
March 2004 IFIP WG 10.4

Error Sensitivity of Linux on
PowerPC (G4) & Pentium (P4)

W. Gu, Ravi K. Iyer
Center for Reliable and High-Performance Computing

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Motivation
� Linux kernel responds to transient errors that impact kernel code, kernel

data, kernel stack, and processor system registers, and

� How processor hardware architecture (instruction set architecture and
register set) impacts kernel behavior in the presence of errors

� Approach: compare Linux behavior under errors on two different
platforms

� Intel Pentium 4 (P4) running RedHat Linux 9.0

� Motorola PowerPC (G4) running YellowDog Linux 3.0.

� Important in:

� establishing benchmarking procedure for analyzing and comparing different
platforms

� facilitating analysis of costs–reliability–performance tradeoffs in selecting a
computing platform

Approach

� Automated error injection into the instruction stream of the
kernel code
� Over 115,000 errors injected into the kernel code, data, stack, and

CPU registers.

� Error model
� Transients emulated by injecting single bit errors into the kernel and

CPU registers
� Error origin not presumed – injections reflect the ultimate fault impact

on the system behavior
� Error location pre-selected based on profiling

Major Findings
� Error activations similar for both processors – manifestation percentages

for the Pentium P4 twice as high.

� Significant difference between the two processors in manifestation
percentages for

� Stack errors: 56% for P4 and 21% for G4.

� Kernel data: 66% for P4 and 21% for G4

� Variable length instruction format on P4 allows a bit error to alter a
single instruction into a sequence of multiple valid instructions.

� Can lead to poorer diagnosability

� Can reduce crash latency (fail fast)

� Less compact fixed 32-bit data and stack access on the G4 can
contribute to error masking, i.e., sparsity of the data can mask errors

� More optimized access patterns on P4 can increase the chances that an
error is detected at the time the data item is accessed/used.

� Important for performance/reliability tradeoff.

Experimental Setup

Workload

 Target System

 (Linux Kernel 2.4.22)

• Injector
• Crash Handler
• Data Deposit

 PPC
Pentium

Hardware Monitor

Remote
Crash Data
CollectorRemote

Crash Data
Collector

Workload

NFTAPE
Control
Host

Data
Analysis

Hardware System Software
Processor Desktop CPU Clock Memory Distribution Linux Kernel Compiler

Injection
Tool

Intel
Pentium 4

Dell 1.5GHz 256MB RedHat 9.0 2.4.22

Motorola
PowerPC G4

Apple 1.0GHz 256MB YellowDog
3.0

2.4.22

GCC
3.2.2

NFTAPE

Target Address/Register Generator

System Register Stack Data Code

Randomly pick
a process

Function,subsystem,
location

Data Breakpoint
Injector

Instruction Breakpoint
Injector

Remote
Crash
Data

Collector

Not
Activated

Non-Breakpoint
Injector

Kernel
Data

Injector

Linux Kernel Pentium 4/PowerPC G4

Not
Manifested

Fail Silence
Violation

Workload:

UnixBench

UDP

System
Hang

System Reboot

Start
Next

Injection

Crash
Handler

Hardware Monitor

User
Space

Kernel
Space

Automated Process of Injecting Errors

Error Injections and Outcome Categories
� Single-bit errors are injected into:

� instructions of the target kernel functions,
� stack of the corresponding kernel process,
� kernel data structures,
� CPU’s system registers.

Outcome
Category

Description

Activated The corrupted instruction/data is executed/used.

Not Manifested The corrupted instruction/data is executed/used, however it does not cause a
visible abnormal impact on the system.

Fail Silence
Violation

Either operating system or application erroneously detects the presence of an
error or allows incorrect data/response to propagate out.

Crash

Operating system stops working, e.g., bad trap or system panic.
Crashes are divided into two groups: (i) Crash – cause known: a detailed dump
information collected and (ii) Crash – cause unknown: no dump information
collected

Hang System resources are exhausted resulting in a non-operational system, e.g.,
deadlock.

