
IF: IF:
a Toola Tool--set for validation of set for validation of

distributed realdistributed real--time systemstime systems
Susanne Graf

Marius Bozga, Laurent Mounier,
Yassine Lakhnech, Joseph Sifakis

Grenoble

----- Stenungsund, July 5, 2001 ----- 2

VVERIMAGERIMAG

Theory, methods and tools for design and validation
of distributed and safety critical systems

• Synchronous languages, development of embedded systems
– Lustre language: compilation, verification and test

à Telelogic SCADE

• Tools and methods based on timed and hybrid automata
– synthesis and validation of schedulers and controllers
– Kronos tool for the verification of timed systems

• Tools and methods for communication systems
– Semantics and real-time extensions of design languages
– Verification of security protocols
– Validation tools: Xesar, CADP, TGV, Invest, IF

----- Stenungsund, July 5, 2001 ----- 3

MotivationMotivation

Combine state-of-the-art validation
with commercial development tools

Goal

Telecommunication systems,
Real-time embedded systems

Context

----- Stenungsund, July 5, 2001 ----- 4

ModelModel--checkingchecking: : its problemsits problems

design
description

semantic
Model

fully automatic
check
fully
automatic

The idea: why MC is attractive

abstract
design

description

fully automatic Model

all properties hold!
what does this

prove?

The reality: why has MC a bad reputation

detailed
design

description

fully automatic state
explosion

too bad!

detailed
design

description

valuable
resultsexploitable

model
a lot of hard
handwork

or

----- Stenungsund, July 5, 2001 ----- 5

ModelModel--checkingchecking: how : how it should beit should be

detailed
design

description

valuable
verification
results,
abstract
models,
test cases
or
counter
examples

exploitable
model

A designer friendly
tool

This bad reputation must not be justified

----- Stenungsund, July 5, 2001 ----- 6

Principle of a validation environmentPrinciple of a validation environment
Extract parts,
Optimization,
Abstraction,
Compositional Methods,
Environment constraints

Design
Language

Design
Language

Design
Language

Development
Environment

IF

state
explosion

Model

LTS

Model-checking
and

Diagnostics tools

transl

feedback

structured
representation

transl

UML,
SDL,..

----- Stenungsund, July 5, 2001 ----- 7

Need for a Need for a structured system structured system
representationrepresentation

1. Intermediate and tool exchange format
– Basis for static analysis, abstraction and compositional

methods
– Connection of a large range of high level design languages of

with analysis tools (model-checking, performence,…)
– Exchange of structured system descriptions between

analysis tools

2. Study of time models
– Need for a appropriate time extensions of languages for

communicating and distributed systems (SDL, UML)
– Appropriate for design and verification of real-time

systems

----- Stenungsund, July 5, 2001 ----- 8

OutlineOutline

1. Motivations

2. IF intermediate representation

3. IF validation tool-set

4. Case studies

5. Conclusions

----- Stenungsund, July 5, 2001 ----- 9

2. IF intermediate representation2. IF intermediate representation

Communicating extended timed automata (with urgency)

int x
array A
…
timer t

P1

P2

P3

a

B1
B2

B3

Communication/Interaction
- asynchronous channels

(reliable?, bounded?, delay?)
- synchronous rendez-vous
- shared variables

Time representation
Timed automata with
Urgency of transitions

(eager,lazy, delayable)

System structure at instant t

shared x

----- Stenungsund, July 5, 2001 ----- 10

IF: ProcessesIF: Processes

• A set of local variables
– elementary: bool, int, … timers and clocks, …
– structured: array, record
– abstract

• A set of control states with attributes:
– stable/nostable (control observable states)
– save and discard sets (reordering of input message buffer)

• A set of control transitions:
s s'

guardà input ; body

urgency ; priority

----- Stenungsund, July 5, 2001 ----- 11

IF: TransitionsIF: Transitions (abstract syntax)

• guard: boolean expression on
data, timers, clocks

• input: asynchronous message inputs
from buffers

• sync: gate synchronization
• body: action*

– asynchronous message outputs to
buffers

– re/setting of timers/clocks
– assignments
– complex instructions

• urgency attribute: eager, lazy, delayable
• priority

s s'
guardà [input] ; [body]

urgency ; priority

s s'
guardà sync

urgency ; priority

E

A

Pr

----- Stenungsund, July 5, 2001 ----- 12

Timed automata with Timed automata with urgencurgencyy
[BornotSifakis97][BornotSifakis97]

• System transitions take 0 time
(assimilated with an event "transition started",

"transition terminated", …) & time progresses in states,
measured by clocks and timers

• Urgency defines when enabled system transitions are taken
– enabled eager transitions are urgent, that is terminated

