB) launch the recovery after r processing cycles for which an error has been signaled out of a window of w successive cycles

Example (w = 10 and r = 3)

Target UE = Reception of 3 erroneous message in set of 10 cycles 4

Impact of Intermediate Nodes

Intermediate nodes process data

- Classical approaches: -> Inefficient and/or improper
 - Basic coding techniques (CRCs)
 - End-to-end detection mechanims (HEDC, Keyed CRC, Safety Layer)
- --> Introduce some degree of diversification
 - data and redundancy (e.g., TMR)
 - data and coding (Turbo Codes)
 - coding function (e.g., rotation of the coding function) Multiple Error Coding Function -> (m = 3)

Principle and Benefit

Impact on Detection and Recovery

Implementation Using CRCs

- Π = small degree polynomial featuring "standard" error detection properties (e.g., [1+x])
- P'i and P''i ≠ Pi ∀i

Generator Polynomial Selection

$G_1(x) = \underline{(1+x)} \cdot \underline{(1+x+x^7)} \cdot (1+x^2+x^3+x^4+x^8) = 1+x^3+x^5+x^6+x^7+x^9+x^{10}+x^{12}+x^{15}+x^{16}$				
Examples of Potentially Good Candidates				
$G_*(x) = (1+x)$. 7-degree irreducible polynomial. 8-degree irreducible polynomial				
Identifier	Polynomial representation	Decomposition into irreducible polynomials		
G ₂ (x)	$1 + x + x^{6} + x^{7} + x^{8} + x^{9} + x^{10} + x^{13} + x^{15} + x^{16}$	$(1+x)$. $(1+x+x^3+x^5+x^7)$. $(1+x+x^2+x^4+x^5+x^6+x^8)$		
G ₃ (x)	$1 + x + x^{6} + x^{10} + x^{12} + x^{16}$	$(1+x) \cdot (1+x+x^2+x^3+x^7) \cdot (1+x+x^4+x^5+x^6+x^7+x^8)$		
G ₄ (x)	$1 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{16}$	$(1+x)$. $(1+x^3+x^7)$. $(1+x+x^2+x^5+x^6+x^7+x^8)$		
	Examples of Potentially Bad Candidates			
$G_*(x) = (1+x) \cdot (1+x+x^7) \cdot 8$ -degree irreducible polynomial				
G ₅ (x)	$1 + x + x^{2} + x^{3} + x^{5} + x^{6} + x^{9} + x^{10} + x^{12} + x^{14} + x^{15} + x^{16}$	$(1+x)$. $(1+x+x^7)$. $(1+x+x^5+x^6+x^8)$		
G ₆ (x)	$1 + x^3 + x^6 + x^7 + x^{10} + x^{13} + x^{14} + x^{16}$	$\underbrace{(1+x)}_{(1+x)} \cdot \underbrace{(1+x+x^{7})}_{(1+x^{2}+x^{3}+x^{4}+x^{5}+x^{7}+x^{8})}$		

This was analyzed and confirmed via extensive simulation runs

Example of Analysis: Target Codes

$G_a(x) = (1+x) \cdot (1+x+x^{15}) = 1+x^2+x^{15}+x^{16}$ — Standard generator polynomial : CRC-16			
Standard generator polynomials			
G*(x) = (1+x) . 15-degree polynomial			
Identifier	Polynomial representation	Decomposition into irreducible polynomials	
$G_b(x)$: IEEE-WG77.1	$1 + x + x^5 + x^6 + x^8 + x^9 + x^{10} + x^{11} + x^{13} + x^{14} + x^{16}$	$(1+x^2+x^3+x^4+x^8)$. $(1+x+x^2+x^4+x^5+x^6+x^8)$	
G _c (x): CRC-CCIT T	$1 + x^5 + x^{12} + x^{16}$	$(1+x) \cdot (1+x+x^2+x^3+x^4+x^{12}+x^{13}+x^{14}+x^{15})$	
$G_d(x)$: IBM-SDLC	$1 + x + x^{2} + x^{4} + x^{7} + x^{13} + x^{15} + x^{16}$	$(1+x)^2$. $(1+x+x^3+x^4+x^5+x^6+x^8+x^{10}+x^{12}+x^{13}+x^{14})$	
G _e (x): CRC-16Q*	$1 + x + x^3 + x^4 + x^5 + x^6 + x^8 + x^{11} + x^{15} + x^{16}$	$(1+x)$. $(1+x^3+x^5+x^8+x^9+x^{10}+x^{15})$	
$G_{f}(x)$: IEC-TC57	$1 + x + x^4 + x^7 + x^8 + x^9 + x^{11} + x^{12} + x^{14} + x^{16}$	$(\underline{1+x})^2 \cdot (1+x+x^3+x^6+x^7) \cdot (1+x^2+x^3+x^4+x^5+x^6+x^7)$	
Custom generator polynomials			
$G_*(x) = (1+x)$. 7-degree irreducible polynomial. 8-degree irreducible polynomial			
$\mathbf{G}_{\mathbf{g}}(\mathbf{x}) = \mathbf{G}_{3}(\mathbf{x})$	$1 + x + x^6 + x^{10} + x^{12} + x^{16}$	$(1+x) \cdot (1+x+x^2+x^3+x^7) \cdot (1+x+x^4+x^5+x^6+x^7+x^8)$	
$G_{h}(x) = G_{4}(x)$	$1 + x^5 + x^6 + x^7 + x^8 + x^9 + x^{10} + x^{16}$	$(1+x) \cdot (1+x^3+x^7) \cdot (1+x+x^2+x^5+x^6+x^7+x^8)$	

Examples of Simulation Runs

$$G_a(x) = (1+x) \cdot (1+x+x^{15}) \cdot (1+x^3+x^{15}+x^{16})$$
 CRC-16

Concluding Remarks

- Pragmatic Approach for Mitigating High Integrity Requirements in Critical Communications Systems
- CRC-based Implementation:
 - Theoretical issues associated to properties of generator polynomials provide a sound basis for identifying criteria for selecting suitable coding functions
 - Criteria validated via extensive simulation runs
- Generalization: investigation of alternative policies for mixing distinct coding functions (CF)

Formalization: derivation of closed-form expressions

- Probability of undetected errors (PUE)
- (Min) Latency for system recovery action after an error is undetected (LRA) [# of message cycles]

Example: *m*>1 # of distinct CF; *r* # of reported error detections, *w* size of window (for SB, only)

LRA(SA) = r+1 for r < m; **LRA(SB)** = $\left[m \times r/(m-1)\right]$ for *LRA* < w