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Abstract

Planetary exploration by robots is a demand-
ing challenge for roboticists: the constraints
of this application and the requirement to au-
tonomously achieve long traverses raises ma-
jor requirements on the robot conception. A
robot capable of performing such an explo-
ration would definitely be an exemplary in-
stance of an “intelligent machine”. We present
here our approach to autonomous long range
navigation in poorly known unstructured en-
vironments: we show how it is necessary to
produce representations at several levels of ab-
straction, and that a certain degree of delib-
eration is necessary for the robot in order to
anticipate events, take efficient decisions, and
react adequately to unexpected events.

1 Introduction

An autonomous mobile robot offers a challenging and
ideal field for the study of machine intelligence. Deci-
sional and operational autonomy, as it could be mea-
sured by the robot’s effectiveness and robustness in
carrying out tasks in different environment conditions,
raises fundamental questions to the roboticists: it espe-
cially requires suitable interactions between perception,
deliberation and action.

Among the wide range of real-world applications for
intelligent machines, special interest has been devoted to
intervention mobile robots that have to perform tasks in
1ll-known environments, which are often remote or of dif-
ficult or dangerous access (demining, civil security...).
Outstanding case studies are certainly rovers for plan-
etary exploration:
width, delays and communication windows) voids the

communication constraints (band-

possibility to efficiently teleoperate the machine. More-
over, this application brings forth specific constraints
that calls for a very high level of autonomy:

e Scientists on Earth should be able to control the

robot, 7.e. to send him specific missions, that might
require long range traverses.

e The environment is complex and ill-known: missions
cannot be planned a prior:, and can only be defined a
quite high level of abstraction (“reach that hill”, “map
this area”...): the robot must interpret them according
to its actual context.

e Finally, the robot engineers may need to trouble-
shoot the robot (it could fall into difficult situations
where its capabilities can not help), but also to re-
configure it according to previous mission execution re-
ports.

The problem of long range navigation in unknown
outdoors environments has not been very frequently ad-
dressed yet. Important achievements are Robbie [Weis-
bin et al., 1992], Ambler [Simmons and Krotkov, 1993]
and the navigation of the UGV [Stentz and Hebert,
1994]. At LAAS, we have tackled various aspects related
to this problem, and experimented some in realistic con-
ditions.

In this paper, we summarize our approach and present
our main contributions to autonomous long range nav-
igation, which exhibits the features which we believe
an intelligent machine should be endowed with. In the
next section we present our approach to address the au-
tonomous long range navigation problem, in the context
of planetary exploration: it strongly relies on the ability
to (i) autonomously build environment representations,
and to (ii) reason on these representations in order to
plan and execute actions. Section 3 is devoted to the
presentation of an integrated architecture allowing a mo-
bile robot to plan its tasks, taking into account temporal
and domain constraints, and to perform corresponding
actions and to control their execution in real-time, while
being reactive to possible events. A discussion concludes
the paper.

2 Autonomous long range navigation

Among the various tasks a planetary exploration robot
should be able to carry out autonomously, navigation



is of course one of the most important. By navigation,
we understand the task of reaching a distant goal (long
range navigation), the path being not predefined or given
to the robot. The complexity of the processes involved
by this task depend on the general context in which it
is to be executed: in the case of planetary exploration,
the fact that the environment is initially poorly known,
varying from one area to the other and sometimes very
rough has strong implications on perception, action plan-
ning and motion execution processes. We present here an
approach to autonomous long range navigation we have
been developing and experimenting with the robot Adam

until 1995, and now with the robots Eve and Lamal.

2.1 An Adaptive Approach

According to a general “economy of means” principle due
to limitations of on-board processing capacities, mem-
ory and energy, and to achieve an efficient behavior,
the robot should be adapt to the nature of the terrain
[Lacroix et al., 1994; Chatila et al., 1995). Basically, two
kinds of modes are considered:

e Reflex modes: when the environment 1s “easy”, t.e.
rather flat and lightly cluttered, the robot can efficiently
move just on a basis of a goal to reach? and informations
provided by “obstacle detector” sensors. In essentially
flat environments, informations returned by the obser-
vation of a laser stripe might be sufficient; when the
environment is known to contain obstacles, a broader
perception (as provided by stereovision) is required in
order to safely execute avoiding maneuvers.

e Planned modes: reflex modes become inefficient
when applied in more complex environments, in which
the robot can be trapped in dead-ends for instance. In
such cases, trajectory planners that reason on a model
of the environment are required. Depending on the dif-
ficulty of the area to cross, a 2D planner can find out
ways between obstacles, using a description that exhibits
traversable and non-traversable areas, or a 3D planner
that checks stability and collision constraints thanks to
a fine 3D model of the environment has to be run.

