
The Evolution of Dependable
Computing at
the University of Illinois

Dedicated to
Professor Algirdas Avizienis

R. Iyer, W. Sanders, J. Patel, Z. Kalbarczyk
Center for Reliable and High-Performance Computing

Department of Electrical and Computer Engineering and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Long Association with FTCS (now DSN)
Al Aviziennis

Ph.D. Illinois, Founder FTCS and IFIP WG 10.4

Program Chair or General Chair
Gary Metze, faculty, FTCS-2, FTCS-4
John Hayes, Ph.D. Illinois, FTCS-7
Jacob Abraham, faculty, FTCS-11, FTCS-19,
IEEE TC on Fault-Tolerant Computing chair

Ravi Iyer, faculty, FTCS-19, FTCS-25,
IEEE TC on Fault-Tolerant Computing chair
Kent Fuchs, faculty, FTCS-27
IEEE TC on Fault-Tolerant Computing chair
Ram Chillarege, Ph.D. Illinois, FTCS-28
Bill Sanders, faculty, FTCS-29
IEEE TC on Fault-Tolerant Computing chair
Zbigniew Kalbarczyk, Ph.D., DSN-02
Tim Tsai, Ph.D. Illinois, DSN-04

Early Developments –
Illiac-I and Illiac-II

During 1950’s and 1960’s Illiac-I and
Illiac-II

Frequent failures of vacuum tubes
jump started the early work in fault
diagnosis

A subtle design bug in the arithmetic
unit, (-2) * (-2) giving (-4), escaped
the tests

caught after about nine months by a
numerical double-check built into a
user’s program

While no attempt was made to model
faults systematically, the handshake
mechanism used in the ALU control
exhibited the basic idea of what is now
called self-checking operation.

Avizienis conducts early research on
parallel computer arithmetic

Pioneering Work of Seshu and Metze
in Test and Diagnosis

Sequential Analyzer (Seshu), which included a set of
programs for

automatic generation of fault simulation data (stuck-line faults) for a
given logic circuit and test sequence

automatic generation of test sequences for combinational and
sequential circuits.

studying computer self-diagnosis

Sequential analyzer was applied in at Bell Telephone
Laboratories to improve diagnosis procedures for ESS-1

Chang, Manning, and Metze produced, as a tribute to
Seshu; probably the first book devoted entirely to digital
fault diagnosis.

PMC (Preparata, Metze, Chien) model for computer self-
diagnosis

Automatic Test Pattern Generation
(ATPG) – from Research to Product

First commercial ATPG in 70’s (Marlett) and then several
updated versions through 80’s and 90’s

Founding ATPG company Sunrise Test Systems, now a part
of Synopsis (Niermann and Patel)

Commercialization of PROOFS, the fastest, most memory efficient
fault simulation algorithm, in 1990

PROOFS now used in all commercial ATPG tools

Testing of multi-Million gates –
Scan Design

Early Scan Design

NEC, IBM and William-Angel of Stanford, all claim to be the first to
propose Scan

Others claim that the first proposal of the scan idea was in the book
by Chang, Manning and Metze of Illinois!

Today large circuits with close to a million flip-flops in scan
chain requires enormous test time and data

Illinois Scan Architecture (1999-2002)

Reduces test time and test data by factors of 100 or more with no
logic overhead!

Already in use at IBM, Intel, Syntest and others

Illinois Scan Architecture

internal scan chains

external
scan-in

pins

output
compactor

Functional-Level Test Generation
Memory testing using functional-level fault model (i.e.,
without the availability of information about their internal
structure)

the initial fault model for memories included stuck bits in the
memory and coupling between cells in a memory.

Test generation procedures for microprocessors based on an
extrapolation of the approach to testing memories

A general graph-theoretic model at the register-transfer level to
model microprocessors using only information about its instruction
set and the functions performed.
A fault simulation study on a real microprocessor showed extremely
good fault coverage for tests developed using these procedures.

Detection & Recovery

Self-Checking and Time Redundancy

Pioneering work of Carter led Anderson and Metze (at
Illinois) to formulate Totally Self Checking (TSC) circuits;
subsequent work led to introduction of Strongly Fault Secure
property

Triggered widespread research in academia and industry in
the 70’s and 80’s

Metze proposed time redundancy techniques for checking
errors based on Alternating Logic; subsequently enhanced
as RESO (Recomputing with Shifted Operands)

Algorithm-based Fault Tolerance –
ABFT and Checkpointing

ABFT
Matrix encoding schemes for
detecting and correcting errors
when matrix operations are
performed by processor arrays

Generalized to linear arrays,
Laplace equation solvers, and
FFT networks

Ideal for low-cost fault tolerance
for special-purpose
computations, including signal-
processing applications

Explored by a large number of
researchers,

more recently as part of the REE
program at JPL

Checkpointing
Asynchronous checkpointing for
distributed systems optimized for
space overhead and performance

Compiler-assisted multiple
instructions rollback scheme to
aid in speculative execution
repair in microprocessors

Low-overhead coordinated
checkpointing for long-running
parallel and high-availability
applications

RENEW toolset for rapid
development and testing of
checkpoint protocols

Current Directions

Hierarchical Application Aware Error
Detection and Recovery

Parity, ECC at processor level
Control logic protection

Reliable ultra-fast interconnect services
Application-aware programmable

checks

Application Support

Compiler Support

Operating System Support

Hardware Support

Robust (self-checking) middleware
API for High-Dependability support

Control flow checking and data audit

Application and/or OS
instrumentation

to customize and invoke
FT mechanisms

Kernel Health Monitor,
Application transparent checkpointing

Security services, e.g., runtime memory
randomization

Compiler
generated
assertions

HW
broadcast

Randomizing
memory
layout

Instructions
to invoke
hardware-

level
error checks

Middleware and Hardware Frameworks
for Fault Tolerance and Security

Hardware Platform

ARMORs

Application

Operating System

Execution
ARMOR

ARMOR
Interface

ApplicationHeartbeat
ARMOR

Daemon
ARMOR

Node 1

Hardware Platform

ARMORs

Application

Operating System

Execution
ARMOR

ARMOR
Interface

ApplicationHeartbeat
ARMOR

Daemon
ARMOR

Node 1

ARMOR are multithreaded processes composed
of replaceable building blocks – elements,
which implement error detection, recovery
policies, security services, and management of
runtime environment.