« now » (or disabled by other system transitions)
– enabled lazy transitions are never urgent, that means they can

be disabled by time-progress

– enabled delayable transitions are not disabled by time-
progress, but it is taken for granted that they will be taken
(except if disabled by other system transitions)

----- Stenungsund, July 5, 2001 ----- 13

Timed automata with urgencyTimed automata with urgency

Allow to express a rich spectrum of time paradigms

1. Totally asynchronous view (no assumption on time progress):
all transitions are lazy

Ensure safe behaviour despite violation of deadlines

2. Synchronous view (next tick/input when system has finished):
all transitions are eager

Ensure safe behaviour under strong assumptions
(risk of time-lock)

3. Real-time views: different urgency types and time guards:

----- Stenungsund, July 5, 2001 ----- 14

OutlineOutline

1. Motivations

2. IF intermediate representation

3. IF validation tool-set

4. Applications

5. Conclusion and perspectives

----- Stenungsund, July 5, 2001 ----- 15

3. 3. Architecture of the IF Architecture of the IF tooltool--setset

symbolic
(SMI)

explicit
(aut)

ObjectGEODE
specification design

SDL sdl2if IF

LTS

implicit
C succ

function

if.open

Evaluator
µ-calculus

checker

Aldebaran
compare
minimize

|| comp TGV
Test case

generation
draw

Static Analysis
environment comp
invariant generation
abstraction (InVeSt)

…

----- Stenungsund, July 5, 2001 ----- 16

Translation from SDL to IF:Translation from SDL to IF: sdl2ifsdl2if

• Supports almost all of SDL'96:
– timeouts are translated by time-guards
– elimination of block hierarchy ("flat" architecture)
– destination of outputs is statically determined if possible

(only delaying channels represented explicitly)
Only for more efficient verification
– procedures are inlined (no recursion allowed)

• Based on an ObjectGeode API
we follow standard evolution of SDL

----- Stenungsund, July 5, 2001 ----- 17

Translation IF to LTSTranslation IF to LTS

Simulator construction: if.open

• implements:
• discrete/dense time
• partial order reduction
• compositional generation

• supports:
• random/guided simulation
• on-the-fly verification
• explicit LTS construction

IF If.open C

simulator

----- Stenungsund, July 5, 2001 ----- 18

LTS level LTS level validation validation componentscomponents

• Basic Functionalities
– switch representations
– parallel composition
– draw graphical representations (valid property)
– generate MSCs from (diagnostic) sequence (invalid property)

• Model-checking:
• temporal-logic properties (Evaluator, Kronos)
• behavioral comparison and reduction (Aldebaran)

(both including diagnostic capabilities)

• Test case generation (TGV)

----- Stenungsund, July 5, 2001 ----- 19

Static Analysis and AbstractionStatic Analysis and Abstraction

PRINCIPLE
• Source code transformation in order to get

– a smaller state representation
– less states, which represent sets

• Preserve a set of (safety) properties (strongly
or weakly)

• Combine several static analysis methods

transIF IF

----- Stenungsund, July 5, 2001 ----- 20

Static Analysis and AbstractionStatic Analysis and Abstraction
((property independantproperty independant))

• Reset all live variables not live in some control point
(its value is irrelevant in this state)

• Invalidate non-live clocks (clock reduction)
• Eliminate globally dead variables
• Replace constants by their value

Live variable
analysis

and

constant elimination

LIVEIF IF

----- Stenungsund, July 5, 2001 ----- 21

StatiStaticc AnalysisAnalysis andand AbstractionAbstraction
((property dependantproperty dependant))

observables: messages, variables, …
(in particular control states)

test purpose, abstract behaviour,
temporal logic formula…

property under check

• Eliminate non relevant parts of the system with
respect to a slicing criterion

(variables, messages, transitions, processes)

SlicingIF IFSLICE

slicing criterion

example

----- Stenungsund, July 5, 2001 ----- 22

StatiStaticc AnalysisAnalysis and and AbstractionAbstraction
((property dependantproperty dependant))

(variable elimination, data abstraction,
predicate abstraction (InVeST), …)

(test purpose, observer, TL property…)property under check

abstractionIF IFabs

abstraction rel.

----- Stenungsund, July 5, 2001 ----- 23

StatiStaticc AnalysisAnalysis and and AbstractionAbstraction

Summary

• In practice: drastic reductions of the state graph
• "abstract program" computed, can be directly used

by other tools
• Notice:

– static analyses and abstractions can be combined,
preserving the intersection of the properties

– abstraction means (in general) weak preservation of
properties

----- Stenungsund, July 5, 2001 ----- 24

Architecture of the IF Architecture of the IF tooltool--setset

implicit
C succ

function

LTS

symbolic
(SMI)

explicit
(aut)

ObjectGEODE
specification design

SDL sdl2if IF if.open

Evaluator
µ-calculus

checker

Aldebaran
compare
minimize

|| comp TGV
Test case

generation
draw

Static Analysis
live

clock reduction
slice

invariant generation
abstraction (InVeSt)

…

if2pml

Promela
Spin

EUT

LASH

if2lash
Liège ...

feed back s.a.

