STOCHASTIC PROCESS ALGEBRA:

> linking process descriptions with performance

$\mathcal{E d}$ Brinksma

joint work with :

Contents

Introduction to Stocfiastic Process Algebra motivation, concepts of $P A$ \& $S P A$

Markovian Process Algéra Interactive Markov Chains

TIPPtool

- Non-Markovian Process Algebra $G S M P s$, Discrete Event Simulation:
spades.
- Conclusion
current developments

$\mathcal{M O T} I \mathcal{V A T I O \mathcal { N }}$

Central Issue

Can the qualitative and quantitative aspects of reactive systems be modelled and analysed within one compositional frame work?

- increasing importance of quantitative befaviour
- need for integrated design disciplines
- cross-fertilization
- theory of approximate correctness

Process Alge 6 ra

a formalism to specify the befaviour of systems in a

- systematic,modular, andfie rarchical way.

6uilding 6 locks
processes,
-actions, atomic activities that processes can perform
process alge 6 ra provides compositionality, by means ofoperators to compose processes out of smaller ones, andoperators and transformations to reduce internal complexity Modelling of complex systems becomes manageable

Basic Process Algebraic Operators

inaction:
action-prefix:
choice:
composition:
fiding:
definition:
application:
stop
$a ; B$ or $\tau ; B$
$B+C$ or $\Sigma_{I} B_{i}$
$B \|_{A} C$ or $B|[\mathrm{~A}]| C$
$B \backslash \boldsymbol{A}$ or hide A in B
$p:=B$
p
\mathcal{A} very 6 asic example

A simple one-place buffer Buf:= in ; out ; Buf

hide mid in
Buf $[$ out $/$ mid $]$
$\mid[$ mid $]$
Buf[in/mid]

\mathcal{A} very 6 asic example II

\mathcal{A} two-place buffer

$$
\stackrel{i n}{\rightarrow} \text { Buf2 } \stackrel{\text { out }}{\rightarrow}
$$

Buf2: = in; Half
Half:= in; Full + out; Buf2 Full:= out; Half

Equivalence

Two ways to represent a two-place buffer:

by enume rating the detailed behaviour

- by coupling two one place buffers

Examples for the need to study equivalences

Equivalence

Process alge braic equivalences are Gased on different answers to the question:

What is the observable part of process betraviour?

- Various notions have been studied [van Glabbeek]

Examples:

- trace equivalence
- testing equivalence
- bisimulation equivalence

Distinguisfing features:

- strong vs. weakequivalences
- congruence property

Alge braic Laws

Equivalences (congruences) induce algebraic laws

- $\mathcal{B}+C=C+\mathcal{B}$
- $(\mathcal{B}+\mathcal{C})+\mathcal{D}=\mathcal{B}+(\mathcal{C}+\mathcal{D}) \quad \bullet \mathcal{B}\left\|_{\mathfrak{A}} \mathcal{C}=\mathcal{C}\right\| \|_{\mathfrak{A}} \mathcal{B}$
- $\mathcal{B}+$ stop $=\mathcal{B}$
$\cdot\left(\mathcal{B} \|_{\mathscr{A}} C\right)\left\|_{\mathscr{A}} \mathcal{D}=\mathcal{B}\right\|_{\mathscr{A}}\left(\mathcal{C} \|_{\mathscr{A}} \mathcal{D}\right)$
- $\mathcal{B}+\mathcal{B}=\mathcal{B}$

Expansion Laws

In the interle aving interpretation paralle lism can be removed step by step:

$$
\begin{aligned}
\text { Let } \mathcal{B}= & \Sigma_{k} a_{k} ; \mathcal{B}_{K} \text { and } C=\Sigma_{l} c_{l} ; C_{l} \\
\qquad \mathcal{B} \|_{\mathscr{A}} C= & \sum_{\left\{a_{k} ;\left(\mathcal{B}_{k} \|_{\mathscr{A}} C\right) \mid a_{k} \notin \mathcal{A}\right\}+} \\
& \left.\sum_{\{c} ;\left(\mathcal{B} \|_{\mathscr{A}} C_{l}\right) \mid c \notin \mathcal{A}\right\}+ \\
& \sum_{\left\{d ;\left(\mathcal{B}_{K} \|_{\mathscr{A}} C_{l}\right) \mid d=a_{k}=c_{l} \in \mathcal{A}\right\}}
\end{aligned}
$$