ARMOR – High Availability and
Security Middleware

RSE – Reliability and Security Engine
Instruction-

Cache Instruction-Fetch Branch
Predictor

Instruction-Address
Translation Buffer

4-entry
Fetch Buffer

Dispatcher

Instruction
Decoder

Register
File

Load / Store
Unit

Integer
Unit

Multiply /
Divide Unit

Branch
Resolve Unit

Reorder
Buffer

Write-
Buffer

Data-
Cache

Commit-UnitData-Address
Translation Buffer Arbiter

Instruction-
Cache Instruction-Fetch Branch

Predictor

Instruction-Address
Translation Buffer

4-entry
Fetch Buffer

Dispatcher

Instruction
Decoder

Dispatcher

Instruction
Decoder

Register
File

Load / Store
Unit

Integer
Unit

Multiply /
Divide Unit

Branch
Resolve Unit

Reorder
Buffer

Write-
Buffer

Data-
Cache

Commit-UnitData-Address
Translation Buffer Arbiter

ROBAllocPtr1 (i)
ROBAllocPtr2 (i)

InstrReg1
InstrReg2

M
U
X3

MDUDataOut
ALUDataOut
LSUEffAddr

LoadFromALU (i)
LoadFromMDU (i)
LoadFromLSU (i)

LSUDataOut

LoadFromLSU (i)

M
U
X5

LSUSrc2
ALUSrc2
MDUSrc2

IssueLSU (i)
IssueALU (i)
IssueMDU (i)

M
U
X2

Instruction
Checker
Module

Memory
Layout

Randomization

Data
Dependency

Tracker

Memory
Access
Unit

Instruction
Output
Queue

Memory Access Request Mem_Rdy

Memory
Access
Request

Memory
Data

Module
Outputs

RSE Framework

CUCommitInstr1

InstrToCommit (i)

M
U
X4CUCommitInstr2

Mem

Adaptive
Heartbeat
Monitor

RegFile_Data
Entry i

Execute_Out
Entry i

Fetch_Out
Entry i

Memory_Out
Entry i

Commit_Out
Entry i

Module
Enable/
Disable

InstrReg3
InstrReg4

ROBAllocPtr3 (i)
ROBAllocPtr4 (i)

M
U
X1 Hardware Modules

Input interface

Fetch / Dispatch Width 4 instructions
Issue width 4 instructions
RUU / LSQ size 16/8 entries
Instruction L1 cache Size: 8 KB, 1-way associative
Data L1 cache Size: 8 KB, 1-way associative
Instruction L2 cache Size: 64 KB, 2-way associative

Data L2 Cache Size: 128 KB, 2-way associative

check
checkValid

Bus-Interface
Unit

External
Bus

Framework to
provide
application-aware
techniques for
error-detection,
masking of security
vulnerabilities and
recovery in a
uniform, low
overhead manner

Algorithms and
architectures for
building
dependable,
object-oriented,
distributed
computer/communi
cation systems

AQuA – Adaptive Quality of Service
for Availability

ITUA - Intrusion Tolerance by
Unpredictable Adaptation

Algorithms and
architectures for
building intrusion-
tolerant distributed
systems

Gossip
Name
Server Gateway

Object QuO

Object
Factory

Gateway

Proteus
Dependability

Manager

GatewayGateway

Object QuO

Underlying Group Communication System

Gossip
Name
Server Gateway

Object QuO

Gateway

Object QuO

Object
Factory

Gateway

Object
Factory

Gateway

Proteus
Dependability

Manager

GatewayGateway

Object QuO

Gateway

Object QuO

Underlying Group Communication System

Modeling and Simulation

Component
libraries

Fault
injector

Simulation
engines

Fault
dictionaries

Other
facilities

- hardware components
and their functional
behavior

- logical (architecture)
components and their
functionality

- hardware components
and their functional
behavior

- logical (architecture)
components and their
functionality

- hardware components
and their functional
behavior

- logical (architecture)
components and their
functionality

- effect of faults on
higher level in terms of
a low level fault model

- effect of faults on
higher level in terms of
a low level fault model

- effect of faults on
higher level in terms of
a low level fault model

- random number
generators

- recording, statistics
reporting

- random number
generators

- recording, statistics
reporting

VHDL
behavioral

model

VHDL
structural

model

C++
based
model

Block
diagram

VHDL
behavioral

model

VHDL
structural

model

C++
based
model

Block
diagram

Task & Environment Manager

DEPENDDEPEND
Menu
pages
Menu
pagesTool-kit

Graphical editor
Comp-lib builder
VHDL translator

A simulation framework to support the
design of systems for fault tolerance and
high availability.
It takes as inputs both VHDL and C++
system description and produces as
output dependability characteristics
including fault coverage, availability, and
performance.
(License to several companies and
employed to simulate a number of
industrial Systems, e.g. Integrity S2 from
Tandem)

DEPEND

Möbius
An Extensible Modeling Tool for Quantifying
Dependability, Security, and Performance
Features:
• Multiple model representation techniques
facilitate modeling of hardware, software,
protocols, and application in a unified manner
• Unified representation of dependability, security
and performance attributes
• Integrated analytical/numerical and simulation-
based solution
(Licensed by over 190 institutions)

