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Dependable Systems

• Large and complex systems
• Software faults are major concern
• Dependability achieved by

– Testing
– Debugging
– Formal Verification
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Formal Verification: 
Model Checking

• Formal description of model
• Property specified in temporal logic (LTL, 

CTL etc)
• State space explosion for reasonably 

sized systems
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A Solution: Abstractions

• Model checking models need to be made 
smaller

• Smaller or “reduced” models must retain 
information
– Property being checked should yield same 

result

• Balancing solution: Abstractions 
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Program Transformation Based 
Abstractions

• Abstractions on Kripke structures
– Cone of Influence (COI), Symmetry, Partial 

Order, etc.
– State transition graphs for even small programs 

can be very large to build

• Abstractions on Program Text
– Scale well with program size
– High economic interest

Static Program Transformations
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Types of Abstractions
• Sound

– Property holds in abstraction implies property 
holds in the original program

• Complete
– Algorithm always finds an abstract program if 

it exists

• Exact
– Property holds in the abstraction iff property 

holds in the main program
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Data Abstractions
• Abstract data information

– Typically manual abstractions

• Infinite behavior of system abstracted
– Each variable replaced by abstract domain 

variable
– Each operation replaced by abstract domain 

operation

• Data independent Systems
– Data values do not affect computation
– Datapath entirely abstracted
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Data Abstractions: Examples
• Arithmetic operations

– Congruence modulo an integer
• k replaced by k mod m

• High orders of magnitude
– Logarithmic values instead of actual data 

value
• Bitwise logical operations

– Large bit vector to single bit value
• Parity generator

• Cumbersome enumeration of data values
– Symbolic values of data
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Abstract Interpretation
• Abstraction function mapping concrete 

domain values to abstract domain values
• Over-approximation of program behavior

– Every execution corresponds to abstract 
execution 

• Abstract semantics constructed once, 
manually
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Abstract Interpretation: Examples

• Sign abstraction
– Replace integers by their sign

• Each integer K replaced by one of {> 0, < 0, =0}

• Interval Abstraction
– Approximates integers by maximal and minimal 

values
• Counter variable i replaced by lower and upper limits 

of loop

• Relational Abstraction
– Retain relationship between sets of data values

• Set of integers replaced by their convex hull
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Counterexample Guided Refinement

• Approximation on set of states
– Initial state to bad path

• Successive refinement of approximation
– Forward or backward passes

• Process repeated until fixpoint is reached
– Empty resulting set of states implies property proved
– Otherwise, counterexample is found

• Counterexample can be spurious because of 
over-approximations

• Heuristics used to determine spuriousness of 
counterexamples
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Counterexample Guided Refinement

• Predicate Abstraction
– Predicates related to property being verified 

(User defined)
– Theorem provers compute the abstract 

program
– Spurious counterexamples determined by 

symbolic algorithms
– Some techniques use error traces to identify 

relevant predicates
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Counterexample Guided Refinement

• Lazy Abstraction
– More efficient algorithm
– Abstraction is done on-the-fly
– Minimal information necessary to validate a 

property is maintained
• Abstract state where counterexample fails is “pivot 

state”
• Refinement is done only “from the pivot state on”
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Program Slicing

• Program transformation involving 
statement deletion

• “Relevant statements” determined 
according to slicing criterion

• Slice construction is completely automatic
• Correctness is property specific 

– Loss of generality

• Abstractions are sound and complete
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Specialized Slicing Techniques

• Static slicing produces large slices
– Has been used for verification
– Semantically equivalent to COI reductions

• Slicing criterion can be enhanced to 
produce other types of slices
– Amorphous Slicing
– Conditioned Slicing
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Our Contribution:
Specialized Slicing for Verification

• Amorphous Slicing
– Static slicing preserves syntax of program
– Amorphous Slicing does not follow syntax 

preservation
– Semantic property of the slice is retained
– Uses rewriting rules for program 

transformation
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Example of Amorphous Slicing

begin
i = start;
while (i <= (start + num))

{
result = K + f(i);
sum = sum + result;
i = i + 1;
}

end

LTL Property: G sum > K
Slicing Criterion: (end, {sum, K})
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Example of Amorphous Slicing
Amorphous Slice: 
begin

sum = sum + K + f(start);
sum = sum + K + f(start + num);

end

Program Transformation rules applied
• Induction variable elimination
• Dependent assignment removal

• Amorphous Slice takes a fraction of the time as the real 
slice on SPIN
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Amorphous Slicing for Verification

• Similar to term rewriting
– Used by theorem provers for deductive 

verification

• What is different?
– Theorem provers try to prove entirely by 

rewriting
– We propose a hybrid approach

• Rewriting only part of the program, based on 
slicing criterion

• Model checking the sliced program
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Conditioned Slicing 
• Theoretical bridge between static and 

dynamic slicing
• Conditioned Slices specify initial state in 

criterion
– Constructed with respect to set of possible 

inputs
– Characterized by first order predicate formula

• Yields much smaller slices than static 
slices
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Conditioned Slicing for Verification

• Safety properties specified as:
– Antecedent  => Consequent

• For these properties, antecedent can be 
used to specify the initial states of interest
– We do not need states where antecedent is 

not true
– Static slices preserves all possible executions
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Conditioned Slicing for Verification

• Abstractions created by conditioned slicing 
of antecedents in formula 
– Antecedent Conditioned Slices

• Exact abstractions
• Automatic construction of slices
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Example Program
begin

1: read(N);
2: A = 1;
3: if (N < 0)

{
4: B = f(A);
5: C = g(A);

}
else

6: if (N > 0)
{

7: B = f’(A);
8: C = g’(A);

}
else

{
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end
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Static Slice of Program
begin

1: read(N);
2: A = 1;
3: if (N < 0)

{
4: B = f(A);
5: C = g(A);

}
else

6: if (N > 0)
{

7: B = f’(A);
8: C = g’(A);

}
else

{
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

Slicing criterion:
<(N<0), 11, B>
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Conditioned Slice of Program
begin

1: read(N);
2: A = 1;
3: if (N < 0)

{
4: B = f(A);
5: C = g(A);

}
else

6: if (N > 0)
{

7: B = f’(A);
8: C = g’(A);

}
else

{
9: B = f’’(A);
10: C = g’’(A);

}
11: print(B);
12: print(C);

end

Slicing criterion:
<(N<0), 11, B>
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Preliminary Experimental Results

• Group Address Registration Protocol 
(GARP) and X.509 authentication protocol

• SPIN model checker
– Memory limit of 512 MB given 
– Max search depth of 220 steps

• All properties were in the form
Antecedent  => Consequent
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Preliminary Experimental Results

Property 
Proved

Conditioned
Sliced 

Unsliced*Property

Yes10.23117.81P5

Yes1.95154.96P4

Yes8.41145.36P3
Yes8.44145.78P2
Yes1.7291.65P1

*Static slicing in SPIN was enabled
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Conclusions
• Abstraction techniques are evaluated by

– Degree of automation vs. Manual effort
– Property dependence vs. Generic nature
– Exact vs. Over-approximation

• “Software reliability is the grand challenge 
of the next decade”
– Abstractions are the powerful candidate 

solutions to this challenge
– Need integration of all abstraction techniques 

into an optimal framework


