Section 4: Design for Dependability-2

A. Bondavalli

Adding security to operational systems Walter L. Heimerdinger

Dependability Challenges in Pushed-based Systems Yennun Huang

High End Commercial Computer Fault Tolerance: Trends and Directions - AUTONOMIC COMPUTING

Lisa Spainhower

Adding security to operational systems

- 'Classical' dependability and security use a different sets of techniques often conflicting with each other
- The challenge is merging those techniques solving the various conflicts e.g. redundancy vs. confidentiality

Dependability challenges in Push-based distributed network applications

- Push: register somewhere to get some info and when it is available it will be sent automatically thus reducing the traffic over the internet
- Reliability challenges e.g.
 - Asynchronous Communications
 - Subscriber-based reliable broadcast
 - Exactly once delivery (filtered and dropped packets)
 - State replication and synchronization
- Scalability challenges e.g.
 - Large number of subscribers
 - Complex network management
- Security challenges e.g.
 - Content-based filtering and routing
 - management

Availability of real systems - Autonomic Computing

- Availability of real systems -- Several lessons learned:
 - Good technology and Good management are both needed
 - FT servers make a difference
 - Cluster difficult to implement
- Challenges
 - Firmware -- Circuit failure mechanisms -- State encapsulation -- On-thefly changes -- Dynamic resources allocation -- Configuration validation
- eLiza Project: work in progress towards the 'perfect' system:
 - Self optimizing -- Automatic recovery -- Transparency
 - Interoperable services --- Dynamic selection --
- Should we build Autonomous systems to the extent that humans will not be needed anymore??
- Is it the case that automation simply removes 'less dangerous' failures and we remain with the most severe or does it "**Create**" new failures which could not occur before??