Example:

$$
a ; \text { stop } \| \varnothing c ; \text { stop }=a ; c ; \text { stop }+c ; a ; \text { stop }
$$

Adding Stocfrastic Features

$\mathcal{N a}$ ave idea: decorate actions with
distribution functions:
a_{F} the time between enabling and occurrence of a is distributed according to F

- linking labe lle d transition systems to (semi) Markov chains

Issues in SPA

What distributions can be allowed? memoryless versus general distributions

What is the meaning of choice? nondeterminism versus race conditions

- What is the meaning of synchronization? how to synchronize distributions
-What is the meaning of concurrency? how to expand parallelism

Discrete time, no memory

Continuous time, no memory

stochastic models are usually developed in a continuous time domain.

Continuous time witf memory

- and many others
- absence of memory is rare,
- it makes modelling and analysis a lot simpler.

Choice or Summation

In ordinary $P \mathcal{A}$ choice is nondeterministic, i.e. we choose one befraviour or the other
the operator is idempotent:
we may refine nondeterminism:
$\mathcal{B}+\mathcal{B}=\mathcal{B}$
$a ; \mathcal{B}$ refines $a ; \mathcal{B}+a ; \mathcal{C}$

In $\mathcal{S} P \mathcal{A}$ choice is capacitative, i.e. 6oth arguments add capacity to the befraviour Markovian nondeterminism is additive $\quad a_{\lambda} ; \mathcal{B}+a_{\mu} ; \mathcal{B}=a_{\lambda+\mu} ; \mathcal{B}$ as a function of the exponential rates:

Interle aving revisited

For general distributions we do not have the usual interle aving laws, e.g.:

Solutions

restrict to the Markovian case

$$
\begin{array}{r}
{ }^{a_{\lambda} ; \mathcal{B} \|{ }^{c} \mu ; \mathcal{C}=a_{\lambda} ;\left(\mathcal{B}\| \|{ }^{c} \mu ; C\right)+} \\
{ }^{{ }^{c} \mu} \mu ;\left(a_{\lambda} ; \mathcal{B} \| C_{\mu}\right)
\end{array}
$$

Problem: less general

- separate actions from stochastic durations

$$
\begin{aligned}
& \operatorname{set}_{\{F, G\}}(F \rightarrow \mathrm{a} ; \mathrm{B}\| \| G \rightarrow \mathrm{C} ; \mathrm{C})= \\
& \operatorname{set}_{\{f, G\}}(F \rightarrow \mathrm{a} ;(\mathrm{B} \| \mathrm{I} \rightarrow \mathrm{C} ; \mathrm{C})+ \\
& G \rightarrow \mathrm{c} ;(F \rightarrow \mathrm{a} ; \mathrm{B} \| \mathrm{C}))
\end{aligned}
$$

This solution is elaborated in the rest of this talk

Alternatives

- drop the interleaving law uses so-called partial order semantics

Problem: more complicated, but smaller state spaces

- use conditional distributions

$$
\begin{aligned}
& a_{\underline{x}} ; \mathcal{B} \|\left.\right|_{\underline{y} \underline{\underline{x}}} ; C= \\
& \quad a_{\underline{x}} ;\left(\mathcal{B}\| \| c_{(\underline{y}-\underline{x} \mid \underline{x} \underline{y})} ; C\right)+ \\
& \quad c_{\underline{y}} ;\left(a_{(\underline{x}-\underline{y} \underline{x}>\underline{y})} ; \mathcal{B} \| C\right)
\end{aligned}
$$

Problem: costly and complicated

Syncfronization

What should be the result of synchronizing stochastic actions?

$$
a_{\underline{x}} ; \mathcal{B} \| a_{\underline{y}} ; C=a_{\underline{x^{*}} \underline{*}} ;(\mathcal{B} \| C)
$$

Choices for * :

- the maximum of the distributions of \underline{x} and \underline{Y}
- the average of \underline{x} and \underline{Y}
- ?

