Current Research Activities on Dependable Computing and other Dependability Issues in Japan

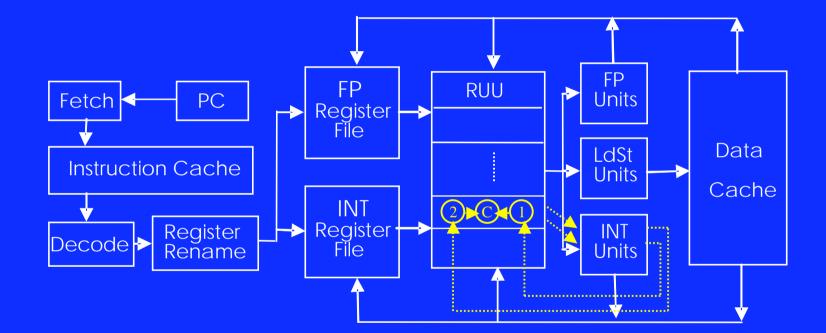
Yoshihiro Tohma¹ and Masao Mukaidono²

Tokyo Denki University, tohma@sie.dendai.ac.jp
 Meiji University, masao@cs.meiji.ac.jp

Aim

- To introduce researches on dependable computing and the related issues currently conducted in Japan
- Comprehensive survey not intended, simply depending on the authors' view

Outline

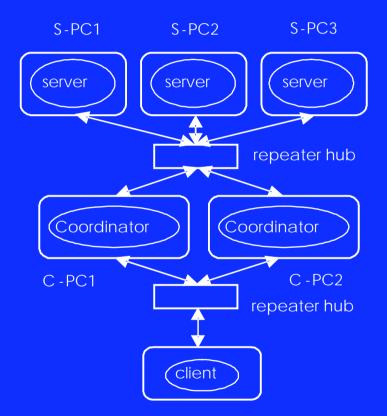

- New Paradigms of dependable computing
 - Mobile computing (Sato, 2003)
 - Use of COTS for Internet services (Mishima and Akaike, 2003)
 - Grid computing (Tohma, 2003)
 - New frontier (Yokogawa et al, 2003)
- Extension of dependability concept to other world
 - Safety Mandara (Mukaidono, 2002)
 - Stadardisation on safety of machinery (Mukaidono, 2002)

Fault Tolerance in Mobile Computing

- Microprocessors in mobile computing platforms such as cellular phone, PDA, etc.
 - Small size, light weight, high speed clock
 - Produced by sub-micron fabrication technologies
 - Vulnerable to radiation
 - Transient error
 - real-time and continuous services mandatory

- Fault tolerance against transient error
 - Duplication-comparison and retry
 - Serial two times execution of an instruction and comparison
 - Instruction reissued upon mismatch
 - Superscalaring
 - Concurrent execution of multiple instructions
 - Time penalty for two times execution of an instruction alleviated

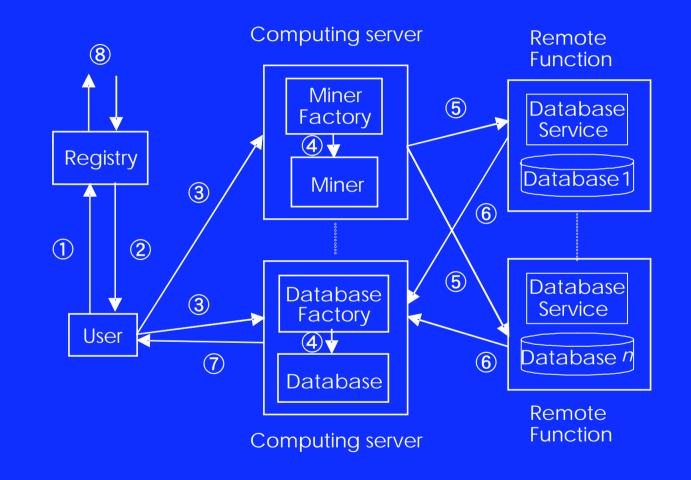
• Architecture


- Performance penalty
 - Benchmark programs
 - SPEC200 and MediaBench
 - Incease of execution cycles (in average) in 8 way superscalaring
 - 44.2% for SPEC2000 and 44.7% for MediaBench
- Improvement
 - Earlier speculative update of branch prediction
 - Elimination of redundant memory (data cache) access
 - about 30% overhead attained

