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Application Domain:

Technology Assisted Living

Home/garden sensor network

e.g.: Intel uses motion sensors to check the

health status of persons

Need for dependability

application is safety critical...

Some sort of physical security
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Underlying Distributed System

Mobile nodes

Network technologies

Wireless and wired Ethernet

Wireline Network
B1 B2

G1 G2 G3
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System Model Assumptions

Protocol/Application

Code

System Model 

Enforcement

Distributed System

system/failure model assumptions

“real” hardware/software properties

Goals: 

1) Simplify protocol development & permit correctness proofs

2) Probability that assumptions are violated are negligible
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Application Dependency

Application

timeliness requirements

TM

liveness requirements

fail-safe

TM-Watchdog++

fail-op

FAR

internal

consistency

TFAR

external

consistency

cond. uncond.



Timed Asynchronous

System Model (TM)

[1]
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Services



Local Hardware Clock Service
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Local Hardware Clocks

We assume that each computer p has a
hardware clock Hp

A hardware clock can be implemented by
a hardware counter

incremented by an oscillator
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Measurements
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Failure Assumption

Failure Assumption:

Each correct process has a correct hardware

clock, i.e., clock with a bounded drift rate.

Bounded drift rate:

process can measure length of a time interval
[s,t] with a max. error of (t-s)
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Hardware Clock Enforcement

Protocol Code

HWC Property

Enforcement

Clock

“real” properties

correct HWC
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Clock Failure Semantics Enforcement

We can try to detect clock failures and

force a process to

crash if its hardware clock is faulty

We can try to mask clock failures

We can try to do both
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Replicated Hardware Clock [2]
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Replicated Hardware Clock

Pentium processor has counter that is
incremented in each cycle

Read counter with instruction: rdtsc

Computers have hardware real-time clock

Approach:
Can use different on-board clocks to enforce
clock failure assumption



Datagram Service
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Datagram Service

Semantics:

At most once delivery of messages

Performance failure:

message transmission delay > .

Omission failure:

message transmission delay = 

Note: No bound on the number of failures!
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Datagram Failure Semantics

Enforcement

Protocol Code

FADS+MAC

UDP/IP

spoofing, duplicates,..

performance/omission
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Partially Synchronous Systems
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unknown upper bound
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Timed Model: No Upper Bound
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Conditional Timeliness Requirements

Timeliness Requirement:

have to achieve something good in D seconds

Conditional Timeliness Requirement:

have to achieve something good in D seconds

if system is stable.



Process Service
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Process Service

Failure assumption:

Processes have crash / performance failure

semantics
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Process Failure Semantics Enforcement

Protocol Code

Encoded Processing

CPU

“arbitrary” failures

crash/performance

failures



Possibilities and Impossibilities

in the Timed Model
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Most Standard Problems are

impossible to solvable in TM

For example, cannot solve

consensus,

strong leader election

eventually perfect failure detector

...

Reason:

Timed Model permits runs in which no

message is delivered!
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Two Approaches

Change the problem:

enforce service properties whenever the

underlying system is stable (synchronous)

if properties might be violated, signal to clients

that properties are not guaranteed

we call that fail-awareness [3]

Add additional assumptions:

infinitely often the system is stable
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Stability and instability periods
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stability stability
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Conditional Timeliness Requirements

Timeliness Requirement:

have to achieve something good in D seconds

Conditional Timeliness Requirement:

have to achieve something good in D seconds

if system is stable.
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Transmission delay...

depends on diameter, density, ...

expect more variance in mobile/* systems

How could nodes dynamically adjust ?
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Need to agree on a new 

Do we need the system to stabilize?

need to adjust  when the system is unstable

Do we really need a hardware clock?

e.g., change of clock frequency in mobile

systems might complicate things...

use of minimal assumptions



Finite Average Response

Time Model (Far) Model

[5]
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Observation 1:

Computers are not infinitely fast!
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Max. Speed of ++ is bounded

exec

time
Possible trend: time to increment integer

processor

generation

G > 0
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Weak Clock

Clock with some max. unknown speed:

int tick = 0 ;

process Tick() {

    forever { tick++; }

}

int ReadClock() { return tick; }
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Arbitrary Clock Failures

   int tick = 0, last = 0; const int maxd = ...;
process Tick() { forever { tick++; } }

   int ReadClock() {

if (H() > tick) {

tick = min(H(), tick+(tick-last)*maxd);

} else { tick = max(H(), last); }

last = ++tick;

return last;

}
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Weak Clock Semantics

For each clock tick, at least some

minimum unknown time G has passed

What is it good for?

timeouts!
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Observation 2:

In all well engineered systems(*), average

transmission delay is finite.

(*) we need to take care of protocols without flow control
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Communication System

We use stubborn channels

only reliable transmission of last message is

guaranteed

need to wait for delivery of last message before

transmitting new message



Christof Fetzer, TU Dresden 40

Finite Average Response Time

Assumption:

average response time of link between any two

correct processes is finite

average: limk (average of k first responses)

Result:

Assumptions 1+2 sufficient to implement an

eventually perfect failure detector [5]
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Eventually Perfect Failure Detector

q

p

A B C D

B-A D-Cp ok

timeout timeout
p suspected

fast slow
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Timeout Adaptation

R
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Time-timeout proportional log of number of wrong suspicions

-timeout proportional number fast messages since last slow message
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Finite Average Response (FAR)

Model [5]

Eventually perfect failure detector (and hence
consensus protocol) can be implemented in a
system with

NO upper/relative bound on transmission delay

NO upper/relative bound on processing delay

NO assumption that system stabilizes

NO clocks, failure detectors, etc

But
average response time must be finite

unknown min exec time for some operation



Timed Far Model

FAR Model [6]
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Impossibility Result

Strong leader election problem, i.e.,

infinitely often there is a leader

at any point in time there is at most one leader

impossible to solve in FAR model [6]

adding a clock solves the problem

Timed FAR model
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Conclusion

Application

timeliness requirements

TM

liveness requirements

fail-safe

TM-Watchdog++

fail-op

FAR

internal

consistency

TFAR

external

consistency
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