Synchronization \& Expansion

Problem: race condition interferes with
classical expansion

- no classical expansion apparent rates
- passive components
- defining $\lambda^{*} \mu=\lambda . \mu \quad[\mathcal{H e r z o g}$ e.a., $\mathcal{T} I$ PP; Buctifolz]
- separate rates from actions [Hermanns,I MC]

Contents

Introduction to Stocfiastic Process Alge 6 ra
motivation, concepts of $\mathcal{P A} \notin \mathcal{S A}$

- Markovian Process Algebra

Interactive Markov Chains

Interactive Markov chains

inaction:
prefix:
choice:
$(\lambda) ; \mathcal{B}$ or ${ }^{a} ; \mathcal{B}$ or $\tau ; \mathcal{B}$
application:
composition:
hiding:
$\mathcal{B}+\mathcal{C}$ or $\Sigma_{I} \mathcal{B}_{i}$
$p:=\mathcal{B}$
stop
p
$\mathcal{B} \| \mathfrak{A} \mathcal{C}$ or $\mathcal{B}|[\mathcal{A}]| \mathcal{C}$
$\mathcal{B} \backslash \mathcal{A}$ or
ride \mathcal{A} in \mathcal{B}

Alge braic Laws for I MC

- $\mathcal{B}+\mathcal{C}=\mathcal{C}+\mathcal{B}$
$\cdot(\mathcal{B}+\mathcal{C})+\mathcal{D}=\mathcal{B}+(\mathcal{C}+\mathcal{D})$
- $\mathcal{B}+\operatorname{stop}=\mathcal{B}$
- $(\lambda) ; \mathcal{B}+(\mu) ; \mathcal{B}=(\lambda+\mu) ; \mathcal{B}$
- $a ; \mathcal{B}+a ; \mathcal{B}=a ; \mathcal{B}$

These are the algebraic laws for strong Markovian bisimulation, a straightforward combination of strong bisimulation and Lumpability.

\mathcal{A} lie 6 raid Laws for I MC

- $\mathcal{B}+\mathcal{C}=\mathcal{C}+\mathcal{B}$
- $(\mathcal{B}+\mathcal{C})+\mathcal{D}=\mathcal{B}+(\mathcal{C}+\mathcal{D})$
- $\mathcal{B}+$ stop $=\mathcal{B}$
$-a ; \mathcal{B}+a ; \mathcal{B}=a ; \mathcal{B}$

- $a ; \tau ; \mathcal{B}=a ; \mathcal{B}$
- $\mathcal{B}+\tau ; \mathcal{B}=\tau ; \mathcal{B}$
- $a ;(B+\tau ; C)+a ; C=a ;(B+\tau ; C)$
- $(\lambda) ; \mathcal{B}+(\mu) ; \mathcal{B}=(\lambda+\mu) ; \mathcal{B}$
- $(\lambda) ; \tau ; \mathcal{B}=(\lambda) ; \mathcal{B}$
$\tau ; \mathcal{B}+(\lambda) ; C=\tau ; \mathcal{B}$

These are the algebraic laws for weak Markovian bisimulation, a (not so straightforward) combination of weak bisimulation and lumpability.