----- Stenungsund, July 5, 2001 ----- 25

OutlineOutline

1. Motivations

2. IF intermediate representation

3. IF validation and test generation environment

4. Applications

5. Conclusion and perspectives

----- Stenungsund, July 5, 2001 ----- 26

VValidation alidation methodologymethodology

live analysis, dead
code elimination,

variable elimination

on-the-fly verification,
guided simulation,

deadlock detection...
slicing,

abstraction...

model-checking,
test generation,

. . .

IF Spec Environment

Requirements

model generation

model
exploration

basic
static analysis

advanced
static analysis

+ p.o.

+ p.o.

SDL Spec Environment

diagnostic: MSC
abstract LTS

----- Stenungsund, July 5, 2001 ----- 27

Validation Validation methodologymethodology: : taking into taking into
account environment constraintsaccount environment constraints

Open systems: environment constraints (EC) are
essential for successful verification

verification results
Sys |= EC => P

• Solution: describe EC by a (set of) processes E
Verify the Sys || E,

where Sys and E communicate by synchronous rendez-
vous

----- Stenungsund, July 5, 2001 ----- 28

Environment constraintsEnvironment constraints
((exampleexample))

Environment constraints:
– E sends requests s only if x=0
– E responds res(y) iff Sys has sent req(x) and y < x+5

x=0

resres(x)(x)

idle

reqreq(y)(y)

idle signal r1, res from env

s(.)s(.)

i (…)

t(.)t(.)

P

resres(x)(x)

idle

reqreq(y)(y)

idle

idle

E

y<x+5

----- Stenungsund, July 5, 2001 ----- 29

ApplicationsApplications

• ATM adaptation layer transport protocol (SSCOP)
• live analysis, weak bisimulation minimization
• state size : 2000B à 100B
• unexplorableà 1 000 000 states

• Medium access for wireless ATM (Mascara)
• live analysis, slicing, µ-calculus checking

• Ariane-5 flight controller (40 minutes of flight)
• description obtained by reengineering
• many timers (smallest with 70ms rate)
• 31 SDL processes

----- Stenungsund, July 5, 2001 ----- 30

Mascara Mascara ProtocolProtocol

• Verification case study of Esprit-LTR Vires project
• Medium Access Control protocol for wireless ATM

⇒ mediation between access points and mobile terminals

Control

Error Control

Data Transmission

Mascara
Adaptation Layer

for
Wireless Comm

ATM layer

Radio Transmission layer

----- Stenungsund, July 5, 2001 ----- 31

Mascara Dynamic Mascara Dynamic CControlontrol

Generic DC

Association Agent

Channel Agent

MT Dynamic Control

Generic DC

Association Agent

Channel Agent

AP Dynamic Control

Environment (upper layers + other control parts)

• Set up and release
associations and
virtual connections
(address mapping,
ressource
management)

• 8 SDL processes
+ environment

⇒ complex data structures, large number of messages
and potentially interacting protocols

Medium size protocol: 10 000 lines of textual SDL

----- Stenungsund, July 5, 2001 ----- 32

MascaraMascara: : modeling choicesmodeling choices

Environment and Requirements
1. unrestricted environment à queues of unbounded length
Ø restrict the number of requests per time unit

2. a priori no functional environment restrictions and no requirements
given

Ø start with simple properties and chaotic environment and
strengthen as much as possible/necessary

Expression of requirements
Ø temporal logic
Ø abstract behaviors in terms of LTS: comparison modulo

(bi)simulation or computation of exact property modulo some
observation criterion

----- Stenungsund, July 5, 2001 ----- 33

Expression of Expression of RequirementsRequirements

Example: « each association-request will be confirmed »

regular
approximation

much weaker

a_req a_conf*

a_conf*

a_req

we compute

the exact property
satisfied by the system

most general

non regular

a_req a_conf*

a_req

a_req

a_conf*

a_conf*

----- Stenungsund, July 5, 2001 ----- 34

Mascara: Mascara: verification strategiesverification strategies

Direct generation failed even using all optimizations
Use of a compositional approach:

– Compositional generation
• generate and minimize the LTS associated to each

process
• apply parallel composition at the LTS level

– Compositional verification
• split a global property into a set of local properties
• verify each local property using an abstract environment