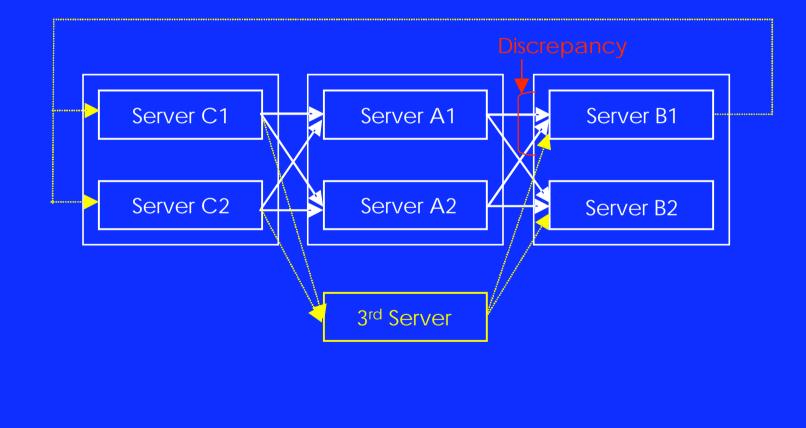
Use of COTS for Internet Services

- Requirements
 - Low cost
 - Fault tolerance by proprietary OS such as voting and/or fault isolation inappropriate
 - Real-time operation
- Approach
 - Use of commodity HW and SW not modified, nor recompiled, nor vendor-specific
 - Fault tolerance of server emphasized

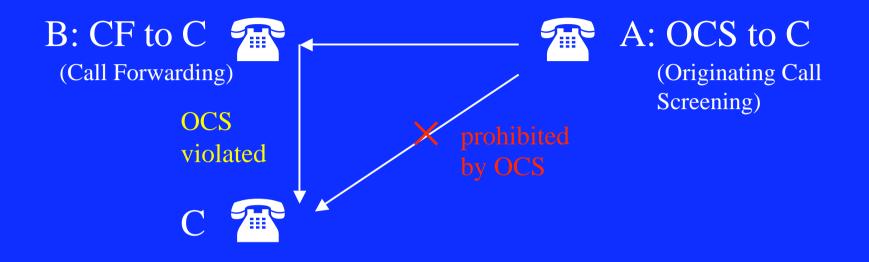
- Primary-backup inappropriate for server


- Active replication
- Architecture
 - Server: TMR
 - Coordinator
 - Making server's fault tolerance transparent to users, modification of HW and SW unnecessary
 - Interchange of IP addresses
 - Primary-backup

FT in New Computation Paradigm


- Characteristic to current computing systems
 - Giant
 - Fault-prone
 - Networked
 - Spread of abnormity
 - Continuous expansion of system configuration with non-stop services
 - Centralized management difficult
- New approach
 - Distributed over network(s)
 - Autonomous without centralized management

• Model


- Ease and difficulty of fault tolerance
 - Ease
 - Replacement of faulty servers easy
 - Difficulty
 - Registry
 - How to implement fault tolerance in its own
 - » Stand-by spare imperative
 - How to maintain the health information of servers
 - Notification/Recognition of abnormity
 - During service operation after initial negotiation completed
 - Need robust error detection and communication components

• Alleviation of difficulty

New Frontier of DC

- Functionality (feature) interaction
 - Caused by inadvertent augmentation of functionality
 - Disable some function(s) already installed
 - New challenge detection of feature interaction
- Examples in telephony
 OCS vs CF
 (Originating Call Screening) (Call Forwarding)

- Detection of feature interaction
 - Rule-based definition of functions
 - Definition of state transition
 - Reachability check to state(s) of feature interaction

• Formal representation – Service SVC $SVC = (U, V, P, E, R, s_{init})$ Example U: Set of users $= \{A, B\}$

 $U: \text{Set of users} = \{A, B\}$ $V: \text{Set of variables} = \{x, y\}$ $P: \text{Set of predicates} = \{idle(x), dialltone(x), busytone(x), calling(x, y), talk(x, y)\}$ $E: \text{Set of events} = \{onhook(x), offhook(x), dial(x, y)\}$ $R: \text{Set of rules} = \{r: pre - condition [event] post - condition\}$ $s_{init}: \text{Initial state} = \{idle(A), idle(B)\}$