Expansion in I MC

The delay actions can be treated as non-synctronizing actions:

$$
\begin{aligned}
& \operatorname{Let} \mathcal{B}=\Sigma_{k} a_{K} ; \mathcal{B}_{K}+\Sigma_{m}\left(\lambda_{m}\right) ; \mathcal{B}_{m} \\
& \text { and } C=\Sigma_{\kappa} c_{l} ; C_{l}+\Sigma_{n}\left(\mu_{n}\right) ; \mathcal{B}_{n}
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathcal{B} \|_{\mathscr{A}} \mathcal{C}= \sum_{\left\{a_{k} ;\left(\mathcal{B}_{K} \|_{\mathcal{A}} C\right) \mid a_{k} \notin \mathscr{A}\right\}+} \\
& \sum_{m}\left\{\left(\lambda_{m}\right) ;\left(\mathcal{B}_{m} \|_{\mathcal{A}} C\right)\right\}+ \\
& \sum_{\left\{c_{l} ;\left(\mathcal{B} \|_{\mathcal{H}} C_{l}\right) \mid c \notin \mathscr{A}\right\}+} \\
& \sum_{n}\left\{\left(\mu_{n}\right) ;\left(\mathcal{B} \|_{\mathcal{A}} C_{n}\right)\right\}+ \\
& \sum_{\left\{d ;\left(\mathcal{B}_{K} \|_{\mathscr{A}} C_{l}\right) \mid d=a_{K}=c_{l} \in \mathscr{A}\right\}}
\end{aligned}
$$

Example

(λ); a; stop \| (μ); a; stop = $(\lambda) ;(\mu) ; a ;$ stop $+(\mu) ;(\lambda) ; a ;$ stop

\mathcal{T} his corresponds to delaying with the maximum of two exponential delays, egg. waiting for the slowest

Queuing Systems in IMC

hide enter, serve in

```
customer | [enter]| qUEUE (0) | [serve]| SERVER
```

arriving customers:

```
process CUSTOMER := ( }\lambda\mathrm{ ); enter ; CUSTOMER
endproc
```

que иe:

```
process QUEUE(i) := [i<6] >> enter; QUEUE(i+1)
                                    [i>0]-> serve; QUEUE(i-1)
endproc
```

service clerk:
process SERVER := serve ; (μ); SERVER
endproc

Queuing Systems in IMC

hide enter, serve in CUSTOMER |[enter]| quEUE (0) |[serve]| SERVER

IFIPWG10.4, Stenungsund

\mathcal{A} telephony system

- Original specification developed by \mathcal{P}. Ernberg (S ICS), further studied in the French/Canadian Eucalyptus project: more than 1500 lines of LOTOS.

Performance analysis of the telepfony

system
Takes the original specification without changes.

Stochastic delays are incorporated
\square in a compositional way,
i.e. as additional constraints imposed on the specification.

using a dedicated operator, time constraints

- exponential, Erlang and phase-type distributions.
- Weak bisimulation is used to factor out nondeterminism.

State space $>10^{\text {「 }}$ Leads to a Markov Chain
of 720 states with a fighly irregular structure.

Time constraints

A particular phone:

The time it takes to pick up the phone:

Analys is results

14 different time constraints incorporated.

- Compositional minimisation to avoid state space explosion.
- Here: two subscribers pfoning
 each other.
File View Export Analyze Options

Tools used

$\mathcal{C A E S A R} / \mathcal{A L D E B A R A \mathcal { N }}$

original specification,first minimisation steps.
Contents

Introduction to Stochastic Process Alge 6 ra
motivation, concepts of P \& $\leftarrow S P A$
Markovian Process Alge 6ra
Interactive Markov Chains.
Non-Markovian Process Algebra
GS MPs, Discrete Event Simulation.

Non-Markovian approacties

Traditional methods:

- queueing networks
- stoctrastic Petrinets (SPN)
- generalized semi- Markov processes (GSMP)
- no compositionality
- General SPAs: TIPP, GSPA,S π^{+}
- compositionality
- no expansion law
- infinite semantic objects for recursion

A light controller

The light is turned on if someone enters the stairway.

- It goes off after 10.3 minutes exactly.