Framework Component

Atomic Model

Composed Model

Solvable Model

Connected Model

Study Specifier
(generates multiple
models)

Experimental System Evaluation and
Benchmarking – Fault Injection

Campaign
Script

Campaign
Script

LogLog

Control
Host

Control
Host

Process
Manager
Process
Manager

Injector
Process
Injector
Process

Application
Process

Application
Process

Process
Manager
Process
Manager

Injector
Process
Injector
Process

Application
Process

Application
Process

LAN

Error Injection Targets

Control Host

Campaign
Script

Campaign
Script

LogLog

Control
Host

Control
Host

Process
Manager
Process
Manager

Injector
Process
Injector
Process

Application
Process

Application
Process

Process
Manager
Process
Manager

Injector
Process
Injector
Process

Application
Process

Application
Process

LAN

Error Injection Targets

Control Host
NFTAPE A software framework for conducting automated

fault/error injection-based dependability characterization;
Evaluation/benchmarking of:
- fault-tolerant systems, e.g., Tandem FT-platforms;
- operating systems, e.g., Linux kernel on Pentium and PowerPC
- applications, e.g., call processing, space-borne software
- security violations due to errors, e.g., FTP, firewall facilities
(Licensed to multiple institutions, including JPL-NASA)

Loki
A software fault injector for
distributed systems in which the
introduction of faults is triggered
based on the global state of the
system.
Evaluation of large-scale distributed
systems, e.g., a group membership
protocol in Ensemble, and correlated
network partitions in Coda
distributed file system.

. . .Loki RuntimeSystem
Under
Test

Loki RuntimeSystem
Under
Test

Loki RuntimeSystem
Under
Test

Loki Runtime

System
Under
Test

Probe

Inject Fault

State
Machine

Notifications

Recorder

State
Machine
Transport

Fault
Parser

LAN1

LAN2

. . .
Local Timelines

Offline Clock
Synchronization

Uses timestamp data
collected before and
after the experiment

Single Global Timeline

To LAN2

Measure
Analysis

Measures
3
7
11

1

N

2

N21

Operational System Data Analysis

 LAN of Windows NT Machines Internet

Data type and number of
machines

System logs from
503 servers

System logs from
68 mail servers

Web site access
success/failure logs
from 97 most popular
Web sites

Period for data collecting 4 months 6 months 40 weeks

Failure context

Machine reboots
logged in a server
system log.

Machine reboots
logged in a server
system log.

Inability to contact a
host and fetch an
HTML file from it.

Availability

System perspective
User perspective
(user gets expected
service)

99%

N/A

99%

92%

N/A

99%

Downtime (median)

N/A

0.2h

1h (45%)
4.5h (49%)
53h (6%)

Comments

Indication of error
propagation across
the network

 A few major network-
related failures made
nearly 70% of the
hosts inaccessible

Failure Data Analysis

Impact of workload on hardware and
software fault tolerance
Characterization of error latency
Failure characterization of UNIX and
Windows NT servers
Reliability of Internet hosts

Security Vulnerability Analysis

Size(P
ostD

ata
)<len

gth(input) ♦
-

Allocate and free the bufferPostData

Free chunk A

Used chunk PostData

Free chunk B
fd=A
bk=C

Free chunk C

−♦−

−♦−

−♦−

contentLen<0 ♦−

contentLen>=0 ♦−

−♦−

length(input) <= Size(PostData) ♦-

Read postdata from socket to
an allocated buffer PostData

−♦get (contentLen, input)
contentLen is an integer,
input is an text string to be
read from a socket

-♦CallocPostData[1024+contentLen]
-♦ Copy input from the socket
to PostDataby recv() call

-♦ B->fd=A
B->bk=C

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode♦-

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode

-♦ When buf is freed,
execute B->fd->bk = B->bkB->fd and B->bk

unchanged ♦-

.GOT entry of function
free points to MCode

addr_free changed♦-

addr_free
unchanged ♦- -♦ Execute addr_free when

function free is called

Mcode is executed

Note: addr_free is the .GOT
entry of function free

X
?

Calloc is called

-♦ Load addr_free
to the memory during
program initializationManipulate the

.GOT entry of
function free
(i.e., addr_free)

pFSM1
pFSM2

pFSM3

pFSM4

Heap Layout

Operation 1:

Operation 2:

Operation 3:

Size(P
ostD

ata
)<len

gth(input) ♦
-

Allocate and free the bufferPostData

Free chunk A

Used chunk PostData

Free chunk B
fd=A
bk=C

Free chunk C

−♦−

−♦−

−♦−

contentLen<0 ♦−

contentLen>=0 ♦−

−♦−

length(input) <= Size(PostData) ♦-

Read postdata from socket to
an allocated buffer PostData

−♦get (contentLen, input)
contentLen is an integer,
input is an text string to be
read from a socket

-♦CallocPostData[1024+contentLen]
-♦ Copy input from the socket
to PostDataby recv() call

-♦ B->fd=A
B->bk=C

B->fd=&addr_free-(offset of field bk)
B->

Size(P
ostD

ata
)<len

gth(input) ♦
-

Allocate and free the bufferPostData

Free chunk A

Used chunk PostData

Free chunk B
fd=A
bk=C

Free chunk C

−♦−

−♦−

−♦−

contentLen<0 ♦−

contentLen>=0 ♦−

−♦−

length(input) <= Size(PostData) ♦-

Read postdata from socket to
an allocated buffer PostData

−♦get (contentLen, input)
contentLen is an integer,
input is an text string to be
read from a socket

-♦CallocPostData[1024+contentLen]
-♦ Copy input from the socket
to PostDataby recv() call

-♦ B->fd=A
B->bk=C

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode♦-

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode

-♦ When buf is freed,
execute B->fd->bk = B->bkB->fd and B->bk

unchanged ♦-

.GOT entry of function
free points to MCode

addr_free changed♦-

addr_free
unchanged ♦- -♦ Execute addr_free when

function free is called

Mcode is executed

Note: addr_free is the .GOT
entry of function free

X
?