– Rules (examples)

 r_1 : *idle*(x)[*offhook*(x)]*dialtone*(x) r_2 : dialtone(x) onhook(x) idle(x) r_3 : dialtone(x), idle(y) [dial(x, y)] calling(x, y) r_{A} : dialtone(x), \neg idle(y) [dial(x, y)] busyone(x) r_5 : calling(x, y) onhook(x) idle(x), idle(y) r_6 : calling(x, y) offhook(y) talk(x, y), talk(y, x) r_7 : talk(x, y),talk(y, x)[onhook(x)]idle(x),busytone(y)] r_8 : busytone(x) onhook(x) idle(x) r_{0} : dialtone(x) [dial(x, x)] busytone(x)

– State transition

• *s* : state, a set of predicates

$$s \quad \begin{pmatrix} dialtone(A) \\ dialtone(B) \\ r_{4} \\ r_{9} \\ \end{pmatrix} enabled at s$$

$$dial(A,B) \in r_{4}$$

$$dial(A,B) \in r_{4}$$

$$s \mid Pr e[r_{4}(x = A, y = B)]$$

$$\{ dialtone(A), dialtone(B) \} \setminus \{ dialtone(A), -idle(B) \}$$

$$\cup Post[r_{4}(x = A, y = B)]$$

$$\{ busytone(A) \}$$

WCC2004

- Example of interaction
 - Non-determinism
 - Two or more rules activated by the same event at a state
 - Invariant violation

Unable to decide by reachability check to state(s) where the invariant holds

$$\begin{cases} \bigcup_{i,r_j} f_{i,r_j} \in \mathbb{R} \quad \{\theta_{i},\theta_{j}\} \in [r_{i}\theta_{i}] \neq e[r_{j}\theta_{j}] \\ f_{G}(s) = \neg Inv(s) \end{cases}$$

Example of detecting feature interactions – 7 features

CW : allows receiving the second incoming call while talking

CF : allows forwarding incoming calls to another address

OCS : allows specifying outgoing calls to be restricted or permitted

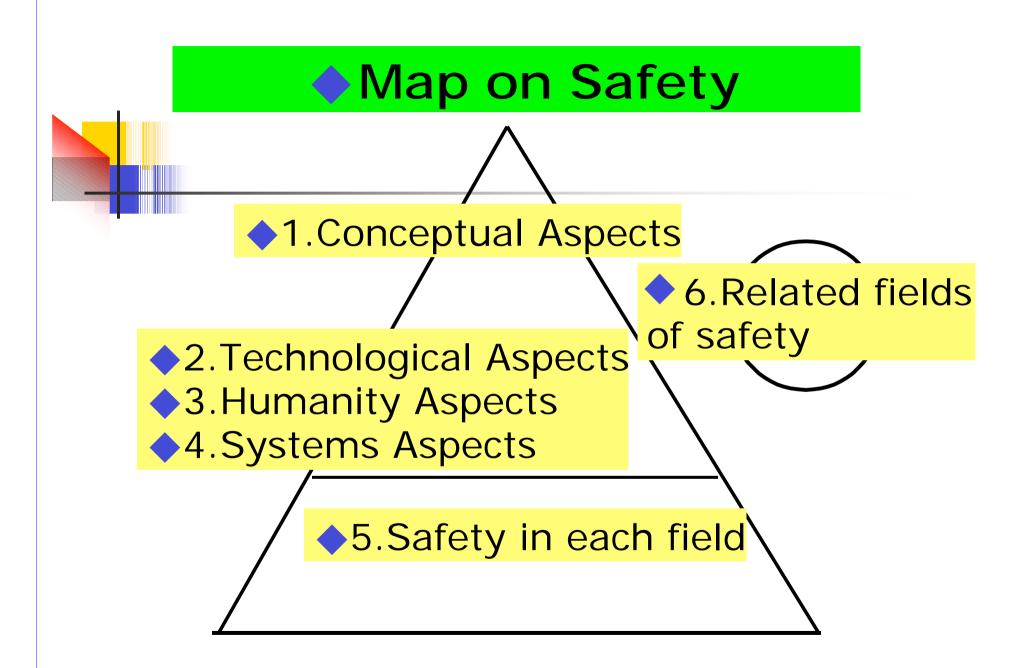
TCS : allows specifying incoming calls to be restricted or permitted

- DO : allows disabling any call from the terminal. Only terminating calls permitted
- DT : allows disabling any calls terminating at the terminal. Only originating calls permitted
- DC : so-called hot-line service. The specified address is called simply by off-hooking

11 combinations result in non-determinism
9 combinations result in violation of invariant

Findings

- Importance of fault tolerance ever increases in any circumstances.
- Fault tolerance technology never saturates.
- We are facing new challenge at any time.


