

Grid on Blades

Basil Smith 7/2/2005

© 2003 IBM Corporation

What is the problem?

- Inefficient utilization of resources (MIPS, Memory, Storage, Bandwidth)
 - Fundamentally resources are being wasted due to wide and unpredictable dynamic range in workload burdens – static or pseudo static resource allocation schemes do not work.
 - Underutilized resources in:
 - In server farms
 - At client endpoints
- Constraints
 - Security: need to run most apps with glass house class security
 - Licenses: need to get as much bang for buck for each license (this puts very real constraints on utilization of highly fragmented resources)
 - Software conflicts hosting of grid application on a shared OS raises serious problems with conflicts and compatibility – frequently does not work at all and testing for obscure interaction is prohibitive
 - Software compatibility applications cannot be extensively rewritten, they tend to run in context of a specific OS, middleware, and cluster environment
 - Dependability: particularly with respect to data integrity

Some observations and context:

- Except for some very niche applications, trying to better utilize client endpoint resources is unproductive – why?
 - Security: no real solution exists, physical remains security essential part of picture.
 - Licenses: inefficient license utilization wastes more than the value of the HW resources being retrieved.
 - Software conflicts: no efficient solution exists to assuring grid application will not conflict with client applications in shared host environments.
 - Software compatibility: OS/middleware/application stacks are mostly deployed using "clone" model, this would dictate reboot of client to grid clone image (or virtualization equivalent) – mostly this is an issue of switching from Windows client to Linux grid application.
 - Server hosting of clients (with thin display head) is likely a more effective means of addressing client resource waste.
 - Dependability: Dependability burden of using client HW on glass house core may be greater than payback – need for secure storage in anycase, and client storage is more inefficient than data center storage.
- Practicality dictates grid on/among scale out server farms

At the very bottom, what is the deployment model

- An application on a single node is deployed using "clone model"
 - Clone == boot disk image of OS/middleware/application instance, normally created from golden image, plus some customization
 - Virgin image never been run no state beyond T0 image

Easily recreated from golden image

Dirty image – includes state changes from running image
May include extensive application state

_	_		
	_		
	and the second second	Sec. 2	
			_
	-	-	
-	the second second		

Why Cloning – what's the application stack look like?

It looks like a bill board of stuff you need, and we will sell you ;-)

Build is tedious and release to "gold" is a lot of testing, somewhere in all of this you also might actually have to write some lines of code.

At the very bottom, retasking a server

- To retask:
 - "Hibernate" an active server (force all state to disk a dirty clone)
 - Turn server off
 - Disconnect dirty clone of that image from server
 - Connect new clone to server
 - Boot new image

Grid Logical View

_	 _	
	_	-

Again back to the bottom – what are these resources

eServer BladeCenter Overview

Processor Blades

NEBS readv

_			
_	_	_	
		 the second s	
			-
	_		

Again back to the bottom – what are these resources

Again back to the bottom – what are these resources

Processor Blade (Dual Xeon)

Low level management to enable grid

IBM

Finally, the dependability challenge

- Break the problem down to known solutions
 - Classic cluster recovery for failed node in application
 - Reprovisioning of spare node to replace capacity
 - Is this with a virgin copy, checkpointed copy, or by just attaching failed image to another server and restarting
 - File and disk dependability and integrity management is critical, ultimately protecting against loss of state
 - RAID storage subsystems
 - Replicas and checkpoints (point in time copies)
 - Geographic replication (for disaster recovery)

The dependability challenge

- Options / candidates for availability manager
- What grid services need to be availability aware
 - Lots of problems
 - Who recovers lost licenses
 - Strategy for recoverying basic grid services.
 - Break the problem down to known solutions
 - Who keeps compatibility matrix
 - Role of virtualization
 - Whats disaster recovery procedure for storage subsystem failure

Grid Computing Institute

Aligning IBM Research with the Grid Strategy, Product Development, and Customer Needs

Discussion:

© 2003 IBM Corporation