Statistics on Error Activation and Failure
Distribution

Activated
Intel

Pentium 4
Campaign

Injected
Error

Activated
(Percentage)

Not
Manifested

Fail
Silence

Violation

Known
Crash

Hang/
Unknown

Crash

Stack 10143 2973(29.3%) 1305(43.9%) 0(0%) 1136(38.2%) 532(17.9%)

System
Register

3866 N/A 3459(89.5%) 0(0%) 305(7.9%) 102(2.6%)

Data 46000 226(0.5%) 77(34.1%) 0(0%) 96(42.5%) 53(23.4%)

Code 1790 982(54.9%) 308(31.4%) 13(1.3%) 455(46.3%) 216(22.0%)
Total 61799

Activated
Motorola
PPC G4

Campaign
Injected

Error
Activated

(Percentage)
Not

Manifested

Fail
Silence

Violation

Known
Crash

Hang/
Unknown

Crash
Stack 3017 1203(29.3%) 949(78.9%) 0(0%) 172(14.3%) 84(7.0%)
System
Register 3967 N/A 3774(95.1%) 0(0%) 69(1.7%) 124(3.1%)

Data 46000 704(1.5%) 551(78.3%) 7(1.0%) 55(7.8%) 91(12.9%)
Code 2188 1415(64.7%) 580(41.0%) 33(1.5%) 576(40.7%) 226(16.0%)

Total 55172

Crash Cause in Pentium
(Total 1982)

Kernel Panic
0.1% Invalid TSS

1.0%
Divide Error

0.1%

Invalid
Instruction

16.0%

Bad Paging
43.2%

Bounds Trap
0.1%General

Protect. Fault
12.1%

NULL Pointer
27.5%

Bad Paging

NULL Pointer

Invalid Instruction

General Protect. Fault

Kernel Panic

Invalid TSS

Divide Error

Bounds Trap

Crash Cause in PPC
(Total 872)

Alignment
1.6% Panic!!!

0.1%
Bus Error

0.7%
Machine Check

1.4%

Stack Overflow
12.7%

Bad Area
66.9%

Illegal
Instruction

16.3%

Bad Trap
0.4%

Bad Area

Illegal Instruction

Stack Overflow

Machine Check

Alignment

Panic!!!

Bus Error

Bad Trap

Distributions of Crash Causes

Intel Pentium 4 Motorola PPC G4

Linux kernel 2.4.22

• NULL Pointer: NULL pointer de-reference;
• Bad Paging: Other bad paging except NULL pointer;
• General Protection Fault: Exceeding segment limit;
• Kernel Panic: Operating system detects an error;
• Invalid TSS: Selector, or code segment is outside table
 limit;
• Bounds Trap: Bounds checking error.

• Bad Area: Bad paging access including NULL pointer;
• Stack Overflow: Stack pointer of a process is out of
range;
• Machine Check: Errors on the processor-local bus;
• Alignment: Load/Store operands are not word-aligned;
• Bus Error: Protection faults;
• Bad trap: Unknown exceptions.

mm/page_alloc.c <__free_pages_ok>: …
c013ec65: 8d 65 f4 lea 0xfffffff4(%ebp),%esp
c013ec68: 5b pop %ebx
c013ec69: 5e pop %esi
c013ec6a: 5f pop %edi
c013ec6b: 5d pop %ebp
c013ec6c: c3 ret

mm/page_alloc.c <__free_pages_ok>: …
c013ec65: 8d 64 f4 5b lea 0x5b(%esp,%esi,8)),%esp
c013ec69: 5e pop %esi
c013ec6a: 5f pop %edi
c013ec6b: 5d pop %ebp
c013ec6c: c3 ret

c0119cb2 c0107784 c010799a c0108067 c0119cb2 c0107784 c010799a c0108067 c0119cb2 c0107784 c010799a c0108067
c0119cb2 c0107784 c010799a c0108067 c0119cb2 c0107784 c010799a c0108067 c0119cb2 c0107784 c010799a c0108067
c0119cb2 c0107784 c010799a c0108067 c0119cb2 …

