
Static Program Transformations
for

Efficient Software Model Checking

Shobha Vasudevan
Jacob Abraham

The University of Texas at Austin

August 24, 2004 S. Vasudevan and J. A. Abraham 2

Dependable Systems

• Large and complex systems
• Software faults are major concern
• Dependability achieved by

– Testing
– Debugging
– Formal Verification

August 24, 2004 S. Vasudevan and J. A. Abraham 3

Formal Verification:
Model Checking

• Formal description of model
• Property specified in temporal logic (LTL,

CTL etc)
• State space explosion for reasonably

sized systems

August 24, 2004 S. Vasudevan and J. A. Abraham 4

A Solution: Abstractions

• Model checking models need to be made
smaller

• Smaller or “reduced” models must retain
information
– Property being checked should yield same

result

• Balancing solution: Abstractions

August 24, 2004 S. Vasudevan and J. A. Abraham 5

Program Transformation Based
Abstractions

• Abstractions on Kripke structures
– Cone of Influence (COI), Symmetry, Partial

Order, etc.
– State transition graphs for even small programs

can be very large to build

• Abstractions on Program Text
– Scale well with program size
– High economic interest

Static Program Transformations

August 24, 2004 S. Vasudevan and J. A. Abraham 6

Types of Abstractions
• Sound

– Property holds in abstraction implies property
holds in the original program

• Complete
– Algorithm always finds an abstract program if

it exists

• Exact
– Property holds in the abstraction iff property

holds in the main program

August 24, 2004 S. Vasudevan and J. A. Abraham 7

Abstraction Landscape

Low
Automation

Medium
Automation

Data Abstractions
Abstract Interpretation

Low
Property Dependence

Medium
Property Dependence

Counterexample
Guided
Refinement techniques

SlicingSlicing
High
Property Dependence

High
Automation

August 24, 2004 S. Vasudevan and J. A. Abraham 8

Data Abstractions
• Abstract data information

– Typically manual abstractions

• Infinite behavior of system abstracted
– Each variable replaced by abstract domain

variable
– Each operation replaced by abstract domain

operation

• Data independent Systems
– Data values do not affect computation
– Datapath entirely abstracted

August 24, 2004 S. Vasudevan and J. A. Abraham 9

Data Abstractions: Examples
• Arithmetic operations

– Congruence modulo an integer
• k replaced by k mod m

• High orders of magnitude
– Logarithmic values instead of actual data

value
• Bitwise logical operations

– Large bit vector to single bit value
• Parity generator

• Cumbersome enumeration of data values
– Symbolic values of data

August 24, 2004 S. Vasudevan and J. A. Abraham 10

Abstract Interpretation
• Abstraction function mapping concrete

domain values to abstract domain values
• Over-approximation of program behavior

– Every execution corresponds to abstract
execution

• Abstract semantics constructed once,
manually

August 24, 2004 S. Vasudevan and J. A. Abraham 11

Abstract Interpretation: Examples

• Sign abstraction
– Replace integers by their sign

• Each integer K replaced by one of {> 0, < 0, =0}

• Interval Abstraction
– Approximates integers by maximal and minimal

values
• Counter variable i replaced by lower and upper limits

of loop

• Relational Abstraction
– Retain relationship between sets of data values

• Set of integers replaced by their convex hull

August 24, 2004 S. Vasudevan and J. A. Abraham 12

Counterexample Guided Refinement

• Approximation on set of states
– Initial state to bad path

• Successive refinement of approximation
– Forward or backward passes

• Process repeated until fixpoint is reached
– Empty resulting set of states implies property proved
– Otherwise, counterexample is found

• Counterexample can be spurious because of
over-approximations

• Heuristics used to determine spuriousness of
counterexamples

August 24, 2004 S. Vasudevan and J. A. Abraham 13

Counterexample Guided Refinement

• Predicate Abstraction
– Predicates related to property being verified

(User defined)
– Theorem provers compute the abstract

program
– Spurious counterexamples determined by

symbolic algorithms
– Some techniques use error traces to identify

relevant predicates

August 24, 2004 S. Vasudevan and J. A. Abraham 14

Counterexample Guided Refinement

• Lazy Abstraction
– More efficient algorithm
– Abstraction is done on-the-fly
– Minimal information necessary to validate a

property is maintained
• Abstract state where counterexample fails is “pivot

state”
• Refinement is done only “from the pivot state on”

August 24, 2004 S. Vasudevan and J. A. Abraham 15

Program Slicing

• Program transformation involving
statement deletion

• “Relevant statements” determined
according to slicing criterion

• Slice construction is completely automatic
• Correctness is property specific

– Loss of generality

• Abstractions are sound and complete

August 24, 2004 S. Vasudevan and J. A. Abraham 16

Specialized Slicing Techniques

• Static slicing produces large slices
– Has been used for verification
– Semantically equivalent to COI reductions