Pe ople arrive randomly, at le ast every 15 minutes, with uniform probability.
 A light controller

Stochastic automata (SA)

model inspired by Timed Automata [Alureodill] close link to GSMPs
[Whitt, G[ynn]

- Gased on a notion clocks
- compositional
- operational model of a process algebra
- expansion laws and finite objects

Ingredients of an $\mathcal{S A}$

 $\left(S, s_{0}, C, A, \rightarrow, K, F\right)$- control states or locations \boldsymbol{S}
- initial state $\boldsymbol{S}_{\boldsymbol{0}}$
- finite set of clocks \boldsymbol{C}
- actions \boldsymbol{A}
- transition relation \rightarrow
- clock assignment \boldsymbol{K}
- distribution assignment \boldsymbol{F}

The algebra

signature of ordinary $\mathcal{P A}$ $a ; \mathcal{B}, \mathcal{B}+\mathcal{C}, \mathcal{B} \|_{\mathcal{A}} \mathcal{C}, \mathcal{B} \backslash \mathcal{A}$, etc.
clock related operators

- clock setting: $\quad\{|C|\} \mathcal{B}$
-guarding:

Parallelcomposition

Synchronization

Synchronization by union of guards = maximum of distributions

Expansion law

Let $\mathcal{B}=\{|C|\} \mathcal{B}^{\prime}$ and $\mathcal{D}=\left\{\left|\mathcal{C}^{\prime}\right|\right\} \mathcal{D}^{\prime}$ with $\mathcal{B}^{\prime}=\Sigma_{k} C_{k} \rightarrow a_{k} ; \mathcal{B}_{k}$ and $\mathcal{D}^{\prime}=\Sigma_{l} \mathcal{C}_{l} \rightarrow c_{l} ; \mathcal{D}_{l}$
then

$$
\begin{aligned}
& \mathcal{B} \|_{\mathcal{A}} C= \\
& \left\{\left|C \cup C^{\prime}\right|\right\} \\
& \quad\left(\sum\left\{C_{K} \rightarrow a_{k} ;\left(\mathcal{B}_{K} \|_{\mathcal{A}} C\right) \mid a_{k} \notin \mathcal{A}\right\}+\right. \\
& \quad \sum\left\{C_{l} \rightarrow c_{l} ;\left(\mathcal{B} \|_{\mathcal{A}} C_{l}\right) \mid c \notin \mathcal{A}\right\}+ \\
& \left.\quad \sum\left\{\left(\mathcal{C} \cup C^{\prime}\right) \rightarrow d ;\left(\mathcal{B}_{k} \|_{\mathcal{A}} C_{l}\right) \mid d=a_{K}=c_{l} \in \mathcal{A}\right\}\right)
\end{aligned}
$$

An application

\mathcal{A} multiprocessor mainframe
[Herzog \& Mertsiotakis]
different programming jobs

- different user transactionsmaintenance databaseoccurrence of software failures

A specification

System := Load || L (Mainframe || \mathbf{F} Maintain)

ChangePhase $:=$ change $(x \mathbf{w}(\mathbf{v}, \mathbf{w}))_{-}$; ChangePhase + change ; UL $\{|z|\}\{z\} \rightarrow a ; P$
$\mathrm{UL}_{2}:=\ldots \quad \mathrm{UL}_{3}:=\ldots$

Maintain $:=$ fail $;$ repair $\left(z_{\gamma}\left(\mathbf{c}, \mathbf{c}^{\prime}\right)\right)$; Maintain

Simulation

using variable time advance procedure

- relevant fistory of system stored in finite expressions in \mathbf{Q}
- calculate relevant parts of the $\mathcal{S A}$ on-tre-fly using expansion the orem

Conclusion

It is possible to model and analyse both qualitative and quantitative aspects of reactive systems in one (family of) formalism (s)

Markovckains \Leftrightarrow Markovian PA $\mathcal{A} \mathcal{T}$ IPPtool analytic techniques e numerical algorithms
$\mathcal{G S} \mathcal{M P S}$ $\Leftrightarrow \quad$ stochastic automat \mathcal{G}
discrete event simulation

+ qualitative analysis \&nondeterminism

Current developments

modelling language ef toolset MoDeST

- data structures
- real time éstochastic time
- open tool arcfitecture
- model checking on CTMCs: ETAMC를
- specification logic for performance measures
- automated property-driven CTMC simplification \& analys is