Calloc is called

-♦ Load addr_free
to the memory during
program initializationManipulate the

.GOT entry of
function free
(i.e., addr_free)

pFSM1
pFSM2

pFSM3

pFSM4

Heap Layout

Operation 1:

Operation 2:

Operation 3:

bk=Mcode♦-

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode

-♦ When buf is freed,
execute B->fd->bk = B->bkB->fd and B->bk

unchanged ♦-

.GOT entry of function
free points to MCode

addr_free changed♦-

addr_free
unchanged ♦- -♦ Execute addr_free when

function free is called

Mcode is executed

Note: addr_free is the .GOT
entry of function free

X
?

Calloc is called

-♦ Load addr_free
to the memory during
program initializationManipulate the

.GOT entry of
function free
(i.e., addr_free)

pFSM1
pFSM2

pFSM3

pFSM4

Heap Layout

Operation 1:

Operation 2:

Operation 3:

1: PostData = calloc(contentLen
+1024,sizeof(char));x=0; rc=0;

2: pPostData= PostData;
3: do {
4: rc=recv(sock, pPostData,

1024, 0);
5: if (rc==-1) {
6: closeconnect(sid,1);
7: return;
8: }
9: pPostData+=rc;
10: x+=rc;
11: } while ((rc==1024) ||

(x<contentLen));

Combine an analysis of data on vulnerabilities with
a source-code examination to develop FSM model
to depict and reason about security vulnerabilities.
• Exploits must pass through multiple elementary
activities
• Multiple vulnerable operations on several objects
are involved in exploiting a vulnerability,
• FSM model allows specifying logic predicates
that need to be met to ensure security.

Security Vulnerability Avoidance and
Runtime Protection

CERT advisories indicateCERT advisories indicate
≥≥ 66% 66% vulnerabilitiesvulnerabilities due to pointer due to pointer
taintednesstaintedness
≥≥ 33% 33% due to errors in library functions due to errors in library functions
or incorrect invocations of library or incorrect invocations of library
functionsfunctions

Pointer Pointer TaintednessTaintedness –– a unified basis a unified basis
for reasoning about security for reasoning about security
vulnerabilitiesvulnerabilities

A pointer is tainted if a user value, A pointer is tainted if a user value,
including a return address, is derived including a return address, is derived
directly or indirectly from the user input. directly or indirectly from the user input.

Pointer Pointer taintednesstaintedness semanticssemantics
applied to formally reason and extract applied to formally reason and extract
security specifications of library security specifications of library
functions functions

Exposes (and removes) security Exposes (and removes) security
vulnerabilities vulnerabilities

Vulnerability Avoidance Transparent Runtime
Randomization

Protects against about 60% of security
attack reported by CERT
Breaks the attacker’s assumptions on the
fixed memory layout of the target system
Makes it impossible to correctly determine
location of critical application associated
memory regions essential in designing
and launching a successful attack
Converts an attack
into application crash
Program initialization
overhead – 1% to 6%
NO runtime overhead
Memory cost –
extra copy of
GOT(global offset table)
200 Byte to 3.5 KB

use code

Kernel space
0xC0000000

0xFFFFFFFF

0x08048000
static data

bss

shared libraries
0x40000000 ± Rand

0xBFFFFFFC - Randuser stack

user heap End_of_bss + Rand

DPASA – Designing Protection &
Adaptation Into a Survivability Architecture

Client Zone

JBI Management Staff

Executive
Zone

Crumple
Zone

Operations
Zone

JBI Core

Quad 1 Quad 2 Quad 3 Quad 4

Network

Access Proxy (Isolated Process Domains in SE-Linux)
Domain6

First Restart Domains Eventually Restart HostLocal Controller

RMI

STCPTCP

PS Sensor Rpts

TCP UDP

IIOP

PSQImplPSQImpl

IIOP

TCP

DC

Eascii

Domain1 Domain2 Domain3 Domain4 Domain5
Forward/
Ratelimit

Proxy Logic
Inspect / Forward / Rate Limit

Client Zone

JBI Management Staff

Executive
Zone

Crumple
Zone

Operations
Zone

JBI Core

Quad 1 Quad 2 Quad 3 Quad 4

Network

Access Proxy (Isolated Process Domains in SE-Linux)
Domain6

First Restart Domains Eventually Restart HostLocal Controller

RMI

STCPTCP

PS Sensor Rpts

TCP UDP

IIOP

PSQImplPSQImpl

IIOP

TCP

DC

Eascii

Domain1 Domain2 Domain3 Domain4 Domain5
Forward/
Ratelimit

Proxy Logic
Inspect / Forward / Rate Limit

Access Proxy (Isolated Process Domains in SE-Linux)
Domain6

First Restart Domains Eventually Restart HostLocal Controller

RMI

STCPTCP

PS Sensor Rpts

TCP UDP

IIOP

PSQImplPSQImpl

IIOP

TCP

DC

Eascii

Domain1 Domain2 Domain3 Domain4 Domain5
Forward/
Ratelimit

Proxy Logic
Inspect / Forward / Rate Limit

JBI critical mission
objectives

JBI critical functionality

Initialized JBI provides
essential services

Authorized publish
processed successfully

ConfidentialityDataflow
Timeliness
Integrity

(from functional
model execution)