Extended Application of Dependability Concept to Other Worlds

Two activities on safety issues in Japan

- Attempt to construct Map on Safety: systematizes the safety concepts and safety technologies
- Safety standard of machinery in Japan with international safety standards.

Map on Safety or Safety Mandala

- An attempt toward establishing a new overall discipline on safety ("safenology"?) by unifying safety engineering and safety science with social and humanity sciences.
- For the first step, list up many key words concerning or related to safety and cluster them into categories of hierarchal levels

Conceptual Aspects Technological Aspects

- What is safety?: Definitions of safety, risk, tolerable risk, --
- A sense of values in safety: Responsibility, safety versus cost/efficiency/ ethics, safety culture,--
- Humanity in safety: Mistakes, habit, human's reliability,--
- Structure of safety:
 - Defend what, from what, how, under what name ?

- evaluation,
- prevention
- maintenance
- damage reduction
- inherent safety design
- fault tolerance
- fail safe
- fail soft
- fool proof

•

Humanity Aspects

• Human machine interface

- Miss uses
- Ergonomics
- Education
- Peace in mind

- Management
- Assessment
- Standardization
- Regulation and norm

Systems Aspects

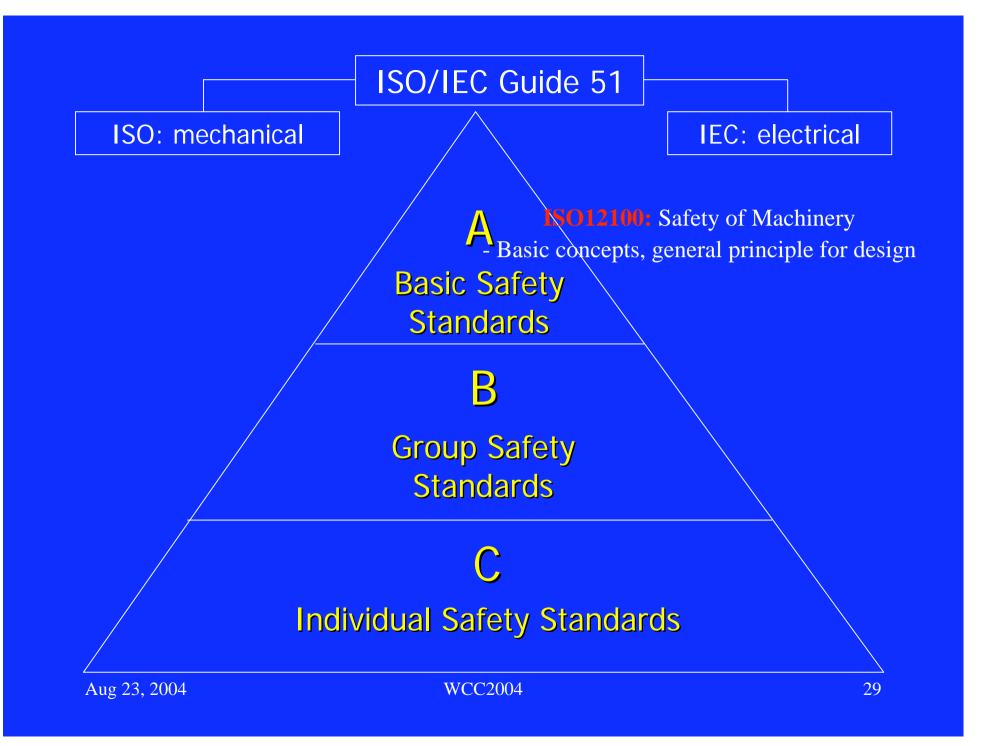
• Certification

 \bullet

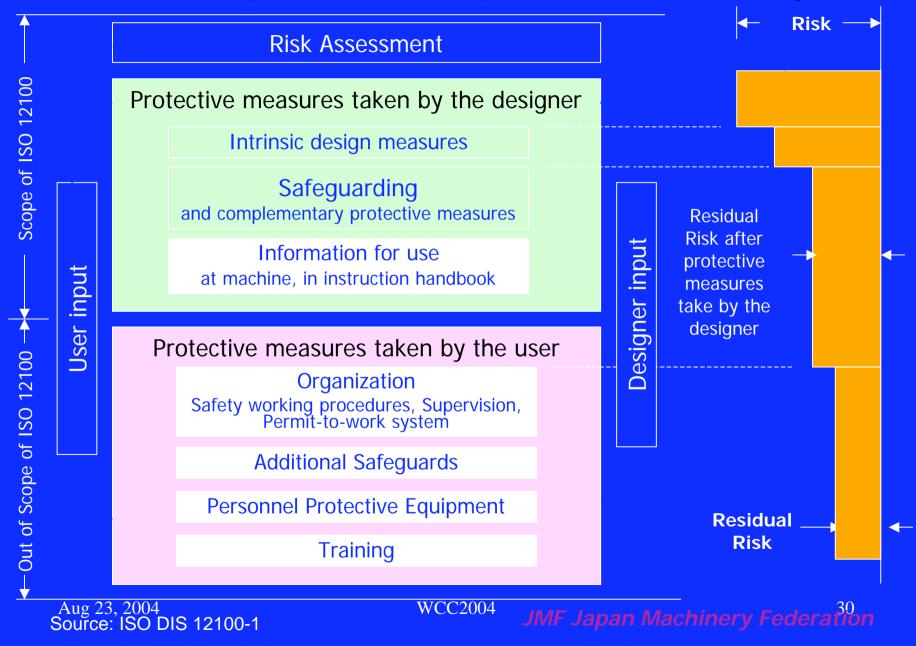
Safety in each field

Related fields of safety

- Machine safety
- Nuclear power safety
- Traffic safety
- Chemical safety
- Product safety
- Food safety
- Material safety
- ullet


- Crisis management
- Security
- Insurance
- Court systems
- Law
- •

Recent activities in standardisation on safety of machinery in Japan


- **1989** (Europe) EC Machine directives
- **1990** (International) ISO/IEC guide 51: Safety Aspects Guidelines for their inclusion in standards
- **1991** (Europe) EN292: Safety of Machinery (International) ISO/TC199: Safety of Machinery
- **1992** (International) ISO/TR12100: Safety of Machinery Basic concepts, general principle for design