The existence of different motion modes enables to
choose a well adapted and efficient behavior depending
on the terrain, but it complicates the system, that has
to deal with several different terrain representations and
motion planning processes. And especially, it requires
the ability to select the adequate motion mode to ap-
ply: this is realized thanks to a specific planning level,
the navigation planner [Lacroix et al., 1994]. This plan-
ner is systematically activated at each step of the incre-
mental execution of the task: each time 3D data are

'"For informations concerning these robots, see
www.laas.fr/matthieu/robots
2not necessarily the distant goal, it can be a sub-goal that

the robot selected

acquired, they are analyzed to provide a description of
the perceived zone in terms of navigation classes. This
description is fused to maintain a global qualitative repre-
sentation of the environment (the region map), on which
the navigation planner reasons to select a sub-goal, a
motion mode to apply and the next perception task to
execute. The introduction of this planning layer defines
a particular instance of the usual “perception-decision-
action” loop, in which the “decision” part is split into
two distinct and hierarchically layered processes: navi-
gation and trajectory planning.

2.2 Environment representations

Each of the different motion modes requires a particular
terrain representation®, the navigation planner also re-
quires a specific terrain representation, and during nav-
igation, an exteroceptive localization process has to be
activated frequently to update robot position with re-
spect to environment features, which obviously also re-
quires a terrain representation. Aiming at building a
“universal” terrain model that contains all the necessary
informations for these various processes is extremely dif-
ficult, inefficient, and moreover not really necessary. It
is more direct and easier to build different representa-
tions adapted to their use: the environment model 1s
then multi-layered and heterogeneous, and perception 1s
multi-purpose: several modeling processes coexist in the
system, each dedicated to the building of specific repre-
sentations.

The region map
The region map is intended to be the basis on which
the navigation layer reasons. Each time 3D data are
acquired, it is build thanks to a fast classification pro-
cess that produces a description of the perceived areas in
term in terrain classes. It relies on a specific discretisa-
tion (figure 1) of the perceived area, that defines “cells”
on which different relevant characteristics (attributes)
are determined. A non-parametric Bayesian classifica-
tion procedure is used to label each cell: a learning phase
based on prototypes classified by a human lead to the
determination of probability density functions, and the
classical Bayesian approach is applied, which provides an
estimate of the probability for each cell to correspond
to one of the defined terrain classes ({Unknown, Flat,
Rough, Obstacle}). A decision function that privileges
false alarms instead of the non-detections is performed.
When used with stereovision, the geometric classifier
is enriched by a terrain nature classifier that reasons on
texture attributes computed on “luminance cells” (de-
fined as regions in the original image from the geometric

Sbesides local informations, the terrain representation re-
quired by reflex modes is just the description of the borders
of the region within which they can be applied



Figure 1: Discretisation of a 3D stereo image: regular Carle-
sian discretisation in the sensor frame (left - only the corre-
lated pizels are shown), and its projection on the ground (right
- the actual discretisation is much finer)

cells using the correspondence 3D points/pixels). The
procedure can also be used as an obstacle detector for
rather flat terrains, using a two classes ({ Flat, Obstacle})
data base (figure 2).

Figure 2: Binary classification of the stereo image of fig-
ure 1: perceived area (left) and reprojection in the sensor
frame (right). The grey levels represent the partial probabil-
ity P(Obstacle)

This technique proved its efficiency and robustness on
several hundreds of 3D images, using various prototype
data bases. Its main interest is that it provides an es-
timate of the confidence of its results: this information
is given by the entropy of a cell. Moreover, a statistical
analysis of the cell labeling confidence as a function of
its label and distance to the sensor defines a predictive
model of the classification process (section 2.3).

The partial probabilities of a cell to belong to a ter-
rain class allow to perform a fusion procedure of several
classified images. The fusion procedure is performed us-
ing a bitmap: for the purpose of navigation planning,
the bitmap model is structured into a global region map
that defines a connection graph, whose nodes are on their
borders, and whose arcs correspond to a region crossing.
To each region are associated the terrain classes partial
probabilities, the decided label, the confidence on this
labeling and elevation informations (figure 3).

