
Experiences with
Component Interference

on
Shared Hardware Resources

Philip Koopman

IFIP WG 10.4 Meeting, March 2004

&Electrical Computer
ENGINEERING

2

Overview:

• Memory as a shared resource
– Ballista testing results on memory integrity

– New results include real-time Java, VxWorks

• Network as a shared resource
– Software defect masquerading as an interference source

– Protection vs. cost tradeoff points for authentication

• Conclusions

3

Robustness Testing Results

4

Ballista: Process Isolation
• Ballista robustness testing

– Run combinational tests on valid and exceptional API parameters
– Result is considered robust if tasks report recoverable exception
– Result considered non-robust if crash, hang, or unrecoverable

exception (e.g., a Unix signal), or if invalid parameter is accepted

• Experience testing several APIs
– Unix operating systems
– Embedded operating systems
– Windows operating systems
– HLA RTI (distributed simulation system)
– CORBA client API
– Java.lang API
– Java components; SFIO library; other small case studies

5

Ballista: Scalable Test Generation
API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

TEST
VALUES

TEST CASE

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST
OBJECT

FD_CLOSED

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

FD_OPEN_READ
BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE
BUF_16

BUF_NEG_ONE
BUF_NULL

SIZE_1

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

SIZE_16

• Ballista combines test values to generate test cases

6

Failure Rates By POSIX Fn/Call Category

• Anecdotally, system
killers lurk where
there are high
robustness failure
rates

• New HP-UX 10
system killer was in
memory
management

7

Inter-Task Isolation Results
• Tests run as a long series

– Each test is spawned as a separate task with clean state, BUT
– How do we know that one test doesn’t affect the next?

• Approach: permute order of tests
– Run entire test suite in different order
– If all tests results are identical, then probably no carry-over
– Also, re-run tests and check for consistency

• Results on workstation Unix variants:
– No carryover with order permuted on Digital Unix
– Identical results when re-running tests on Digital Unix
– Other workstation Unix variants performed similarly

8

Isolation of Kernel from Tasks
• Kernel can’t be 100% isolated from tasks

– OS API calls give opportunity to attack kernel
– Measure kernel corruption via repeatability & system crashes

• System crashes observed:
– 10 Unix variants had no system crashes
– 5 Unix variants had one or two functions that could crash system:

• HPUX 10.20; Irix 6.2; LynxOS 2.4.0; Digital Unix 3.2; QNX 4.22

– Windows NT & Windows 2000 – no observed crashes
– Windows 95; 98; 98 SE – 7 or 8 functions could crash system
– WinCE 2.11 – 28 functions could crash system

– VxWorks 5.3.1 – 2 functions with repeatable system crashes
• This is a surprising result … more shortly

9

Submarine System Robustness Tests

Ethernet

Hub

TargetHost
System Specifications

•VxWorks 5.3.1
•Tornado 1.01
•Apache Web Server

•Solaris 2.6
•Gnu C Compiler
•Red Hat Linux 5.2

MVME 177

Serial Reset Line

Reset Board (DRC)

Console

Ballista Server

Dynamics Research Corporation

10

Submarine Robustness Test Results

Actual Results Normalized Results
STOP 5 STOP 4 STOP 5 STOP 4

Operating

System

Tester

Number of
Modules
Tested

Number of
Tests Run

Catastrophic Abort Restart Catastrophic Abort Restart

DRC 38 13071 439 1913 1248 3% 15% 10%
CMU 37 9944 360 1078 1428 2% 13% 9%

VxWorks
5.3.1

Total 75 23015 799 2991 2676 3% 13% 11%
Solaris 2.5 CMU 233 92658 0 15374 28 0% 17% 0%
All Other* CMU 4097 3186701 52** 674595 7387 0% - 1% 9% - 26% 0% - 3%

* 24 Other Operating Systems Tested
** Module Catastrophic Failures vice Test Failures

• TYPES OF STOPS
– STOP 5 - Catastrophic; Tests Crashed the System,

Requiring Hard Reboot
– STOP 4 - Abort; Suffered Abnormal Termination
– STOP 4 - Restart; Tests Hung in the OS Call, Requiring

Task Restart
• VxWORKS HAS POTENTIAL FOR STOP 5’s

– Not so for Solaris

11

OS With No Memory Protection
• VxWorks version did not have memory protection

– Any task can overwrite OS memory
– Expected lots of big crashes – but that’s not what we saw

• Lots of carryover seen in testing
– Changing order of test runs showed dramatic differences
– Needed to do hardware reboot after every test over many weeks
– Many difficult to reproduce crashes; difficult to analyze

• BUT, relatively few hard crashes
– System would keep running long after OS state was corrupted
– Crashes often required long series of tests to manifest
– In general, system corruption not as dramatic as expected

• (Still it was bad, but outward symptoms were sometimes subtle)

12

Java & Real-Time Linux Testing
• Real-time Linux & Java as a candidate for spacecraft use:

– Tested 266 methods; 232,570 tests per environment; java.lang
– “Robustness failure” when exceptional inputs lead to

unrecoverable Java task state

• Generic Baseline (Red Hat Linux+SUN JVM)
– 4.7 % Robustness Failure Rate / No JVM crashes
– Reasonably robust compared to:

• POSIX Operating Systems 10-20 %
• HLA-RTI (High Level Architecture Run Time Infrastructure) 10 %

• Proposed config. (Timesys Linux-RT GPL+RT-Java)
– Some segmentation faults (impossible to handle in Java) –

resulted in JVM crashes
– Other robustness failure rates comparable to generic version

13

Preliminary Wear-Out Testing

• Ran several concurrent copies of Ballista on Linux
– Found little in way of races, wear-out

– The one problem found was tracked down to non-reentrant
exception handler that leaked memory buffers

• Windows wear-out testing found detection is improving
– Win2K detected resource leaks much more quickly than Win NT

• But, could be made to leak memory and even resource managers

– WinXP looked even better on some very quick tests

– (But, this work was just a preliminary investigation)

15

Lessons Learned
• Memory protection really works

– Inter-task memory protection provided excellent results
• Problems we found were almost always easy to repeat and isolate

– Task-to-kernel memory protection was good
• But, API provided vulnerable spot (of course)

– Operating systems with weaker or non-existent memory
protection did poorly

– No free lunch – triggering memory protection can make offending
task unrecoverable

• Java isn’t a silver bullet
– JVM testing managed to crash JVM on Timesys RT-Java
– Null pointers caused unrecoverable exceptions in commercial

code [DeVale02]

http://ballista.org

