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Embedded Systems

♦ Are an enabling technology for many important industrial products
• Automotive
• Mobile Phones
• Machinery
• Consumer Electronics
• Smart Cards
•  . . . . . . .

♦ The macro-economic impact of embedded systems technology is much
wider than the size of the embedded system market indicates.

♦ More than 99% of the computers produced worldwide are deployed in
embedded systems

♦ Fierce battles about the  world-wide market share are ongoing

♦ In many applications, dependability is a key selling argument (e.g.cars).
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The Context of an (Embedded) System

Every system is embedded in a technological, economical, and
sociological context. This context

♦ Determines the System Requirements
• Functional
• Economical
•  . . . . .

♦ Changes rapidly
• New Applications have new dependability requirements
• Moore’s Law changes the economic constraints
• User experience and changing expectations
• . . . .

We must try to understand the future context in order to
pin  down the future challenges.
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Why Do Embedded Systems Fail?

♦ Independant (Internal) Physical Faults: E.g., a physical aging
process. Can be transient (soft) or permanent. Multiple failures of
chips, but not within chips, are statistically independent--will increase
due to reduction of feature size.

♦ Dependant (External) Physical Faults: E.g., EMC,  spikes in the
power supply, mechanical shock. Can be transient or permanent.
Replication of components is not the solution.

♦ Design Faults: The cause of the failure is the design (software or
hardware) resulting in inconsistent states and actions. Reduce
cognitive complexity of designs.

♦ Malicious Attacks:  An  evil adversary attacks the system.

♦ Operator Error:  Mistakes of the operator at the MMI.
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Technology Driver:  Moore’s Law

What You Can Do Today with 1 mm2 of Silicon?

♦ Build  a 32 bit wide processor (e.g., the ARM 7 processor)

♦ implement  100 k-bytes of memory (e.g., the 256 Mbit memory
chip from Infineon is less than 100 mm2).

Today, the marginal production cost (without IP, packaging,etc.)
of 1 mm2 of silicon is in the order of 10 US cent.

Communication capabilities increase even faster than processing
capabilities.
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Consequences of Moore’s Law

♦ Number of embedded control systems will increase significantly.

♦ Hardware-fault tolerance becomes affordable, even in mass-markets.

♦ In many cases, system  hardware cost will be dominated more by the
number of packages, than by the functionality of the silicon real-estate
in each  package.

♦ The use of the smart sensor technology will increase. Sensor nodes,
built with mixed signal chips, will be (intelligent) nodes of a distributed
system.

♦ Because of the decreasing feature size, the occurrence of multiple
transient hardware faults will increase.

♦ It is not possible to have two independent fault-containment regions on
the same chip.

♦ Distributed systems will prevail (also for reasons of fault containment).
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The Challenge Problem in Embedded Systems. . .

Dependability

Functionality Cost 

to bring dependable  embedded systems to the 
cost level of mass market applications

Aircraft
Cost Level

Automotive
Cost Level
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Important Research Problems

♦ Composability

♦ Secure Real-Time Systems

♦ Transparent Fault-Tolerance

♦ Certification of High-Dependability Applications

♦ Domain-Specific Architectures
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Composability

♦ Precise (formal) specification of linking interfaces (time,
value) of components

♦ State encapsulation, as viewed from a LIF

♦ Research into the cognitive complexity of interfaces.

♦ Reasoning about the composition of systems on the basis
of the interface specification.

♦ Independent validation of component interface properties
(time, value).

♦ Integration of legacy systems (Wrapper Design).

♦ Interface Standardization.
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The Three Interfaces of a Component

LIF Service  Interface
Relevant for Composability

Diagnostic and Management Interface
(Boundary Scan in Hardware Design)

Configuration Planning Interface

Local
Interfaces
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Secure Real-Time Systems

Whereas in the past, low-level control software was mostly in
ROM, recent technology-developments (flash memory) makes it
possible to down-load control software remotely

♦ Secure fault diagnosis and maintenance, e.g., remote
downloading of software into the flash memory of a car.

♦ The provision of the proper level of security in mass-market
systems that are maintained  by “non-trustable” institution.

♦ Security of normadic systems connected by wireless protocols.

♦ Security in dynamically reconfigurable RT systems.
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Transparent Fault-Tolerance

♦ Provision of a generic fault-tolerance layer, independent of
the application

♦ Tolerance w.r.t.arbitrary failure modes of components
(VLSI chips)

♦ Generic correctness argument for the fault-tolerance
function

♦ On-line maintenance of fault-tolerant systems

♦ Autonomous Reconfiguration

♦ Low Power
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Certification of High-Dependability Applications

♦ Modular certification of a composable design

♦ Validation of ultra-high dependability

♦ Proof of absence of catastrophic failure modes

♦ Formal correctness proof of architecture claims

♦ Closing the gap between formal verification of a
property (within a model) and its implementation

♦ Worst-case Execution time (WCET) research (hardware,
algorithms, tools)
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Domain-Specific Architectures

An architecture provides a framework for the implementation of
applications in a particular domain. It provides the computational
infrastructure.

The key challenge concerns finding abstractions that are specific
enough in order to support strong claims that can be certified,  but are
still general enough to apply to a significant application domain.

♦ What are the generic certified services that should be provided by
an architecture (e.g., clock  synchronization, membership, . . .)

♦ Validation of the architecture claims by diverse means (formal,
experimental, field experience, . . . )

♦ Design processes and tool support within an architecture context.
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Holistic Approach

High-Tech Products
for the World Market

Product Development

Applied Research
(secretive)

open flow of ideas in the 
world-wide ocean of Basic Research
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Conclusions

♦ A balanced combination of conceptual (theoretical) and
experimental research within a project is required. The experimental
research will consume the major  part of the resources.

♦ New concepts and architectures must be implemented and
experimentally evaluated

• Design a complete system

• Build a prototype with real hardware and software and compare
its performance (and cost) to competing alternatives.

• Evaluate the prototype experimentally (e.g., by fault-injection)

♦ Strong involvement of researchers in standardization bodies.
Credibility with respect to industry requires arguments

substantiated by experimental evidence.