Geometric representations

To plan trajectories, a precise geometric model is re-
quired. The binary representations (Traversable/Non-
Traversable) required by a 2D trajectory planner can be
easily built on the basis of the output of any obstacle

Figure 3: A region map build by the fusion of 8 classified
images: terrain classes (left) and elevation (right). Note that
this is not a numerical representation.

detection procedure [Matthies et al., 1995]. Note that
there are some advantages to enrich such representations
with a score that represents a confidence in the partition
(as can be done using our classification procedure for in-
stance): it allows to consider costs based on a risk to
plan paths or to generate motion commands.

When 1t comes to plan trajectories on rough terrains,
a numerical terrain model is required (figure 4). Al-
though there has been several contributions to this prob-
lem [Kweon and Kanade, 1992], the problem has still
not been addressed in very satisfactory way [Hoffman
and Krotkov, 1991]: the main difficulty comes from the
uncertainties on the 3D input data, that can be fairly
well estimated, but hardly propagated throughout the
computations and represented in the grid structure.

Figure 4: A portion of a numerical terrain model built on
the basis of several stereo images

Localization

The ability for the robot to self-locate with respect to
its environment is a key problem that must be solved
to tackle long range navigation: otherwise, reaching a
given goal (that is not in sight) will be impossible in
general, considering the uncertainties of odometry or in-
ertial sensors. Moreover, a good estimation of the robot
position is mandatory to ensure the consistency of all
the environment representations build from sensor data.
To address this critical (and difficult) problem, all the



proprioceptive and exteroceptive sensors are useful.

We split this problem in three sub-problems, according
to the level of abstraction of the data to be processed:

e Motion estimation: performed continuously while
the robot is moving, this process actually do not requires
any terrain representation. It is mainly performed using
the robot proprioceptive sensors, but can benefit from
the processing of exteroceptive sensors (optical flow, im-
age tracking...).

¢ Exteroceptive dead-reckoning (an initial position es-
timate is known): it is unrealistic to consider that the
motion estimation will give sufficiently precise data to
guaranty a good estimation of the robot position. One
must correct this estimation on the basis of landmarks
extracted in the environment as often as possible.

e Full localization (no initial position estimate is
known): even with exteroceptive dead-reckoning, one
can not make sure that the robot do not get lost. This
can happen after traveling a large landmark-free area for
instance. In such a case, when the robot comes back to
previously visited areas, a localization without any ini-
tial estimate calls for recognition capacities, not only for
landmarks, but also for places. Such an ability can be
of a good help to maintain a global spatial consistency
of the environment. Indeed, one can not make sure that
the robot is always precisely positioned with respect to a
certain global frame; but a large environment model can
be described as a set of areas, to each of which a frame
is attached, but loosely relatively positioned.

A lot of work has been devoted to the exteroceptive
dead-reckoning problem. In outdoor terrains, correla-
tion techniques on relevant parts of a numerical terrain
model can be used. However, these techniques suffer
from the difficulty to represent the data uncertainties in
such models. Object-based representations appear to be
more robust and efficient to tackle this problem. We have
developed a peak detection procedure[Betge-Brezetz et
al., 1995), applicable when the terrain has been classi-
fied as flat but cluttered with obstacles: we extract by
a segmentation process the objects that are lying on the
ground. The salient objects are selected, and the coordi-
nates of their peak is computed, along with an accuracy.
This defines a 2D localization model (figure 5), which is
used to refine the robot position using a Kalman filtering
technique.

Reducing the landmarks to the coordinates of their
peaks can be sufficient for dead-reckoning, but is mot
of a good help to recognize them. Object modeling and
recognition has not been very studied in the context of
outdoor unstructured environments. We are currently
considering the adaptation of contour based modeling
techiniques [Mallet and Lacroix, 1998] and of free-form
modeling techniques used in the field medical 3D imag-
ing [Delingette et al., 1992] to represent rocks (figure 6).