In combination with:
– static analysis
– partial order reduction

----- Stenungsund, July 5, 2001 ----- 35

Mascara: Mascara: Complexity resultsComplexity results

14607s60020 K7166 Kp.o. + live8

1621m0336325 K6863 Klive reduction7

1181m5257752 K25028 Kp.o. + live4

1.91h301.67 400 K1.33 100 Kp.o.6

-2h51-12 000 K-4 300 Kno reduction5MT

2550

15

5

-

redu

4000

20

17

-

redu

4300

17

8

-

reduc

4s3 K 1 Klive + po +
slice

9

n.a.
--

12m

37m

3h

time

11

10

3

2

1

n°

1 140 K218 K4min || 8minall

----live + p.o.all

1 500 K400 K live reduction

1 800 K900 Kp.o.

30 000 K7 000 Kno reductionAP

transstatesmethodent

----- Stenungsund, July 5, 2001 ----- 36

ConclusionsConclusions::
methodmethod for design validationfor design validation

High Level Design
Reference Model

non-determinism:+++
details: - /+

Target

non-determinism: 0
details: +++

Commercial Design tool

refinement / compilation

constraint system

non-determinism:+
details: - /+

compile together

analysable model

all tricks:
s.a.
comp.
p.o.

feedback

test cases

testcase generation

Environment & Properties

constraints
and

assumptions

IF tool box

Similar approach
for performance
evaluation

----- Stenungsund, July 5, 2001 ----- 37

Tool Tool PerspectivesPerspectives

– dynamic features are needed:
• for connection with UML, JAVA, …
• for connection with symbolic validation tools

definition of dynamicIF
– more general annotations of type assume/assert for

requirement expression and test case generation
– more static analysis, abstraction and constraint propagation:

connection with PVS based InVest tool
– more compositional verification methods
– better diagnostic facilities
– Connections:

• connection with ASM tools
• connection with performance evaluation tools

----- Stenungsund, July 5, 2001 ----- 38

http://www-verimag.imag.fr/~async

----- Stenungsund, July 5, 2001 ----- 39

TTimeime and system progressand system progress in simulationin simulation

time

system progress

correct approximation:
- decomposition

execution: independent time dynamics

- abstraction

- combined time and system steps

action a

end a

start a

----- Stenungsund, July 5, 2001 ----- 40

Time and system progress in simulationTime and system progress in simulation

During simulation/validation:

• Problem: how to decide the time point of the next
event: now? or should time progress, and how much ?

Time progress must depend on assumptions made by the
designer

----- Stenungsund, July 5, 2001 ----- 42

q?in3(z)

x := 2*u x := 2+z

q?in1(u)

env!out3(x+z)

env!out2(x, y)

q?in1(u) q?in2(z)

x := 2+z

y := 3*x

y := 2*y + w

q?in4(w)

q?in3(z)

x := 2*u

env!out1(x)

Slicing: example Slicing: example

•observable events: in2, out3

•environment: in2, in3, in4

env!out3(x+z)

q?in2(z)

env!out1(x)

y := 3*x
env!out2(x, y)

y := 2*y + w

q?in4(w)

τ

τ

τ

τ

τ

Slicing criterion:

var: u,x,z

var: u,w,x,y,z

var: x,z

----- Stenungsund, July 5, 2001 ----- 43

env!out3(x+z)

q?in2(z)

x := 2+z

q?in3(z)

Slicing: exampleSlicing: example

•observable events: in2, out3

•environment: in2, in3, in4

env!out3(x+z)

q?in2(z)

Slicing criteria:

var: u,x,z

var: x,z

•weak bisimulation reduction

var: x,z

----- Stenungsund, July 5, 2001 ----- 45

Timed automata with Timed automata with urgencurgencyy 22

eager

x1 32

q0

q1

lazyq0

q1

x1 32

delayableq0

q1

x1 32

q0

q1

1 ≤ x ≤ 3

urgency

clock x;

----- Stenungsund, July 5, 2001 ----- 46

Timed automata with Timed automata with urgencurgencyy 22

q0

q1

x1 3

eager

2

q0

q1

x1 3

lazy

2

q0

q1

x1 3

delayable

2

q0

q1

1 ≤ x ≤ 3

urgency

----- Stenungsund, July 5, 2001 ----- 47

Timed automata with Timed automata with urgencurgencyy 22

q0

q1

x1 32

q0

q1

1 ≤ x ≤ 3

urgency

----- Stenungsund, July 5, 2001 ----- 48

Timed automata with Timed automata with urgencurgencyy 22

eager

x1 32

q0

q1

lazyq0

q1

x1 32

delayableq0

q1

x1 32

q0

q1

1 ≤ x ≤ 3

urgency

invariant: x<1 v x>3

invariant: x<3 & x>3

invariant: true

