Sextant: A Comprehensive Localization Framework for Nomadic Computing

Emin Gün Sirer Saikat Guha, Rohan Murty, Hongzhou Liu, Kevin Walsh

Cornell University

IFIP WG 10.4, July 4, 2005

Dependable Nomadic Systems

- ► Nomadic systems pose many problems
 - Localization (Sextant, [Mobihoc 2005])
 - Programming Model (MagnetOS, [MobiSys 2005])
 - Routing (SHARP, [Mobihoc 2002])
 - Path Selection (DPSP, [Mobihoc 2001])
 - Simulation (SNS, [WSC 2003, TOMACS 2004])
 - ▶ ...
- Need to figure out the location of nodes in order to provide novel location-based services
- Need a new programming model for performing long-lived computations in mobile networks

Challenges in Localization

Hardware

- ► Expensive
- Power Consuming

Infrastructure

- Initial setup required
- Not always available

Modeling

- ► Irregular wireless coverage area
- Introduces error

- Extract geometric constraints
- Disseminate them transitively
- Solve in a distributed manner

- Unified Node and Event localization
- Accurate
 - Negative as well as positive information
 - Explicit representation
- Practical
 - Constraint extraction
 - Deployed on MICA-2 motes, laptops and PDAs

Negative constraint

- Unified Node and Event localization
- ► Accurate
 - Negative as well as positive information
 - Explicit representation
- Practical
 - Constraint extraction
 - Deployed on MICA-2 motes, laptops and PDAs

- Need not be convex
- May have holes
- May have disconnected components

- Unified Node and Event localization
- Accurate
 - Negative as well as positive information
 - Explicit representation
- Practical
 - Constraint extraction
 - Deployed on MICA-2 motes, laptops and PDAs

- Unified Node and Event localization
- Accurate
 - Negative as well as positive information
 - Explicit representation
- Practical
 - Constraint extraction
 - Deployed on MICA-2 motes, laptops and PDAs

Positive Information

Intersection of Positive Information

Negative Information

Subtraction of Negative Information

Transitive Dissemination of Positive Information

Combining Positive and Negative Information

Combining Positive and Negative Information

Transitive Dissemination of Negative Information

Transitive Dissemination of Negative Information

Refining Location Estimates

Refining Location Estimates

Each Node x

- Location Estimate: \mathcal{E}_x
- ▶ Positive Constraint: \mathcal{P}_x
- ► Negative Constraint: \mathcal{N}_{x}
- Set of positive constraints: Γ_x
- Set of negative constraints: Θ_{\times}

Invariant

$$\mathcal{E}_{X} = \bigcap_{p \in \Gamma_{X}} p \setminus \bigcup_{n \in \Theta_{X}} n$$

Polygons with Bézier boundaries

Each Node x

- Location Estimate: \mathcal{E}_x
- ► Positive Constraint: \mathcal{P}_x
- ► Negative Constraint: \mathcal{N}_{x}
- Set of positive constraints: Γ_x
- Set of negative constraints: Θ_{x}

Invariant

$$\mathcal{E}_{X} = \bigcap_{p \in \Gamma_{X}} p \setminus \bigcup_{n \in \Theta_{X}} n$$

Polygons with Bézier boundaries

Each Node x

- Location Estimate: \mathcal{E}_x
- ► Positive Constraint: \mathcal{P}_x
- ► Negative Constraint: \mathcal{N}_{x}
- Set of positive constraints: Γ_x
- Set of negative constraints: Θ_x

Invariant

$$\mathcal{E}_{X} = \bigcap_{p \in \Gamma_{X}} p \setminus \bigcup_{n \in \Theta_{X}} n$$

Union of circles in \mathcal{E}_{x}

Each Node x

- Location Estimate: \mathcal{E}_x
- ► Positive Constraint: \mathcal{P}_x
- ► Negative Constraint: \mathcal{N}_{x}
- Set of positive constraints: Γ_x
- Set of negative constraints: Θ_x