Figure 5: Segmented objecis (top) and 2D localization model
(selected landmarks with their uncertainty according to sensor
noise and resolution and object shape -bottomn)

A deformable mesh is applied to the 3D data points cov-
ering rocks (extracted thanks to a segmentation proce-
dure), and attributes are computed on the obtained mesh
(luminance and texture, normal to the surface when the
robot attitude is known, and curvature otherwise). A
spherical attribute image [Delingette et al., 1992] is then
determined: spherical attribute images obtained from
various view-points can be compared thanks to correla-
tion techniques, and the analysis of the correlation scores
can help to recognize the rocks, or to estimate the rela-
tive view-points positions when the meshes match.

il
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Figure 6: Modeling a rock thanks to free-form surfaces: ini-
tial mesh (left), mesh after convergence to the data points
(center), and mapping on a sphere of the curvatures extracted
from the mesh (right)

2.3 Planning
Navigation planning
Each time 3D data are acquired, classified and fused
in the global region map, the robot has to answer au-
tonomously the following questions:

e Where to go? (sub-goal selection)

e How to go there? (motion mode selection)

e Where to perceive? (data acquisition control)

e What to do with the acquired data? (perception
task selection)

For that purpose, the navigation planner reasons on
the robot’s capabilities (action models for perception and



motion tasks) and the global region map. A straight-
forward fact is that motion and perception tasks are
strongly interdependent: executing a motion requires to
have formerly modeled the environment, and to acquire
some specific data, a motion is often necessary to reach
the adequate observation position.

Planning motion tasks in an environment modeled as a
connection graph is quite straightforward: finding paths
in the graph that minimizes some criteria (time and en-
ergy for instance) is easily solved by classical search tech-
niques, using cost functions that express these criteria.
Planning perception tasks is a much more difficult issue:
one must be able to predict the results of such tasks
(which requires a model of the perception processes),
and the utility of these results to the mission to achieve:

e Localization processes can be modeled by a func-
tion that expresses the gain on the the robot position
precision, depending on the number and distance of per-
ceivable landmarks;

e With the confidence model of the 3D data classifica-
tion process, one can predict the amount of information
a classification task can bring. But it is much more diffi-
cult to express the utility of a classification task to reach
the goal: the model of the classification task cannot not
predict what will be effectively perceived. It is then dif-
ficult to estimate the interest of these tasks.

A direct and brute force approach to answer the for-
mer questions would be to perform a search in the con-
nection graph, in which all the possible perception tasks
would be predicted and evaluated at each node encoun-
tered during the search. Besides its drastic algorithmic
complexity, this approach appears unrealistic because of
the difficulty to express the utility of a predicted clas-
sification task to reach the goal. We therefore choose
a different approach to tackle the problem: the percep-
tion task selection is subordinated to the motion task.
A search algorithm provides an optimal path, that is
analyzed afterwards to deduce the perceptions tasks to
perform. The “optimality” criterion takes here a cru-
cial importance: it is a linear combination of time and
energy consumed, weighted by the terrain class to cross
and the confidence of the terrain labeling. Introducing
the labeling confidence in the crossing cost of an arc
comes to consider implicitly the modeling capabilities of
the robot: tolerating to cross obstacle areas labeled with
a low confidence means that the robot is able to acquire
easily informations on this area. The returned path 1s
not executed directly, it is analyzed according the fol-
lowing procedure:

1. The sub-goal to reach is the last node of the path
that lies in a traversable area;

2. The label of the regions crossed to reach this sub-
goal determines the motion mode to apply;

3. And finally the rest of the path that reaches the
global goal determines the aiming angle of the sen-
sor.

_

Figure 7: A result of the navigation planner on a region
map: the result of the analysis of the shortest path found can
be interpreted as the answer to the question “what area should
I perceive to reach the goal 2”

The terrain modeling procedures and navigation plan-
ning algorithm have been intensively tested with the mo-
bile robot Adam. We performed experiments on the
Geroms test site in the French Space Agency CNES*,
where Adam achieved several ‘‘Go To [goall’’ mis-
sions, traveling over 80 meters, avoiding obstacles and
getting out of dead-ends (figure 8.

Figure 8: Elevations encoded in the region map built during
a dead-end exploration, and trajectory executed to reach the
global goal (80 meters run).

Trajectory planning

Planning geometric paths on flat terrains has been exten-
sively addressed. But to cope with perception and mo-
tion uncertainties, it is more robust to plan the motion
in terms of closed-loop sensor-based processes directly,
rather than executing a geometrical trajectory relying
on odometry or inertial data. Another approach is to
compute a trajectory that takes into account possible er-
ror reduction by sensing. These “new generation” path
planners [Latombe et al., 1991] produce more realistic
paths.