Unable to handle kernel
paging request at virtual
address 170fc2a5

%eax=0x170fc2a5
Crash Latency=13116444

net/core/skbuff.c <alloc_skb>: …
c02abf1b: 8b 8a e0 7a 43 c0 mov 0xc0437ae0(%edx),%ecx
c02abf21: 31 c0 xor %eax,%eax
c02abf23: 39 d9 cmp %ebx,%ecx
c02abf25: 74 27 je c02abf4e <alloc_skb+0xae>
c02abf27: 89 c8 mov %ecx,%eax
c02abf29: 8b 08 mov (%eax),%ecx

����

����

����

Return Address (in the stack) pattern:

Original
Code

Corrupted
Code

Stack Injection: An Example of Error Propagation
Due to Undetected Stack Overflow

Date Injections – Example Crash due to
Illegal Instruction (P4)

C code to use the data:
static inline void spin_unlock(spinlock_t
*lock)
{
#if SPINLOCK_DEBUG

if (lock->magic !=
SPINLOCK_MAGIC)

BUG();
if (!spin_is_locked(lock))

BUG();
#endif

_ _asm__ __volatile__(
spin_unlock_string

) ;
}<sys_ioctl>:

…
c015852d: 85 c0 test %eax,%eax
c015852f: 79 07 jns c0158538 <sys_ioctl+0x2d8>
c0158531: 6a 42 push $0x42
c0158533: e8 78 6a fc ff call c011efb0 <__out_of_line_bug>
c0158538: 48 dec %eax
c0158539: 85 c0 test %eax,%eax
c015853b: 89 42 1c mov %eax,0x1c(%edx)
c015853e: 79 2e jns c015856e <sys_ioctl+0x30e>
c0158540: 81 3d c4 5b 37 c0 ad cmpl $0xdead4ead,0xc0375bc4
c0158547: 4e ad de
c015854a: 74 08 je c0158554 <sys_ioctl+0x2f4>
c015854c: 0f 0b ud2a
…

Pentium 4 kernel Data Section:

c0375bc0 <kernel_flag_cacheline>:
c0375bc0: 01 00
c0375bc2: 00 00
c0375bc4: ad
c0375bc5: 4e
c0375bc6: ad
c0375bc7: de 00

One bit flip in data
changes 4E to 0E

¢Ù

¢Ú
cmpl generates wrong
flags because of bad data

¢Û

Corresponding Assembly:

Illegal Instruction

����

2

1

3

Example of Consequences of Kernel Stack
Injection (P4)

#define TASK_STOPPED 8
int kupdate(void *startup)
{ …

for (;;) {
/* update interval */
if (interval) {

tsk->state = TASK_INTERRUPTIBLE;
schedule_timeout(interval);

} else {
tsk->state = TASK_STOPPED;
schedule(); /* wait for SIGCONT */

}
/* check for sigstop */
if (signal_pending(tsk)) {

int stopped = 0; …
}
sync_old_buffers();
run_task_queue(&tq_disk);

}
}

Machine Code Assemply

8b 45 e0 mov 0xffffffe0(%ebp),%eax
c7 00 08 00 00 movl $0x8,(%eax)
00
e8 12 e3 fc ff call c011ad00 <schedule>
8b 55 e0 mov 0xffffffe0(%ebp),%edx
8b 4a 08 mov 0x8(%edx),%ecx
85 c9 test %ecx,%ecx
0f 84 ca 00 00 je c014cac6<kupdate+0x1f6>
00

①①①①

①Get address of data structure tsk from
stack at location of 0xffffffe0(%ebp).
But One bit flip in stack alters the addr
saved in EAX.