Functional model
assumptions hold

JBI mission awareness

CA1: Origin of
Attacks on
Clients

CA2: Attack
Propagation
from Clients

CA3: Client
Process
Corruption

PA1: Client-
Core

Communication
I & C

PA2: Alternate
Path

Availability

QA1: QIS
Incorruptibility

QA2: QIS
Communication

Cutoff

QA3: QIS
Input

Integrity

QA4: QIS
Function

Correctness

AA1: AP
Function

Correctness

AA2: AP
Application-
layer Integrity

AA3: AP
Application-layer
Confidentiality

AA4: Origin of
Attacks on

Access Proxy

AA5: Attacks
from AP

AA6: DoSfrom
Compromised

Core

AA7: AP
Process
Corruption

AA8: DoS
Prevention by
Access Proxy

DA1: DC
Communications

GA1: Process
Corruption on
Guardian

DA3:
Process

Corruption
on DC

GA2: Attacks
from Guardian

DA2: Origin of
Attacks on DC

SA1: Origin of
Attacks on
PSQ Server

SA2: Attacks
from PSQ
Server

SA3: IO
Integrity in
PSQ Server

SA4: Client
Confidentiality
in PSQ Server

SA5: IO
Authenticity

SA6: Network-
layer I & C

SA7: Process
Corruption in
PSQ Server

SeA1: Attacks
from IDS Sensor

SeA2: Sensor
False Alarm

Rate

SeA3: Sensor
Detection Delay

SeA4: Sensor
Detection
Probability

SeA5:
Process

Corruption in
Sensor

AcA1: Process
Corruption in
Actuator

AcA2: Attacks
from Actuator

LA1: Process
Corruption in

Local
Controller

LA2: Attacks
from Local
Controller

CoA1:
Corrleator
False Alarm

Rate

CoA2: Origin
of Attacks on
Correlator

CoA3: Attacks
from Correlator

CoA4: Alert
IntegrityMA1: SM Byzantine

Agreement
MA2: Origin
of Attacks on

SM

MA3: Attacks
from SM

PsA1: ADF
Policy Server

Input
Correctness

PsA1: ADF
Policy Server

Synchronization

ScA1: Process
Corruption in
Subscribed

Client

System Connectivity

Physical Topology

Network Topology Restricted Routing No Tunneling Attacks

Process Isolation

SELinux Trusted Solaris Windows 2000

Type Enforcement Hardened Kernel Hardened Kernel Kernel Loadable
Wrappers

VMWareover SELinux

Platform Mechanisms Component-specific
policy

Private Key
Confidentiality

No Unauthorized
Direct Access

Keys Protected
from Theft

DoDCommon
Access Card (CAC)

PKCS #11 Tamperproof

Keys Not Guessable

Algorithmic
Framework

Key Length Key Lifetime

No Unauthorized
Indirect Access

Physical Protection
of CAC device

Protection of CAC
Authentication Data

No Compromise of
Authorized Process
Accessing CAC

No Cryptography
in Access Proxy

Not
Preconfigured

Not
Reconfigurable

ADF NIC
services
protected

ADF Correctness

ADF NIC Physical
Security

ADF NIC Firmware
Initialization

ADF Key Initialization

ADF Agent
Initialization

ADF Protocol
Correctness

ADF Host
Independence

ADF Agent
Correctness

VPG Integrity VPG
Confidentiality

Policy Server
Integrity

ADF Policy
Correctness

Correctness of
Registration
Protocol

Correctness of
Reattachment

Protocol

Hard-wired
Configuration

Electrically
Isolated

Physically
Protected

Connectivity Physical
Integrity

Electrical
Integrity

Gate
Configuration and

Truth Table

Proxy Protocol
Configuration

Can Identify
Malformed Traffic

Correctness of
Flow Control
Mechanisms

Bidirectional
Flow Control

Correctness of
Certificate
Exchange

IDS Experimental
Evaluation

Correctness of Modified
ITUA Protocols

Functional model
faithful to design

IDS objectives

Notification
Confidentiality

IO Confidentiality
(end-to-end)

Confidential info
not exposed

Unauthorized activity
properly rejected

Authorized join/leave
processed
successfully

Authorized query
processed
successfully

Authorized subscribe
processed successfully

JBI properly initialized

Design Team Review

JBI critical mission
objectives

JBI critical functionality

Initialized JBI provides
essential services

Authorized publish
processed successfully

ConfidentialityDataflow
Timeliness
Integrity

(from functional
model execution)

