
Dependability
Challenges in

Model Centered
Software Development

David P. Gluch
Embry-Riddle Aeronautical University

&
Visiting Scientist

Software Engineering Institute
Carnegie Mellon University

2

Context Model Centered
Development

Attributes
• Minimal Textual Requirements
• No Sequence of Documents
• Multiple Modeling Views
• Increasingly Formal Models
• Conformance to Standards (e.g. UML)
• Integrated Tool Support
• Automated Code Generation

Desired
System

CodeModels
(nexus)

Requirements

Contrast:
• Sequence of phases
• Requirements
• Architecture
• Detailed Design
• Coding

3

Concurrent V&V

Source
Code

Executables

Nexus
of

Models

V & V
Artifacts

Test
Cases

Model-
Centered
V&V Plan

Requirements

Sources of
Requirements

Variable levels of autonomy
 Integrated to independent

Formal Models

Model Analysis

Coordinated Analysis and Test

4

Challenges : Analysis of Models

Assess and establish viability in real world mission and
safety critical software development

Foundational Research
• Enhanced model checking approaches

Transition - Facilitate Adoption
• Practices
• Education

- Change software engineering “culture” and “thinking”
(analyze and design)

• Commercialization
- Deformalize formalism
- Standardized approaches (e.g. UML, OCL)

5

Model Checking

essential
model

model
checking

ConfirmedConfirmed

OROR

counter
examples

+

Not
Confirmed

Automated

expected
properties

Transition (and research) Challenges:
• Abstraction
• Generating expected properties (queries)
• De-formalizing Claims

Formal
Expression:

Claims

Robust
Abstraction

6

Expected Properties and Claims

Domain
Expert(ise)

Expected Properties
(Restated Natural Language)

Claims
(CTL or LTL)

Software
Engineers

Software
Engineer

&
Domain
Experts

Sources of
Expected Properties

Expected Properties
(Natural Language)

&
Domain
Experts

At the requirements level and
other higher design levels

7

V&V Expected
Properties

Sources
 Application Domain

- Users
- Customers
- Operations Personnel
- Maintenance Personnel
- Domain Experts
- Requirements

 Technology Domain
- Technology Experts
- Technology Standards

 Development Methodology
- Development Experts
- MBV Experts
- Quality Assurance

Personnel
- Quality Standards
- Standard Practices
- Engineering Standards
- Development Technique
- Intra and Inter-model

Sources
 Application Domain

- Users
- Customers
- Operations Personnel
- Maintenance Personnel
- Domain Experts
- Requirements

 Technology Domain
- Technology Experts
- Technology Standards

 Development Methodology
- Development Experts
- MBV Experts
- Quality Assurance

Personnel
- Quality Standards
- Standard Practices
- Engineering Standards
- Development Technique
- Intra and Inter-model

Requirements

At the requirements level and
other higher design levels

Strategies and Heuristics for
generating expected properties

8

De-Formalizing Claims

Consider Computation Tree Logic Expressions

AGAF (agitator = engaged)

AG (temperature = high -> agitator = engaged)

AG ((EX engine = ignition) -> safety-lock = released)

! EF(AG (state = idle))

9

Template Classifications -
Taxonomy
Occurrence
· Basic reachability
· Transitionability
· Global reachability
· Infinite occurrence
· Qualified occurrence
· Co-Occurrence
· Permanent occurrence
· Error free execution
· Mutual exclusion

Cause & Effect
· Simple cause – effect
· Permanent cause – effect
· Cause – scoped effect
· Cause – chained effects
· Immediate precondition
· Chained causes – effect
Non-progress
· Deadlock
 Starvation

10

Template: Qualified Occurrence

Predicate 1 is true at least until the first occurrence of
Predicate 2 and Predicate 2 will eventually become true.

CTL: A [Predicate 1 U Predicate 2]
LTL: Predicate 1 U Predicate 2

Note that Predicate 1 does not need to change to false when
Predicate 2 occurs. It may continue to be true.

Examples and known uses:
Sometimes a condition must hold from the initialization of
the system until something happens. For example:

A [Ejection = disabled U Plane has taken off]

11

Template: “Cause and Effect"

If the pilot presses the ejection button, the seat
will be ejected.
AG (
 Ejection_button = pressed ->
AF (Seat = ejected)
)
Note that the seat may be ejected any number of
cycles after the ejection button being pressed.
Related claims and templates:
For an immediate effect (in the next state), AX can
be used instead of AF.
For a possible but not guaranteed effect, use EF
instead of AF.

12

Challenges – Summary

Effectively Integrate Formalism

Robust model analysis and checking strategies

Lack of Commercial Tools

Correlate model analysis with testing

Need both domain and technical expertise