Invariant

$$\mathcal{E}_{x} = \bigcap_{p \in \Gamma_{x}} p \setminus \bigcup_{n \in \Theta_{x}} n$$

Intersection of circles in \mathcal{E}_{x}

 Γ_x : learned from wireless neighbors

Each Node x

- Location Estimate: \mathcal{E}_x
- ► Positive Constraint: \mathcal{P}_x
- ► Negative Constraint: \mathcal{N}_{x}
- Set of positive constraints: Γ_x
- Set of negative constraints: Θ_x

nvariant

$$\mathcal{E}_{X} = \bigcap_{p \in \Gamma_{X}} p \setminus \bigcup_{n \in \Theta_{X}} n$$

 Θ_x : learned from wireless non-neighbors

Each Node x

- Location Estimate: \mathcal{E}_x
- ► Positive Constraint: \mathcal{P}_x
- ► Negative Constraint: \mathcal{N}_{x}
- Set of positive constraints: Γ_x
- Set of negative constraints: Θ_x

Invariant

$$\mathcal{E}_{x} = \bigcap_{p \in \Gamma_{x}} p \setminus \bigcup_{n \in \Theta_{x}} n$$

Similarity to Node Localization

- Constraints from sensing hardware vs. wireless radio
- Boolean sensed/not-sensed signal vs. boolean connectivity

Differences from Node Localization

Annotate resultant areas with probabilities

Event Localization

Positive Contribution

Sensor somewhere in \mathcal{E} detects event; probability event in grid \mathcal{G}_i .

Negative Contribution

Sensor somewhere in \mathcal{E} does not detect event; probability event in grid \mathcal{G}_i .

Solution

Product of positive and negative contributions from sensors sensing and not-sensing the event.

Bayesian Probability

Events as a Source of Constraints

Events as a Source of Constraints

Wireless Hardware

- ► Range Measurements
- ► Angle of Arrival

Sensor Hardware

- ► Event Distance
- Directional Sensors

Annulus for range x

Wireless Hardware

- ► Range Measurements
- ► Angle of Arrival

Sensor Hardware

- Event Distance
- Directional Sensors

Sector for angle x

Modeling

Wireless Radio

Boolean packet-received / packet-not-received.

- ► All reachable nodes ≤ *R* away
- ► All unreachable nodes ≥ *r* away

Wireless coverage area is non-convex and has holes

Modeling

Wireless Radio

Boolean packet-received / packet-not-received.

- All reachable nodes $\leq R$ away
- All unreachable nodes $\geq r$ away

Neighborhood Discovery

- Nodes transmit periodic beacons
- Threshold beacon reception required for boolean connectivity

Gossip

Disseminate constraints as long as they are useful

- Positive information used only at first hop
- Negative information used within the first few hops

Implementation

- Implemented on MICA-2 motes, laptops and PDA
- About 2kB of storage per node
- About 80kB data transmitted per node until convergence

Setup

- ► 50 MICA2 motes placed in a grid pattern
- Landmarks chosen at random
- ► 80% packet reception threshold chosen for connectivity

Comparing Node Localization

- Triangulation Centroid of neighbor nodes
 - ► GPSLess
- Single-hop No transitive dissemination
 - ► Active Badge, Cricket, GPSLess, Localization Using Moving Target
- Positive-constraints No negative information
 - APS, Convex position estimation, N-hop Multilateration, Robust Positioning

Sextant

Validation of Node Localization

Node Localization

- Accurate
- ► Efficient
- ► Scalable

Sextant locates more nodes accurately

Validation of Node Localization

Node Localization

- Accurate
- Efficient
- Scalable

Sextant requires few landmarks

- Accurate
- Efficient
- ► Scalable

Sextant requires fixed landmark density

Setup

- ► 50 MICA2 motes placed in a grid pattern
- Event is a flash of light
- Appreciable change in analog value triggers sensor