• Slicing criterion can be enhanced to
produce other types of slices
– Amorphous Slicing
– Conditioned Slicing

August 24, 2004 S. Vasudevan and J. A. Abraham 17

Our Contribution:
Specialized Slicing for Verification

• Amorphous Slicing
– Static slicing preserves syntax of program
– Amorphous Slicing does not follow syntax

preservation
– Semantic property of the slice is retained
– Uses rewriting rules for program

transformation

August 24, 2004 S. Vasudevan and J. A. Abraham 18

Example of Amorphous Slicing

begin
i = start;
while (i <= (start + num))

{
result = K + f(i);
sum = sum + result;
i = i + 1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})

August 24, 2004 S. Vasudevan and J. A. Abraham 19

Example of Amorphous Slicing
Amorphous Slice:
begin

sum = sum + K + f(start);
sum = sum + K + f(start + num);

end

Program Transformation rules applied
• Induction variable elimination
• Dependent assignment removal

• Amorphous Slice takes a fraction of the time as the real
slice on SPIN

August 24, 2004 S. Vasudevan and J. A. Abraham 20

Amorphous Slicing for Verification

• Similar to term rewriting
– Used by theorem provers for deductive

verification

• What is different?
– Theorem provers try to prove entirely by

rewriting
– We propose a hybrid approach

• Rewriting only part of the program, based on
slicing criterion

• Model checking the sliced program

August 24, 2004 S. Vasudevan and J. A. Abraham 21

Conditioned Slicing
• Theoretical bridge between static and

dynamic slicing
• Conditioned Slices specify initial state in

criterion
– Constructed with respect to set of possible

inputs
– Characterized by first order predicate formula

• Yields much smaller slices than static
slices

August 24, 2004 S. Vasudevan and J. A. Abraham 22

Conditioned Slicing for Verification

• Safety properties specified as:
– Antecedent => Consequent

• For these properties, antecedent can be
used to specify the initial states of interest
– We do not need states where antecedent is

not true
– Static slices preserves all possible executions

August 24, 2004 S. Vasudevan and J. A. Abraham 23

Conditioned Slicing for Verification

• Abstractions created by conditioned slicing
of antecedents in formula
– Antecedent Conditioned Slices

• Exact abstractions
• Automatic construction of slices

August 24, 2004 S. Vasudevan and J. A. Abraham 24

Example Program
begin

1: read(N);
2: A = 1;
3: if (N < 0)

{
4: B = f(A);
5: C = g(A);

}
else

6: if (N > 0)
{

7: B = f’(A);
8: C = g’(A);

}
else

{
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

August 24, 2004 S. Vasudevan and J. A. Abraham 25

Static Slice of Program
begin

1: read(N);
2: A = 1;
3: if (N < 0)

{
4: B = f(A);
5: C = g(A);

}
else

6: if (N > 0)
{

7: B = f’(A);
8: C = g’(A);

}
else

{
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

Slicing criterion:
<(N<0), 11, B>

August 24, 2004 S. Vasudevan and J. A. Abraham 26

Conditioned Slice of Program
begin

1: read(N);
2: A = 1;
3: if (N < 0)

{
4: B = f(A);
5: C = g(A);

}
else

6: if (N > 0)
{

7: B = f’(A);
8: C = g’(A);

}
else

{
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

Slicing criterion:
<(N<0), 11, B>

August 24, 2004 S. Vasudevan and J. A. Abraham 27

Preliminary Experimental Results

• Group Address Registration Protocol
(GARP) and X.509 authentication protocol

• SPIN model checker
– Memory limit of 512 MB given
– Max search depth of 220 steps

• All properties were in the form
Antecedent => Consequent

August 24, 2004 S. Vasudevan and J. A. Abraham 28

Preliminary Experimental Results

Property
Proved

Conditioned
Sliced

Unsliced*Property

Yes10.23117.81P5

Yes1.95154.96P4

Yes8.41145.36P3
Yes8.44145.78P2
Yes1.7291.65P1

*Static slicing in SPIN was enabled

August 24, 2004 S. Vasudevan and J. A. Abraham 29

Conclusions
• Abstraction techniques are evaluated by

– Degree of automation vs. Manual effort
– Property dependence vs. Generic nature
– Exact vs. Over-approximation

• “Software reliability is the grand challenge
of the next decade”
– Abstractions are the powerful candidate

solutions to this challenge
– Need integration of all abstraction techniques

into an optimal framework

