1F:
a Tool-set for validation of
distributed real-time systems

Susanne Graf

Marius Bozga, Laurent Mounier,
Yassine Lakhnech, Joseph Sifakis

VERIMAG

Grenoble

1

\4mac VER IMAG % ,%m%

Theory, methods and tools for design and validation
of distributed and safety critical systems

e Synchronous languages, development of embedded systems

- Lustre language: compilation, verification and test
- Telelogic SCADE

e Tools and methods based on timed and hybrid automata
— synthesis and validation of schedulers and controllers
— Kronos tool for the verification of timed systems

* Tools and methods for communication systems
— Semantics and real-time extensions of design languages
— Verification of security protocols
— Validation tools: Xesar, CADP, TGV, Invest, IF

\4mae Motivation

| Goal |

Combine state-of-the-art validation
with commercial development tools

|Context]

Telecommunication systems,
Real-time embedded systems

Model-checking:

Its problems

The idea: why MC is attractive

design
description

fully automatic

check
ully

The reality: why has MC a bad reputation

automatic

all properties hold!

abstract _ '
design fully automatic at does this
Ipti rove?
description D
too bad!
?jzt;gid fully automatic
description
or
valuable
detailed
design a lot of hard esults
description handwork
[— Stenuﬁgsund, July 5, 2001 ----- T

\/m Model-checking: how it should be

This bad reputation must not be justified

valuable
verification
results,
abstract
models,
test cases
or

counter
examples

detailed
design
description

A designer friendly
tool

----- Stenungsund, July 5, 2001 ----- 5

Principle of a validation environment

/-I-vnnl- NnAarte
E%(i.iu'v)

UML,
SDL,..
\ J

\

t parts,
Optimization,
Abstraction,

Compositional Methods,
Environment constraints

_/

Design
Language

Development
Environment

feedback

—

Model-checking
and
Diagnostics tools

\/ structured system
Fmac representation

1. Intermediate and tool exchange format
— Basis for static analysis, abstraction and compositional
methods
— Connection of a large range of high level design languages of
with analysis tools (model-checking, performence,...)

- Exchange of structured system descriptions between
analysis tools

2. Study of time models
- Need for a appropriate time extensions of languages for
communicating and distributed systems (SDL, UML)

— Appropriate for design and verification of real-time
systems

\/m

Motivations

IF intermediate representation

IF validation tool-set

Case studies

a k~ W D F

Conclusions

V. 2

IF Intermediate representation

System structure at instant t

Communicating extended timed automata (with urgency)

Communication/ Interaction

timer t

- asynchronous channels
(reliable?, bounded?, delay?)

- synchronous rendez-vous

- shared variables

Time representation

Timed automata with
shared x| | Jrgency of transitions
(eager,lazy, delayable)

----- Stenungsund, July 5, 2001 --——- 9

\/m

e A set of local variables

- elementary: bool, int, ... timers and clocks, ...
— structured: array, record
— abstract

e A set of control states with attributes:

— stable/nostable (control observable states)
— save and discard sets (reordering of input message buffer)

e A set of control transitions:] guard = input ; body

urgency ; priority

» g

————— Stenungsund, July 5, 2001 ----- 10

\4.“5.6 I Transitions (abstract syntax)

guard: boolean expression on
data, timers, clocks

guard > [input];[body] e input: asynchronous message inputs
> S from buffers

e sync: gate synchronization)
 body: action*

— asynchronous message outputs to
buffers A

— re/setting of timers/clocks
— assignments

+ urgency attribute:{€ager, lazy, delayable|
J y }Pr

e priority

T

urgency ; priority

guard = sync

» S
urgency ; priority

————— Stenungsund, July 5, 2001 ----- 11

[BornotSifakis97]

e System transitions take O time
(assimilated with an event "transition started",
"transition terminated”, ..) & time progresses in states, |E|
measured by clocks and timers

e Urgency defines when system transitions are taken

eager transitions are urgent, that is terminated
« now » (or disabled by other system transitions)

lazy transitions are never urgent, that means they can
be disabled by time-progress

delayable transitions are not disabled by time-
progress, but it is taken for granted that they will be taken
(except I disabled by other system transitions) EI

————— Stenungsund, July 5, 2001 ----- 12

\4.“% Timed automata with urgency

Allow to express a rich spectrum of time paradigms

1. Totally asynchronous view (no assumption on time progress):
all transitions are lazy

Ensure safe behaviour despite violation of deadlines

2. Synchronous view (next tick/input when system has finished):

all transitions are eager

Ensure safe behaviour under strong assumptions
(risk of time-lock)

3. Real-time views: different urgency types and time guards:

13

\/m

. Motivations

. IF intermediate representation

|F validation tool-set

. Applications

. Conclusion and perspectives

14

\/m

Evaluator

Aldebaran

compare Mcalculus
- - minimize
Static Analysis checker .y
environment comp
draw ‘ Test case
generation

ObjectGEODE =
specification design| LTS
. . implicit
SDL » sd|2if > ——» IF —>Cif.open >—> C succ
function

————— Stenungsund, July 5, 2001 ----- 15

\/m

e Based on an ObjectGeode API =)
we follow standard evolution of SDL

e Supports almost all of SDL"96.:

— timeouts are translated by time-guards
— elimination of block hierarchy ("flat" architecture)

— destination of outputs is statically determined if possible
(only delaying channels represented explicitly)

Only for more efficient verification
— procedures are inlined (no recursion allowed)

————— Stenungsund, July 5, 2001 ----- 16

\/m

Translation IF to LTS

Simulator construction: if.open

IF

* implements:
e discrete/dense time

e

C e partial order reduction

e compositional generation

simulator

* supports:
e random/guided simulation
e on-the-Tly verification
e explicit LTS construction

Stenungsund, July 5, 2001 ----- 17

\/m

e Basic Functionalities
— switch representations
— parallel composition
— draw graphical representations (valid property)
— generate MSCs from (diagnostic) sequence (invalid property)

e Model-checking:
e temporal-logic properties (Evaluator, Kronos)

e behavioral comparison and reduction (Aldebaran)
(both including diagnostic capabilities)

e Test case generation (TGV)

————— Stenungsund, July 5, 2001 ----- 18

\/m

IF

PRINCIPLE

e Source code transformation in order to get
— a smaller state representation
- less states, which represent sets

—>

trans

 Preserve a set of (safety) properties (strongly
or weakly)

« Combine several static analysis methods

19

\/m

—_ LIVE

Live variable
analysis

and

constant elimination

Reset all live variables not live in some control point
(its value is irrelevant in this state)

Invalidate non-live clocks (clock reduction)
Eliminate globally dead variables
Replace constants by their value

20

\/m

|F —_SLICE > |F S||C|ng
slicing criterion observables: messages, variables, ...
/¢ (in particular control states)
property under check test purpose, abstract behaviour,

temporal logic formula...

e Eliminate non relevant parts of the system with
respect to a slicing criterion
(variables, messages, transitions, processes)

example

————— Stenungsund, July 5, 2001 ----- 21

\/ Static Analysis and Abstraction
Fmac (property dependant)

IF —»_ abs = abstraction
abstraction rel. (variable elimination, data abstraction,
predicate abstraction (InVeST), ...)

3

property under check (test purpose, observer, TL property...)

22

\/m

Summary

e In practice: drastic reductions of the state graph

e "abstract program" computed, can be directly used
by other tools

 Notice:

— static analyses and abstractions can be combined,
preserving the intersection of the properties

— abstraction means (in general) weak preservation of
properties

23

\/m

ObjectGEODE

specification design|

<

Static Analysis

live

clock reduction
slice

feed back s.a.

SDL

»C_sdI2if >———»

F —

EUT AMQG

if2pml if2lash ===

Promela
Spin

7 Aldebaran
compare
minimize

if.open ———»

Evaluator

Mcalculus
checker

TGV
Test case
generation

LTS

implicit
C succ
function

24

\/m

1. Motivations
2. IF intermediate representation

3. IF validation and test generation environment

4. Applications

5. Conclusion and perspectives

\/m

."
SDL Speﬂ Environment Requirements
1 /
IF Swnment

live analysis, dead basic
code elimination, static analysis

variable elimination l
model + p.O0.
exploration
- -

icing, advanced
abstraction... static analysis

di ostic: MSC del-checki N
maodel-checkKing, 0.
stract LTS test generation, model genereﬁlon

on-the-fly verification,
guided simulation,
deadlock detection...

\/ Validation methodology: taking into
pimac account environment constraints

Open systems: environment constraints (EC) are
essential for successful verification

verification results
Sys |= EC=>P

e Solution: describe EC by a (set of) processes E
Verify the Sys || E,

where Sys and E communicate by synchronous rendez-
Vous

27

\/.,..

Environment constraints
(example)

P E
idle idle
< x>
s(.) <
/
res(x) — oo
t(.) |
id.Ie signal r1, res from env [idle 1
Environment constraints:
- E sends requests s only if x=0
— E responds res(y) iff Sys has sent req(x) and y < x+5
L Stenungsund, July 5, 2001 ----- 28

\/m

« ATM adaptation layer transport protocol (SSCOP)

 live analysis, weak bisimulation minimization
e state size: 2000B - 100B
e unexplorable - 1 000 000 states

e« Medium access for wireless ATM (Mascara)
« live analysis, slicing, mcalculus checking

e Ariane-5 flight controller (40 minutes of flight)

e description obtained by reengineering
« many timers (smallest with 70ms rate)
e« 31 SDL processes

29

\/m

e Verification case study of Esprit-LTR Vires project

« Medium Access Control protocol for wireless ATM
P mediation between access points and mobile terminals

ATM layer
Control
Mascara
Adaptation Layer T
for
Wireless Comm Data Transmission

Radio Transmission layer

\/m

Set up and release
associations and
virtual connections

(address mapping,
ressource
management)

8 SDL processes
+ environment

Environment (upper layers + other control parts)

MT Dﬁ]amic Control ‘/ A AP Dynamic C_:!:)ntrol
Generic DC > < Generic Dg
F— —
Association Agent ; ‘:Association Agent
s, JP
Channel Agent Channel Agent

Medium size protocol: 10 000 lines of textual SDL

b complex data structures, large number of messages

and potentially interacting protocols

31

\/m

Environment and Requirements

1. unrestricted environment -> queues of unbounded length
» restrict the number of requests per time unit

2. a priori no functional environment restrictions and no requirements
given

» start with simple properties and chaotic environment and
strengthen as much as possible/necessary

Expression of requirements
» temporal logic

» abstract behaviors in terms of LTS: comparison modulo

(bi)simulation or computation of exact property modulo some
observation criterion

————— Stenungsund, July 5, 2001 ----- 32

\/.,..