Comparing Event Localization

- Triangulation Centroid of sensors reporting the event
 - Acoustic Ranging
- Sextant

Validation of Event Localization

Sextant locates more events accurately

Validation of Event Localization

Accuracy improves with nodes

Validation of Event Localization

Event Localization

- Accurate
- ► Efficient
- ► Robust

Sextant independent of sensing range

- Current state of the art is to view the network as a system of systems
 - Forces all applications to implement their own mechanisms for state migration
 - ► Tedious, error-prone
 - Multiple applications may conflict
- Fundamental problem stems from lack of an arbiter
 - Need a system layer to perform resource mediation

MagnetOS Approach

- Programmer writes monolithic application for a single JVM
- MagnetOS statically partitions the application into communicating objects
 - Objects can reside anywhere in the network
- MagnetOS dynamically finds a good placement of objects on nodes in the network
 - Energy efficiency is the key goal

MagnetOS Approach

- Programmer writes monolithic application for a single JVM
- MagnetOS statically partitions the application into communicating objects
 - Objects can reside anywhere in the network
- MagnetOS dynamically finds a good placement of objects on nodes in the network
 - Energy efficiency is the key goal

MagnetOS Approach

- Programmer writes monolithic application for a single JVM
- MagnetOS statically partitions the application into communicating objects
 - Objects can reside anywhere in the network
- MagnetOS dynamically finds a good placement of objects on nodes in the network
 - Energy efficiency is the key goal

MagnetOS Implementation and Status

Implemented most of the system

- Static rewriter (50K loc)
- Space-optimized JVM for x86 and StrongARM (30K loc)
- ► Dynamic runtime (25K loc)
- Working on adding transparent replication
 - Based on message logging
 - Driven initially by programmer annotations

- Sextant is a localization framework that achieves high accuracy and scalability
 - Explicit representation of regions using Bézier curves
 - Conservative and comprehensive extraction of negative as well as positive constraints
 - Transitive dissemination of constraints
 - Use of events to refine node location
- Sextant is practical
- MagnetOS simplifies programming mobile systems
 - Many new directions based on transparent rewriting

http://www.cs.cornell.edu/People/egs/sextant/
http://www.cs.cornell.edu/People/egs/magnetos/

Positive Information

- ► **GPS-Free** '01: Capkun, Hamdi and Hubaux
- ► APS '01: Niculescu and Nath
- Convex Position Estimation '01: Doherty, Pister and Ghaoui
- Robust Positioning '02: Savarese, Rabay and Langendoen
- ► N-hop Multilateration '02: Savvides, Park and Srivastava
- APS-AoA '03: Niculescu and Nath
- ► Mere Connectivity Localization '03: Shang, RumI, Zhang and Fromherz
- Connectivity-Based Positioning '04: Bischoff and Wattenhofer
- ► Unit Disk Approximation '04: Kuhn, Moscibroda and Wattenhofer
- ► Virtual Coordinates '04: Moscibroda, O'Dell and Wattenhofer

Single-Hop

- ► Active Badge '92: Want, Hopper, Falcão and Gibbons
- ► GPS-Less '00: Bulusu, Heidemann and Estrin
- RADAR '00: Bahl and Padmanabhan
- Cricket '00: Priyantha, Chakraborty and Balakrishnan
- RF-Based Location Tracking '04: Lorincz and Welsh
- ► VORBA '04: Niculescu and Nath
- Localization Using a Moving Target '04: Galstyan, Krishnamachari, Lerman and Pattem

Event Localization

- Fine-grained Localization '01: Savvides, Han and Srivastava
- ► Collaborative Processing '03: Zhao, Liu, Guibas and Reich
- ► Acoustic Ranging '04: Sallai, Balogh, Maroti and Ledeczi
- ► Countersniper '04: Simon, Maroti, Ledeczi et al.
- **Entity Tracking** '02: Brooks, Griffin and Friedlander
- **Energy-Efficient Surveillance** '04: He, Krishnamurthy, Stankovic et al.