- **1995** (Japan) Declaration to harmonize JIS (Japan Industrial Standard) with ISO, IEC within 5 years, under TBT (Technical Barriers to Trade) agreement
- **1998** (Japan) TR B 0008, 0009 (corresponding to ISO/TR12100)
- 2001 (Japan) Guideline for comprehensive safety norm on Machinery (corresponding to ISO/TR12100) into effect by Ministry of Labour, Health and Welfare
- 2003 (International) ISO12100: Safety of Machinery Basic concepts, general principle for design
- 2004 (Japan) JS B 9700 (corresponding to ISO12100) will be published

Aug 23, 2004

WCC2004

Risk reduction process from the point of view of the designer

We can extend the concept of dependability into many other worlds

Application fields of

Modern Dependable Computing(Reliability, Maintainability, Safety, Evaluation, -----)

- From online real time control systems (Chemical process, Manufacture, Aerospace, etc.) To business information systems (Financial, data communications, etc.)
- From (Traditional) computing and structural systems To (New) social and human systems such as organizations and inspections.
- Dependability has potentially huge application fields in the real world.

Aug 23, 2004

• Logic (binary) expression

– Binary variables to instances of predicates

 $\{idle(A), idle(B), dialtone(A), dialtone(B), busytone(A), \dots, talk(B, B)\}$

– state transition:

$$T_{r}(s,s') = \prod_{p_{i} \in Pre[r]} b_{i} \wedge \prod_{p_{i} \in Pre[r]} \neg b_{i} \wedge \text{ (activation of a rule at } s)$$

$$\prod_{p_{i} \in Post[r]} b'_{i} \wedge \prod_{p_{i} \in Pre[r]} \neg b'_{i} \wedge \text{ (new variables)}$$

$$p_{i} \in Post[r] \wedge Pre[r] \wedge p_{i} \in Pre[r] \wedge Post[r]$$

$$\prod_{p_{i} \in P \setminus (Post[r] \setminus Pre[r] \cup Pre[r] \setminus Post[r]) \text{ (unchanged variables)}$$

• Extension

$$D_r(s,s') = T_r(s,s') \vee \prod_{p_i \in P} (b_i \Leftrightarrow b'_i)$$

 $D_r(s,s')=1$

when *s* changes to a truly new s' or *s* remains unchanged. (s = s')