4Centre National d’Etudes Spatiales



On uneven terrain, irregularities are important enough
and the binary partition into free/obstacle areas is not
anymore sufficient: the notion of obstacle clearly de-
pends on the capacity of the locomotion system to
overcome terrain irregularities and also on specific con-
straints acting on the placement of the robot over the

terrain (figure 9).
> ¥

Figure 9: The consirainis considered by the 3D planner.
From left to right: collision, stability and terrain irregular-
wties

-

We developed a planner [Simeon and Wright, 1993]
that computes motions verifying such constraints by ex-
ploring a three dimensional configuration space C'S =
(z,y,0) on a numerical terrain model. The planner in-
crementally builds a graph of discrete configurations that
can be reached from the initial position by applying se-
quences of discrete controls during a short time interval.
The minimum-cost trajectory returned by the planner
realizes a compromise between the distance crossed by
the vehicle, the security along the path and a small num-
ber of maneuvers (figure 10).

Figure 10: A 3D trajectory planned on a real elevation map

2.4 Motion execution

To guaranty reliable and safe motions, the robot must
servo on its proprioceptive sensors, but also on its ex-
teroceptive sensors [Miller et al., 1992]. This is what
happens during reflex motions, where the robot maneu-
vers are determined on the basis of a visual goal tracker
and local terrain informations. Figure 11 presents an
instance of reflex motions, using an artificial potential
fields technique on local maps produced by a binary clas-
sifier [Haddad et al., 1998].

Executing motions that have been determined thanks
to a trajectory planner is a quite more difficult issue: one

Dynamic DO

Figure 11: Reflex motions using polential fields on a sin-
gle local map (left), and integration of successive perceptions

(ieft)

must then guaranty that the robot follows precisely the
planned trajectory (which can sometimes be risky, es-
pecially on rough terrains). The adaptation in unstruc-
tured environment of visual servoing techniques, that be-
come well mastered in structured environments, is here
a critical point.

3 An Architecture for Autonomy

The organization of the robot capacities is clearly a cen-
tral issue. In order to reach a high level of autonomy, a
robot control structure should have the following prop-
erties:

e Programmability: a useful robot cannot be de-
signed for a single environment or task, programmed in
detail. It should be able to achieve multiple tasks de-
scribed at an abstract level.

e Autonomy and adaptability: the robot should
be able to carry out its actions and to refine or modify
the task and its own behavior according to the current
goal and execution context as perceived.

e Reactivity: the robot has to take into account
events with time bounds compatible with the correct and
efficient achievement of its goals, including its own safety.

e Consistent behavior: the reactions of the robot
to events must be guided by the objectives of is task.

e Robustness: the control architecture should be
able to exploit the redundancy of the processing func-
tions, which requires the control to be decentralized to
some extent.

We briefly present here the generic concepts of
an architecture that allows the integration of both
decision-making and reactive capabilities, while satis-
fying these properties (a detailed presentation can be
found in [Alami et al., 1997]). The architecture is pre-
sented in figure 12, and has been fully instantiated in
multi-robot cooperation experiments [Alami, 1996] .

3.1 The functional level

This level includes all the basic built-in robot action
and perception capacities. These processing functions
and control loops (image processing, obstacle avoidance,



OPERATOR

mission |

1
10s Plan Supervisor Mission
Planner
—1]
|
1s Task Supervisor Task
Refinment

requests ¥ | state

Executive
reques}s/' reports

7 \

| reports
1

Decisional
Level

Execution
Control Level

NModules

PN

modelling
reflex actions
monitoring
servo—control
control

Fonctional
Level

|
perception I ‘ control

Sensor and Effector Interface

| A
) K e D= o

P roximetric roj noc tive exteroceptive
communication pm p p ep effectors Sorisre]

T

ENVIRONMENT

Logical
System

Physical
System

Figure 12: An architecture for robot autonomy.

motion control, etc.) are encapsulated into controllable
communicating modules [Fleury et al., 1994]. A module
may read data exported by other modules, and output
its own processing results in exported data structures.
The organization of the modules is not fized, their inter-
actions depend on the task being executed and on the
environment state. This is an important property that
enables to achieve a flexible, reconfigurable robot be-
havior. Modules fit a standard structure, and are imple-
mented thanks to a development environment, GenoM.
Note that in order to make this level as hardware in-
dependent as possible, and hence portable from a robot
to another, the functional level is interfaced with the
sensors and effectors through a logical robot level.