Functional model
assumptions hold

JBI mission awareness

CA1: Origin of
Attacks on
Clients

CA2: Attack
Propagation
from Clients

CA3: Client
Process
Corruption

PA1: Client-
Core

Communication
I & C

PA2: Alternate
Path

Availability

QA1: QIS
Incorruptibility

QA2: QIS
Communication

Cutoff

QA3: QIS
Input

Integrity

QA4: QIS
Function

Correctness

AA1: AP
Function

Correctness

AA2: AP
Application-
layer Integrity

AA3: AP
Application-layer
Confidentiality

AA4: Origin of
Attacks on

Access Proxy

AA5: Attacks
from AP

AA6: DoSfrom
Compromised

Core

AA7: AP
Process
Corruption

AA8: DoS
Prevention by
Access Proxy

DA1: DC
Communications

GA1: Process
Corruption on
Guardian

DA3:
Process

Corruption
on DC

GA2: Attacks
from Guardian

DA2: Origin of
Attacks on DC

SA1: Origin of
Attacks on
PSQ Server

SA2: Attacks
from PSQ
Server

SA3: IO
Integrity in
PSQ Server

SA4: Client
Confidentiality
in PSQ Server

SA5: IO
Authenticity

SA6: Network-
layer I & C

SA7: Process
Corruption in
PSQ Server

SeA1: Attacks
from IDS Sensor

SeA2: Sensor
False Alarm

Rate

SeA3: Sensor
Detection Delay

SeA4: Sensor
Detection
Probability

SeA5:
Process

Corruption in
Sensor

AcA1: Process
Corruption in
Actuator

AcA2: Attacks
from Actuator

LA1: Process
Corruption in

Local
Controller

LA2: Attacks
from Local
Controller

CoA1:
Corrleator
False Alarm

Rate

CoA2: Origin
of Attacks on
Correlator

CoA3: Attacks
from Correlator

CoA4: Alert
IntegrityMA1: SM Byzantine

Agreement
MA2: Origin
of Attacks on

SM

MA3: Attacks
from SM

PsA1: ADF
Policy Server

Input
Correctness

PsA1: ADF
Policy Server

Synchronization

ScA1: Process
Corruption in
Subscribed

Client

System Connectivity

Physical Topology

Network Topology Restricted Routing No Tunneling Attacks

Process Isolation

SELinux Trusted Solaris Windows 2000

Type Enforcement Hardened Kernel Hardened Kernel Kernel Loadable
Wrappers

VMWareover SELinux

Platform Mechanisms Component-specific
policy

Private Key
Confidentiality

No Unauthorized
Direct Access

Keys Protected
from Theft

DoDCommon
Access Card (CAC)

PKCS #11 Tamperproof

Keys Not Guessable

Algorithmic
Framework

Key Length Key Lifetime

No Unauthorized
Indirect Access

Physical Protection
of CAC device

Protection of CAC
Authentication Data

No Compromise of
Authorized Process
Accessing CAC

No Cryptography
in Access Proxy

Not
Preconfigured

Not
Reconfigurable

ADF NIC
services
protected

ADF Correctness

ADF NIC Physical
Security

ADF NIC Firmware
Initialization

ADF Key Initialization

ADF Agent
Initialization

ADF Protocol
Correctness

ADF Host
Independence

ADF Agent
Correctness

VPG Integrity VPG
Confidentiality

Policy Server
Integrity

ADF Policy
Correctness

Correctness of
Registration
Protocol

Correctness of
Reattachment

Protocol

Hard-wired
Configuration

Electrically
Isolated

Physically
Protected

Connectivity Physical
Integrity

Electrical
Integrity

Gate
Configuration and

Truth Table

Proxy Protocol
Configuration

Can Identify
Malformed Traffic

Correctness of
Flow Control
Mechanisms

Bidirectional
Flow Control

Correctness of
Certificate
Exchange

IDS Experimental
Evaluation

Correctness of Modified
ITUA Protocols

Functional model
faithful to design

IDS objectivesIDS objectives

Notification
Confidentiality
Notification

Confidentiality
IO Confidentiality

(end-to-end)
IO Confidentiality

(end-to-end)

Confidential info
not exposed

Confidential info
not exposed

Unauthorized activity
properly rejected

Unauthorized activity
properly rejected

Authorized join/leave
processed
successfully

Authorized join/leave
processed
successfully

Authorized query
processed
successfully

Authorized query
processed
successfully

Authorized subscribe
processed successfully
Authorized subscribe
processed successfully

JBI properly initializedJBI properly initialized

Design Team Review

JBI critical mission
objectives

JBI critical functionality

Initialized JBI provides
essential services

Authorized publish
processed successfully

ConfidentialityDataflow
Timeliness
Integrity

(from functional
model execution)

Functional model
assumptions hold

JBI mission awareness

CA1: Origin of
Attacks on
Clients

CA2: Attack
Propagation
from Clients

CA3: Client
Process
Corruption

PA1: Client-
Core

Communication
I & C

PA2: Alternate
Path

Availability

QA1: QIS
Incorruptibility

QA2: QIS
Communication

Cutoff

QA3: QIS
Input

Integrity

QA4: QIS
Function

Correctness

AA1: AP
Function

Correctness

AA2: AP
Application-
layer Integrity

AA3: AP
Application-layer
Confidentiality

AA4: Origin of
Attacks on

Access Proxy

AA5: Attacks
from AP

AA6: DoSfrom
Compromised

Core

AA7: AP
Process
Corruption

AA8: DoS
Prevention by
Access Proxy

DA1: DC
Communications

GA1: Process
Corruption on
Guardian

DA3:
Process

Corruption
on DC

GA2: Attacks
from Guardian

DA2: Origin of
Attacks on DC

SA1: Origin of
Attacks on
PSQ Server

SA2: Attacks
from PSQ
Server

SA3: IO
Integrity in
PSQ Server

SA4: Client
Confidentiality
in PSQ Server

SA5: IO
Authenticity

SA6: Network-
layer I & C

SA7: Process
Corruption in
PSQ Server

SeA1: Attacks
from IDS Sensor

SeA2: Sensor
False Alarm

Rate

SeA3: Sensor
Detection Delay

SeA4: Sensor
Detection
Probability

SeA5:
Process

Corruption in
Sensor

AcA1: Process
Corruption in
Actuator

AcA2: Attacks
from Actuator

LA1: Process
Corruption in

Local
Controller

LA2: Attacks
from Local
Controller

CoA1:
Corrleator
False Alarm

Rate

CoA2: Origin
of Attacks on
Correlator

CoA3: Attacks
from Correlator

CoA4: Alert
IntegrityMA1: SM Byzantine

Agreement
MA2: Origin
of Attacks on

SM

MA3: Attacks
from SM

PsA1: ADF
Policy Server

Input
Correctness

PsA1: ADF
Policy Server

Synchronization

ScA1: Process
Corruption in
Subscribed

Client

System Connectivity

Physical Topology

Network Topology Restricted Routing No Tunneling Attacks

Process Isolation

SELinux Trusted Solaris Windows 2000

Type Enforcement Hardened Kernel Hardened Kernel Kernel Loadable
Wrappers

VMWareover SELinux

Platform Mechanisms Component-specific
policy

Private Key
Confidentiality

No Unauthorized
Direct Access

Keys Protected
from Theft

DoDCommon
Access Card (CAC)