– Reachability

$$I(s_{0})$$

$$\wedge D_{\eta}(s_{0},s_{1}) \wedge D_{r_{2}}(s_{1},s_{2}) \wedge \cdots \wedge D_{r_{n}}(s_{n-1},s_{n})$$

$$\wedge D_{\eta}(s_{n},s_{n+1}) \wedge D_{r_{2}}(s_{n+1},s_{n+2}) \wedge \cdots \wedge D_{r_{n}}(s_{2n-1},s_{2n})$$

$$\vdots$$

$$\wedge D_{\eta}(s_{(k-1)n},s_{(k-1)n+1}) \wedge D_{r_{2}}(s_{(k-1)n+1},s_{(k-1)n+2}) \wedge \cdots \wedge D_{r_{n}}(s_{kn-1},s_{kn})$$

$$\wedge f_{G}(s_{kn})$$

$$I(s_{0}) = 1 \text{ iff } s_{0} \text{ is the initial state.}$$

$$f_{G}(s) = 1 \text{ iff } s \text{ satisfies condition } G.$$

The most critical application : safety systems

Safety has a strong relation with reliability but is fundamentally different concept from reliability

- "Reliability" targets to maintain the given functions
- "Safety" targets to avoid dangerous situations in which a sense of values of related person or current society is concerned.

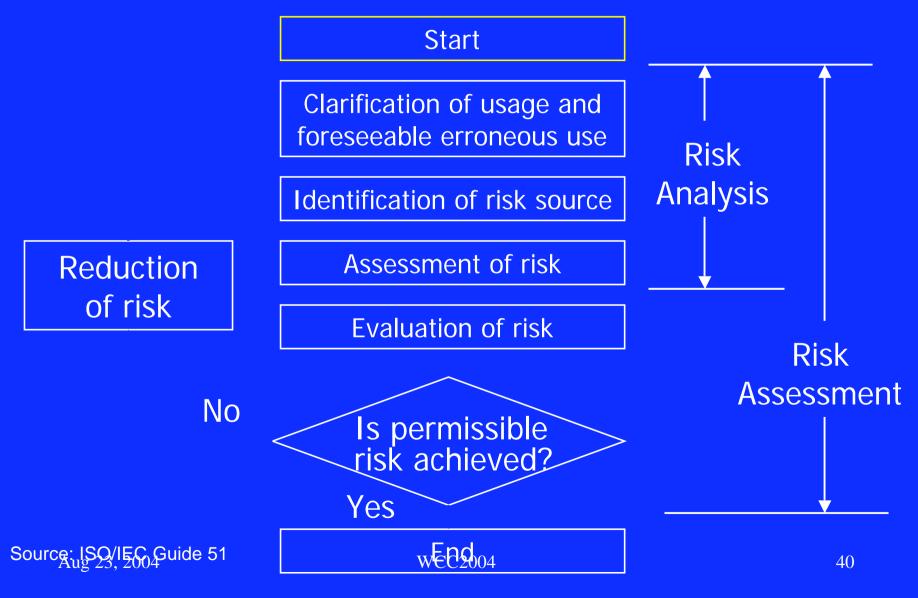
Why the Map on Safety

- <u>Toward to establish a new overall discipline on</u> <u>safety</u>
- <u>Proposing to unify safety engineering and safety</u> science with social science and humanity science
- Listing up many key words concerning or related to safety
- <u>Clustering them into few categories which consist</u> of hierarchal construction from concepts of safety to individual fields of safety.

Why the Map on Safety(cont'd)

 The author believes that we have to start to construct the map on safety* for establishing a new overall discipline on safety including social science and humanity science with safety engineering and safety science

*This map is unfinished and constructioning now.


*At first I called this map as <u>safety map</u>, but I prefer rather to call it as safety <u>mandala</u>, where <u>mandala</u> is a word in Buddhism meaning a map illustrating the construction of conceptual essences.

(1) What is safety?

- Definition of safety
- What is risk?
- What is tolerable risk?
- Deterministic safety and probabilistic safety
- Absolutely safe?
- fail safe ?
- What is hazards?
- What is danger?

- Relation on safety and probability
- Relation on safety and reliability
- Relation on safety and security
- Relations on accident, disaster, incident, misfortune,---
- Relations on fault, failure, defect, ---

Procedure of Risk Assessment