Expression of Requirements

Example: « each association-request will be confirmed »

most general

non regular

a_conf*

a_conf*

' a_conf*

regular
approximation

_conf*

a_conf*

much weaker

we compute

the exact property
satisfied by the system

\4.“% Mascara: verification strategies

Direct generation failed even using all optimizations

Use of a compositional approach:

— Compositional generation

e generate and minimize the LTS associated to each
process

e apply parallel composition at the LTS level

— Compositional verification
e split a global property into a set of local properties
e verify each local property using an abstract environment

In combination with:
— static analysis
— partial order reduction

————— Stenungsund, July 5, 2001 ----- 34

\/m

ent | n° | method states reduc |trans redu [time |redu

AP | 1 |noreduction 7 000 K -1 30000 K - 3h -
2 |p.o. 900 K 8 1 800 K 17| 37m 5
3 [live reduction 400 K 17 1 500 K 20| 12m 15
4 |p.o.+live 28 K 250 52 K| 577|1mb2| 118

MT | 5 | noreduction 4 300 K -1 12 000 K -| 2h51 -
6 |p.o. 3100 K 1.3 7400 K 1.6| 1h30 1.9
7 |live reduction 63 K 68 325 K 36| 1m03| 162
8 |p.o. tlive 6 K 716 20K | 600 /s | 1460
9 |live+po + 1 K| 4300 3 K| 4000 4s | 2550

slice
all {10 |live +p.o. -- -- --
all |11 | 440 | 8min 218 K 1140 K n.a.

35

\/m

Conclusions:

method for design validation

Commercial Design tool

IF tool box

High Level Design
Reference Model

non-determinism:;+++
details: - /+

Environment & Properties

constraints

and

assumptions

refinement /lcompilation

A 4

constraint system

nyn-determinism:
details: - /+

testcwse géneration P-©:

Target

non-determinism: O
details: +++

test cases

feedback

analysable model

Similar approach
for performance
evaluation

36

\/m

- dynamic features are needed:
e for connection with UML, JAVA, ..
e for connection with symbolic validation tools

definition of dynamiclF

— more general annotations of type assume/assert for
requirement expression and test case generation

— more static analysis, abstraction and constraint propagation:
connection with PVS based InVest tool

— more compositional verification methods
— better diagnostic facilities

— Connections:
e connection with ASM tools
e connection with performance evaluation tools

————— Stenungsund, July 5, 2001 ----- 37

\/m

http://www-verimag.imag.fr/~async

38

\4.“36 Time and system progress In simulation

time
——

execution: independent time dynamics |
- combined time and system steps

correct approximation:

- decomposition
start a - abstraction

1 1
i i >

> system progress

action a

\4.“% Time and system progress In simulation

During simulation/validation:

e Problem: how to decide the time point of the next
event: now? or should time progress, and how much ?

Time progress must depend on assumptions made by the
designer

————— Stenungsund, July 5, 2001 ----- 40

\/m

var: u,w,x,y,z

g2anl(u)
,'d‘/

env!out3(x+z)

»~

Slicing criterion:

e0bservable events: in2, out3

var. u,X,Z

eecnvironment: in2, in3, in4

var. X,Z

_____ 42

\/m

var. X,Z

Slicing criteria:

qan2(z) e0bservable events: in2, out3

var. u,X,Z

X =2+Z

eecnvironment: in2, in3, in4

var. X,Z

sweak bisimulation reduction
env!out3(x+z)

.|
————— Stenungsund, July 5, 2001 ----- 43 E

\4.“;..9 Timed automata with urgency 2

clock x; l
eager

@ t 2 3 X

urgency

D i delayahle

B . -]
_____ Stenungsund, July 5, 2001 ----- 45 @

\/m

Timed automata with urgency 2

l ap l eager
(@) VL
1E£X£3 . ‘ > X
qo i lazy
qp i l delayahle
T 2 3 X

.|
_____ Stenungsund, July 5, 2001 ----- 46 @

\4.“% Timed automata with urgency 2

qp L-...........

l
@

1£XES3

urgency

— 77 -]
_____ Stenungsund, July 5, 2001 ----- 47 @

Timed automata with urgency 2

(a0
1£XES3

urgency

Lﬁaﬂﬂh

invariant: x<1 v x>3

|
I

1
T 3 X
Ll
invariant: true
1
T 2 3 X
N S—————— A L______dﬂkﬂﬁﬂne
invariant: x<3 & x>3
1

[HN
N
w

X

— 77 -]
_____ Stenungsund, July 5, 2001 ----- 48 @