PKCS #11 Tamperproof

Keys Not Guessable

Algorithmic
Framework

Key Length Key Lifetime

No Unauthorized
Indirect Access

Physical Protection
of CAC device

Protection of CAC
Authentication Data

No Compromise of
Authorized Process
Accessing CAC

No Cryptography
in Access Proxy

Not
Preconfigured

Not
R e c o n f i g u r a b l e

ADF NIC
services
protected

ADF Correctness

ADF NIC Physical
Security

ADF NIC Firmware
Initialization

ADF Key Initialization

ADF Agent
Initialization

ADF Protocol
Correctness

ADF Host
Independence

ADF Agent
Correctness

VPG Integrity VPG
Confidentiality

Policy Server
Integrity

ADF Policy
Correctness

Correctness of
Registration
Protocol

Correctness of
Reattachment

Protocol

Hard-wired
Configuration

Electrically
Isolated

Physically
Protected

Connectivity Physical
Integrity

Electrical
Integrity

Gate
Configuration and

Truth Table

Proxy Protocol
Configuration

Can Identify
Malformed Traffic

Correctness of
Flow Control
Mechanisms

Bidirectional
Flow Control

Correctness of
Certificate
Exchange

IDS Experimental
Evaluation

Correctness of Modified
ITUA Protocols

Functional model
faithful to design

IDS objectives

Notification
Confidentiality

IO Confidentiality
(end-to-end)

Confidential info
not exposed

Unauthorized activity
properly rejected

Authorized join/leave
processed
successfully

Authorized query
processed
successfully

Authorized subscribe
processed successfully

JBI properly initialized

Design Team Review

JBI critical mission
objectives

JBI critical functionality

Initialized JBI provides
essential services

Authorized publish
processed successfully

ConfidentialityDataflow
Timeliness
Integrity

(from functional
model execution)

Functional model
assumptions hold

JBI mission awareness

CA1: Origin of
Attacks on
Clients

CA2: Attack
Propagation
from Clients

CA3: Client
Process
Corruption

PA1: Client-
Core

Communication
I & C

PA2: Alternate
Path

Availability

QA1: QIS
Incorruptibility

QA2: QIS
Communication

Cutoff

QA3: QIS
Input

Integrity

QA4: QIS
Function

Correctness

AA1: AP
Function

Correctness

AA2: AP
Application-
layer Integrity

AA3: AP
Application-layer
Confidentiality

AA4: Origin of
Attacks on

Access Proxy

AA5: Attacks
from AP

AA6: DoSfrom
Compromised

Core

AA7: AP
Process
Corruption

AA8: DoS
Prevention by
Access Proxy

DA1: DC
Communications

GA1: Process
Corruption on
Guardian

DA3:
Process

Corruption
on DC

GA2: Attacks
from Guardian

DA2: Origin of
Attacks on DC

SA1: Origin of
Attacks on
PSQ Server

SA2: Attacks
from PSQ
Server

SA3: IO
Integrity in
PSQ Server

SA4: Client
Confidentiality
in PSQ Server

SA5: IO
Authenticity

SA6: Network-
layer I & C

SA7: Process
Corruption in
PSQ Server

SeA1: Attacks
from IDS Sensor

SeA2: Sensor
False Alarm

Rate

SeA3: Sensor
Detection Delay

SeA4: Sensor
Detection
Probability

SeA5:
Process

Corruption in
Sensor

AcA1: Process
Corruption in
Actuator

AcA2: Attacks
from Actuator

LA1: Process
Corruption in

Local
Controller

LA2: Attacks
from Local
Controller

CoA1:
Corrleator
False Alarm

Rate

CoA2: Origin
of Attacks on
Correlator

CoA3: Attacks
from Correlator

CoA4: Alert
IntegrityMA1: SM Byzantine

Agreement
MA2: Origin
of Attacks on

SM

MA3: Attacks
from SM

PsA1: ADF
Policy Server

Input
Correctness

PsA1: ADF
Policy Server

Synchronization

ScA1: Process
Corruption in
Subscribed

Client

System Connectivity

Physical Topology

Network Topology Restricted Routing No Tunneling Attacks

Process Isolation

SELinux Trusted Solaris Windows 2000

Type Enforcement Hardened Kernel Hardened Kernel Kernel Loadable
Wrappers

VMWareover SELinux

Platform Mechanisms Component-specific
policy

Private Key
Confidentiality

No Unauthorized
Direct Access

Keys Protected
from Theft

DoDCommon
Access Card (CAC)

PKCS #11 Tamperproof

Keys Not Guessable

Algorithmic
Framework

Key Length Key Lifetime

No Unauthorized
Indirect Access

Physical Protection
of CAC device

Protection of CAC
Authentication Data

No Compromise of
Authorized Process
Accessing CAC

No Cryptography
in Access Proxy

Not
Preconfigured

Not
Reconfigurable

ADF NIC
services
protected

ADF Correctness

ADF NIC Physical
Security

ADF NIC Firmware
Initialization

ADF Key Initialization

ADF Agent
Initialization

ADF Protocol
Correctness

ADF Host
Independence

ADF Agent
Correctness

V P G I n t e g r i t y VPG
Confidentiality

Policy Server
Integrity

ADF Policy
Correctness

Correctness of
Registration
Protocol

Correctness of
Reattachment

Protocol

Hard-wired
Configuration

Electrically
Isolated

Physically
Protected

Connectivity Physical
Integrity

Electrical
Integrity

Gate
Configuration and

Truth Table

Proxy Protocol
Configuration

Can Identify
Malformed Traffic

Correctness of
Flow Control
Mechanisms

Bidirectional
Flow Control

Correctness of
Certificate
Exchange

IDS Experimental
Evaluation

Correctness of Modified
ITUA Protocols

Functional model
faithful to design

IDS objectivesIDS objectives

Notification
Confidentiality
Notification

Confidentiality
IO Confidentiality

(end-to-end)
IO Confidentiality

(end-to-end)

