
Two 45 minute talks in 20 minutes

- Server Lessons & Opportunities
- Autonomic Computing Challenge

AVAILABILITY BY SYSTEM TYPE

Downtime in a poorly-managed zSeries LPAR

	Impact events	Events	
ATTRIBUTION	# OUTAGES	# OUTAGES	IMPACT RATIO
Control Center	70	24	2.9
Environment	18	5	3.6
Hardware	10	1	10
Software	118*	52	2.3
Total	216	82	2.6
ATTRIBUTION	OUTAGE (min)	OUTAGE (min)	IMPACT RATIO
Control Center	5202	1949	2.7
Environment	1275	454	2.8
Hardware	875	88	10
Software	6209	3062	2.0
Total	13561	5553 226 Hrs	2.4

*TM-56%, Apps-16%, DBA-14%, OS- 6%, other- 8%

Downtime in a poorly-managed zSeries LPAR

Total Outage per log: 226 hours Per one outage/event: 93 hours

1 Contributor is software: product & process

1818 process453 product791 uncertain3062 total (51 hours)

Assume all CC outages are process (1949 min.; 32 hours)

✓ 68%-82% of all unscheduled outages are process (63-76 hours)

> ✓ Technology - HW/SW - 10-24% (9-22 hours)

Aggregated UNIX server data

Downtime Cause %	UNIX Standalone	UNIX Cluster
Hardware	42	46
Software	34	36
Other	24	18

Data from a very large well-managed Unix customer

% Unplanned downtime

HW	43.8
OS	7.8
Арр	7.3
Com link	18.8
DB	2.0
Environment	0.7
Supplier	0
Op tools	1.8
Process	6.2
Org/structure	0.8
Human error	5.0
Other	5.8

HW maint	26.5
OS install	1.6
App Release	34
Com link	2.5
DB admin, BU	31.5
Dis Rec Test	0
Pwr Test	0.2
Other	3.7

% Planned downtime

zSeries Hardware Fault Tolerant Design Results

- Mean Time To Repair Action = 10 months 3Q01 full fleet average MTTF < MTTRA
 Fails for which there is no associated repair include: Cache line sparing Memory chip sparing Dynamic CPU sparing
- Mean Time to Application Loss = 30 years
 82% of repairs are online
 15% of repairs are deferred/scheduled
 3% of repairs cause crash of customer application

Lessons from the 90s

- Management discipline is critical to HA
- → Fault tolerant servers make a difference
- → Clusters are difficult to implement

Challenges for the 00s

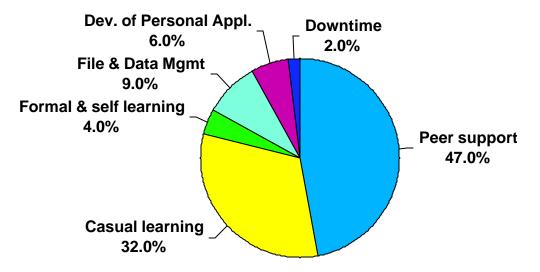
- Increased importance of firmware
- Circuit failure mechanisms
- → State encapsulation
- On-the-fly change
- Dynamic resource allocation
- Configuration validation

What is Autonomic Computing?

What is Project eLiza?

Anolis sagrei - 2,117 darwins

People Costs are Growing

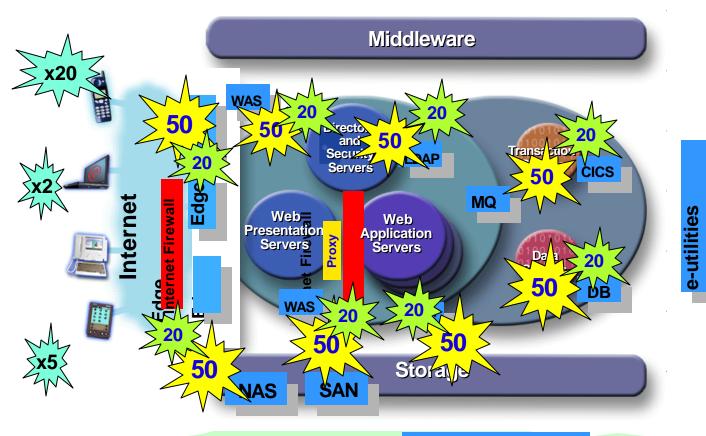

Labor related costs are escalating, and in some cases are dominant

Worldwide I/T Spending

2000 IDC, June, 2001 1.2 -abor/HW cost ratio 1500 1.1 **Total IT** spending. 1000 1 Labor/HW ratio 500 0.9 2000 2002 2004

Spending \$B

F



Indirect TCO Factors

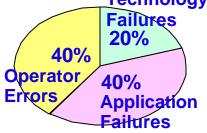
- In storage segment, labor cost is already dominant.
 - Iabor/HW cost ratio approaching 3X*
- Indirect costs may contribute
 > 60% of overall TCO (Gartner, 3Q99)

* based on \$120K/person, storage HW @ \$120K/TB with 4 year life and 2001 ITCentrix survey result of 0.83 person-year/TB

The System Complexity Challenge

Internet

#Clients


Distributed Storage System

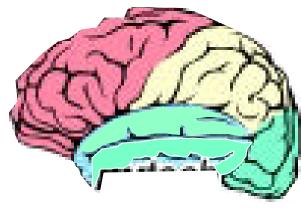
≺#Servers<

#Parameters

- Excessive combinations or configuration parameters*
- Unknown dependencies
- HW & SW version control issues
- Increased security exposure
- * not all combinations need to be independent

Complexity is a major contributor to unplanned application downtime Technology

Charles Schwab & Co. Upgrades/Operator Errors \$70 million new investment. America Online Maintenance/Human Error Cost: \$3 million in rebates AT&T: Software Upgrade \$40 million in rebates


Federated Systems 1-+ -1 company A Storage² utilities 1-+ company.B -----company C Service A

Survivability

Howard Lipson CERT/CC (with additions by LS)

Triune Brain

BRAIN FUNCTION

eLIZA

Human Reason

Classic AI Apps & Service

Mammal

Emotion

People/IT staff

Computing

Lizard Survival Autonomic

Self-managing

Technology Roadmap for Autonomic Computing

Core Areas	Autonomic Eleme	nts Autonomic & F	ederated Systems	
SLA Spec. / Enforcement	SLA Spec. La Resource SLA	ng. ^{Mgmt} End-to-End SLA N	Negotiation and Igmt Brokering SLOs	
Policy Mgmt.	Element level poli and enforcement	to element policies	y Policy based optimization	
Resource Mgmt.	Work Load Ma	anagement Federa P2P	ted Work Load Management	
Security			ederated Intrusion Detection	
Problem Determination	Element level ProblemEnd-to-End ProblemDetermination & ResolutionDetermination & Resolution			
<i>Optimization</i> <pre>/ Algorithms</pre>	Agents	daptive/Learning Theory control Theory Dependency Analysis	Distributed Alg. & Control Continual Optimization	
Automation Automated Recovery/Installation/Config. Mgmt				
10015	and the second	oting Scripting se non tasks control	nsors &	
	2001	2004	2007	

The (work in progress) Challenge:

Create a global system of interoperable services that can be selected and provisioned dynamically in response to changing business conditions, enabling failure recovery and optimization and ensuring privacy and security, automatically and transparently to the businesses that use these services.