Session 2 Summary: Practice & Experiments

Jay Lala

Grid Computing

Customer Interest, Expectation, and Requirement for Grid in Dependability Context

48th Meeting of IFIP Working Group 10.4

Takanori Seki, Distinguished Engineer Technical Sales Support, IBM Japan

Japanese Business Grid Project Objectives & Key Technical Issues

IFIP Conference, July 2005

Nobutoshi Sagawa Toshiyuki Nakata Hiro Kishimoto

(Hitachi Ltd)(NEC Corporation)(Fujitsu Ltd)

Thanks to all the teams in the BUSINESS GRID COMPUTING PROJECT

Summary - 1

- Definition: Dynamic resource sharing across an enterprise
- Motivation: Grid computing must be equal to or better than current systems
- Requirements
 - Complexity of grid computing must be transparent to user
 - High availability (0.92 to 0.96) and disaster recovery
- Roadblocks to Grid Implementation
 - Application-specific system management with respect to
 - system monitoring/operation, high availability and disaster recovery
 - No incentive to share (organizational)
- Grid with Reasonable Dependability: restoration of the mainframe idea but virtual

Summary - 2

- Definition: Multiple data—centers linked together
- Motivation: Reduce cost and support business continuity
- Java e-Business Ticket Purchase Demonstration
 - Four data-centers linked together with currently available data synchronization algorithms (local/global two-layered grid)
 - 20-30 servers per site
- Dependability Requirements
 - 5 second response time (Service Level Agreement)
 - 0.99999 availability
- Project focus on developing middleware with proprietary interfaces to application software and to resources
 - Lack of standards for these interfaces

Conclusions

- Motivation: Grid computing has the potential to lower costs and / or improve performance and dependability compared to existing systems
- Practice of grid computing is at a very early stage
 - Scale: "hundreds of nodes, not thousands
 - Dependability: Primary emphasis on availability but desired levels easily achievable with existing distributed systems
 - No specific requirements for data integrity and security
- Applications
 - Principally e-commerce
- Lack of standards not yet a hindrance
 - Develop proprietary interfaces in-house as a work-around

Challenge

- Not sure how all this is different from distributed computing and justifies a new name
- If Grid Computing is truly something new and unique, the community needs to define crisply
 - What is it
 - What benefits it might offer
 - What are the unique problems posed by grid computing, especially from the dependability viewpoint