Using wrong EAX to set “tsk->state.”

Crash because EDX coming from stack
now is 0.

②②②②

③③③③

③

②

Unable to handle kernel NULL pointer
at virtual address 00000008

Crash latency is 12864 cycles

Distribution of Cycles-to-crash

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
P

er
ce

n
ta

g
e

3k 10k 100k 1M 10M 100M 1G >1G

CPU Cycles

Latency in Stack

Pentium

PPC

(A) Stack Error Injection

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
er

ce
n

ta
g

e

3k 10k 100k 1M 10M 100M 1G >1G

CPU Cycles

Latency in System Register

Pentium

PPC

(B) Register Error Injection

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%

P
er

ce
n

ta
g

e

3k 10k 100k 1M 10M 100M 1G >1G

CPU Cycles

Latency in Code

Pentium

PPC

(C) Code Error Injection

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%

P
er

ce
n

ta
g

e
3k 10k 100k 1M 10M 100M 1G >1G

CPU Cycles

Latency in Data

Pentium

PPC

(D) Data Error Injection

Stage 1:
Kernel runs till a
bad instruction is

executed.

Stage 2:
Hardware
Exception
Handling

Stage 3:
Software
Exception
Handling

Latency (Cycles-To-Crash)

Error
injected &
activated

Crashed

Crash Latency – Major Results
� 80% of stack errors

� short-lived (less than 3,000 cycles) on G4
� longer crash latency (3,000 to 100,000 cycles) on P4
� Reason a disparity in the way the two platforms handle exceptions,

e.g., kernel on the G4 provides quick detection of stack overflow
errors, on P4 converts stack overflow events into other types of
exceptions (e.g., bad paging)

� Opposite trend in crash latency of errors impacting the
kernel code
� On P4 – 45% of errors are short-lived (less than 3,000 cycles),
� On G4 – 50% of errors have latency between 10,000 and 100,000

cycles.
� Dissimilarity due to the differences in the number of general-purpose

registers provided by the two processors (32 on the G4; 8 on the P4).

Example of Variation in
Crash Latency (G4)

� A bit error in the sys_read()
function (kernel code on G4).

� The error transforms the mflr
instruction to lhax.

� The system crashes (kernel
access of a bad area) due to an
illegal address generated by
lhax r0, r8, r0 (gpr8 + gpr0).

c0048fac <sys_read>:
c0048fac: 94 21 ff e0 stwu r1,-32(r1)
c0048fb0: 7c 08 02 a6 mflr r0

c0048fac <sys_read>:
c0048fac: 94 21 ff e0 stwu r1,-32(r1)
c0048fb0: 7c 08 02 ae lhax r0,r8,r0

One bit flip changes original code
“mflr r0(copy the contents of the LR to r0)”
TO
“lhax r0,r8,r0(load half word algebraic indexed)”
gpr0 <== (gpr8 + gpr0) 16

Depending on the contents of gpr0 and gpr8,
crash latency varies from 1285 cycles
(209 instructions) to 424256 cycles
(230958 instructions)

“kernel access of
bad area”

Original
Code

One bit flipped

Conclusions
� Less dense data access of the stack and data segment makes G4

platform less sensitive to errors.
� Although a similar number of errors are activated on both platforms, a

much smaller number manifests on G4 than on P4 platform.
� More optimized (from 1-4 bytes) access patterns on the P4 ensure that if

an error location is accessed it is more likely to lead to problems.
� Variable length instruction format on P4 allows a bit error to alter a single

instruction into a sequence of multiple valid instructions.

� Can lead to poorer diagnosability

� Can reduce crash latency (fail fast)

� Enhanced interaction between the hardware and the operating system
can improve error detectability and diagnosability.
� e.g., stack overflow detection, could be added by extending the semantics of

PUSH and POP instructions on P4 to enable checking for a memory access
beyond the currently allocated space for the stack.