Confidential info
not exposed

Confidential info
not exposed

Unauthorized activity
properly rejected

Unauthorized activity
properly rejected

Authorized join/leave
processed
successfully

Authorized join/leave
processed
successfully

Authorized query
processed
successfully

Authorized query
processed
successfully

Authorized subscribe
processed successfully
Authorized subscribe
processed successfully

JBI properly initializedJBI properly initialized

Design Team Review

Demonstrates
ADF based protection
DJM: signing and signature checking, authentication, RBAC, semantic and behavioral
checks, FT protocols
Adaptive response: rapid reaction, IO rejection, quad isolation, dynamic clients, fall back

R o u t e r 1

C A F
C l i e n t

A O D B
C l i e n t

W e a t h e r
C l i e n t

W 0W 0
1 0 M b p s R o u t e r 2 A t t a c k e r

Q u a d 2 Q u a d 3 Q u a d 4

H u b

M a n a g e d
S w i t c h

N I D S H u b

Q u a d 1

1 0 0 M b p s

1 0 0 M b p s

R o u t e r 1

C A F
C l i e n t

A O D B
C l i e n t

W e a t h e r
C l i e n t

W 0W 0
1 0 M b p s R o u t e r 2 A t t a c k e r

Q u a d 2 Q u a d 3 Q u a d 4

H u b

M a n a g e d
S w i t c h

N I D S H u b

Q u a d 1

1 0 0 M b p s

1 0 0 M b p s

Enough proof of concept implementations developed to show 3
AFRL clients running a simplified scenario over 4 quad core

DPASA W/O Signature Verification

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700

Publications

La
te

nc
y(

m
s)

Series1

Testbed configuration

Screenshots and performance graph

The DPASA IT-JBI design provides critical functionality with
high probability even when under heavy successful attack.

Total number of intrusions versus MTTD_A
(min)

0

100

200

300

400

500

600

700

800

900

10 100 1000 10000 100000

MTTD_A (min)

To
ta

l N
um

be
r

of
 In

tru
si

on
s

12 hour mission 24 hour mission 48 hour mission

98% of all publishes successful when new vulnerabilities are discovered, on
the average, once a day or less often during a 12-hour mission. (An extremely
high new vulnerability discovery rate; CERT data suggest MTTDA ~ 6000 min.)

At this new vulnerability discovery rate, system provides correct functionality
even when about 10 intrusions occur during a 12-hour mission.

Fraction of successful publishes versus
MTTD_A (min)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

MTTD_A (min)

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

l P
ub

lis
he

s

12 hour mission 24 hour mission 48 hour mission

Secure ARMORs – Seamless
Dependability & Security Testbed

Multithreaded
LSA, PDS Algorithms

iMac

iMac

iMac

Ad Hoc Wireless Network
Simulator (NS/JavaSim)

Highly Reliable
Wireline Network

Errors
propagation

Higher Error
Rate

Physical Wireless Testbed

Wireless Network Emulator

Error
Injection

iMac

•Frequent disconnections
• Mobility
• Fading

• Noisy channels
• Battery exhaustion
• HW transients
• SW bugs

• HW transients
• SW bugs

High
performance
/ bandwidth

Limited
performance
/ bandwidth

Error Injection

Secure ARMORs
customizable software and/or

hardware to provide
reliability and security

services

Well established
techniques:
• Replication
• Checkpointing

• Seamless interaction across domains
• Limit error propagation
• Reduce dependability bottleneck due
to wireless network

The Information Trust Institute (ITI)
Trust is about public confidence –

It is about security, but also correctness, reliability,
availability, and survivability

ITI: Integrated private/public
R&D and workforce
development to foster
technology transfer, new
industry, products, and services
in order to provide design and
validation tools and
architectural constructs needed
to ensure and justify public
trust in critical applications and
systems

Ensuring Public
Confidence

Providing designers and
agencies with the

tools to measure and validate
trust in IT-dependent critical

applications and systems

Public
Education &

Workforce Development
Addressing the nation’s

cybertrust workforce needs:
identifying and encouraging

talent in K-12,
university & college programs,

professional programs,
public awareness

Designing in
Trust

Providing system design
& validation tools, and

architectural constructs to
deploy and validate

trustworthiness in critical
applications & systems

The loss of public confidence in or access to critical systems can be economically
devastating:
Two weeks after 9/11: >$10B and 100,000 jobs lost in airline industry
Downtime costs per hour: brokerage operations: $6.45 M, credit card authorization: $2.6 M

Research in Dependable and Secure
Systems at Illinois

Faculty
Microprocessor architecture – S. Patel, N. Carter
Hardware checkpointing – J. Torrellas
Formal methods – J. Meseguer
Test and VLSI design – J. Patel
Storage systems – Y. Zhou
Mobile computing – N. Vaidya
Simulation – D. Nicol
Modeling and design – W. Sanders
Optical networks – S. Lumetta
Measurement and design – R. Iyer
Benchmarking and design – Z. Kalbarczyk

Major Partners
IBM – benchmarking
SUN – next generation
supercomputer
BBN – Intrusion-Tolerant
Computing and Adaptive
Systems
Motorola – wireless
communication and
computing
HP – utility computing
Boeing – trusted
software
JPL – next generation
space borne computing