3.2 The Executive

This level controls and coordinates the execution of the
functions distributed in the modules according to the
task requirements. It is a pivot interface between the de-
cision and functional levels. Thus it has the tricky func-
tion to actually fill the gap between decision and action,
i.e., between the slow rate logical reasoning on symbolic
data (0.1 s to few seconds), and the higher bandwidth
computation on numerical data (10 Hz to 100 Hz).

The Executive i1s a purely reactive system, with no
planning capability. It receives from the decision level
the sequences of actions to be executed, and must select,

parameterize and synchronize dynamically the adequate
functions of the functional level. It sends requests to the
functional level, generally by redirecting data previously
produced by others activities (for instance a trajectory
computed by a trajectory planner which is now to be
executed): the Executive manages both the control flow
and the data flow of the functional level, and solves pos-
sible conflicts, using priorities. Previously instantiated
with a procedural reasoning system (PRS) during our first
navigation experiments, the Executive is currently being
developed using Kheops [Medeiros et al., 1996, a com-
piler that transforms a set of propositional rules into an
optimized decision network.

3.3 The decision level

This level includes the capacities of producing the task
plan and supervising its execution, while being at the
same time reactive to events from the previous level.
This level may be decomposed into two or more layers,
based on the same conceptual design, but using differ-
ent representation abstractions or different algorithmic
tools, and having different temporal properties. This
choice is mainly application dependent.

In the case of long range navigation, the planner is
IxTeT, a temporal planner, that produces a plan from a
description of the state of the world and a goal. The
“quality” of the produced plan is related to the cost
of achievement of a given task or objective (time, en-
ergy...), and to its robustness, i.e., its ability to cope
with non nominal situations. This last aspect is one
of the motivations of our approach: besides providing a
plan, the planner also provides a set of execution ”modal-
ities” expressed in terms of:

e constraints or directions to be used by a lower plan-
ning level if any;

e description of situations to monitor and the appro-
priate reactions to their occurrence; such reactions are
immediate reflexes, “local” correcting actions (without
questioning the plan), or requests for re-planning.

These ”"modalities” provide a convenient (and com-
pact) representation for a class of conditional plans.
However, the generation of modalities still remains to
be investigated, we have no generic method yet for auto-
matic generation of modalities in a planning algorithm.

4 Discussion

We believe that our approach exhibits important charac-
teristics of a machine capable to behave “intelligently”,
i.e. in arational way that can be measured by the robot’s
effectiveness and robustness in carrying out its missions.
The two characteristics are the following:

e Ability to build environment representations:
we are convinced that such an ability 1s mandatory to
achieve long range navigation. A bunch of arguments



can be developed (requirement to localize the robot, abil-
ity to memorize and recognize - a first step to learning,
ability to anticipate...) to assess that a good under-
standing of the environment makes the robot more ro-
bust and efficient. Our approach exhibits that there is
a need to deal with several adequate (purposive) repre-
sentations. However, the problem of consistency man-
agement among these various representations is still an
open issue.

e Action planning and executing: On-line deci-
sional capacities for analyzing the context, anticipating
situations, deciding of the relevant events to be expected
(and focus some attention on them), and prepare the ad-
equate reactions to them are necessary [Chatila, 1995].
Communicating a task to the robot at an abstract level
clearly implies that it possesses the reasoning abilities to
rationally select the actions to be executed to accomplish
the objectives. To do this, the robot must anticipate the
evolution of the environment. It must predict the out-
come of its own actions and be able to compare it to the
desired state, and this at a more or less long term, not
just based on immediate stimuli. Therefore, there is a
need in general to implement a planning capacity.

Adaptiveness is of course a key component of auton-
omy, if not the only one. Our approach is adaptive in
essence, since we want the robot to be able to choose
among a set of different motion modes. But choosing
to plan actions instead of only reacting to sensor data
gives also more adaptiveness to the robot, allowing him
to anticipate events, and therefore to tackle them in a
more efficient way. Finally, executing motions by servo-
ing on exteroceptive data is a basic step to adaptiveness,
especially required by safety.
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