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Abstract

This report describes a user-friendly MATLAB package for defining Linear Matrix Constraints (LMCs).
It acts as an interface for the Self-Dual-Minimisation package (SEDUMI) developed by Jos F. Sturm.

The functionalities of SEDUMI INTERFACE are the following:

� Declare an LMC problem.
Five MATLAB functions allow to define completely an LMC problem which can be charac-
terised by scalar and matrix variables, linear matrix equality (LME) constraints, linear matrix
inequality (LMI) constraints and a linear objective:

– Initialise the LMC problem: sdmpb.
– Declare the matrix variables: sdmvar.
– Declare the block partitioned equality constraints: sdmlme and sdmequ.
– Declare the block partitioned inequality constraints: sdmlmi and sdminequ.
– Declare the linear objective: sdmobj.

� Solve an LMC problem.
A unique function, sdmsol, calls the SEDUMI solver. Options allow to tune the solver param-
eters.

� Modify an LMC problem.
At any moment it is possible to append an LMC problem by adding variables, inequalities or
linear terms to the objective. Moreover, the sdmset function allows to freeze matrix variables
to specified values.

� Analyse the solution issued from the solver.
For all (feasible or not) problems, the solver outputs the last computed iterate (sdmget). SE-
DUMI INTERFACE allows to analyse this result in a convivial display. The solution is displayed
directly in matrix format and indicators show which constraints are satisfied.

This document is an update with respect to SEDUMI INTERFACE 1.01 [23], [22], SEDUMI INTER-
FACE 1.02 [17] and SEDUMI INTERFACE 1.03 . The last major modifications concern the blocks
partitioning of LMCs, the maximisation of Trace�BX� where B is a data matrix and the increase
of LMC problem construction speed.

SEDUMI INTERFACE 1.04: Copyright c� 2002 Dimitri Peaucelle & Krysten Taitz.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
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1 Purpose

The tool described in this report is designed to associate both efficient Semi-Definite Programming (SDP)
algorithms and the nice Linear Matrix Constraint (LMIs and LMEs) formalism used for control applica-
tions. This work was inspired by the observation that on the one hand Linear Matrix Constraints (LMCs)
have a major position in current academic research [6, 10, 27], and on the other hand there are new
promising tools for solving relatively large-scale SDP problems [20]. But there are few tools that asso-
ciate both an efficient SDP solver and a pleasant interface for declaring LMC problems within the most
commonly used software environment: MATLAB.

SEDUMI INTERFACE is designed as an add-on for MATLAB and allows to declare LMC problems to
be solved with the SEDUMI solver proposed by Jos Sturm [25]. The major part of this report is a
description of SEDUMI INTERFACE functions. Before that, we expose the choices that lead us to choose
the SEDUMI solver and an interface much alike the LMI Control Toolbox for MATLAB [13].

The user mostly interested in using the interface can skip the remaining part of this section and go directly
to section 2.

1.1 Notations

i is the imaginary unit equal to the square root of �1.
Rm�n (Cm�n) is the set of m-by-n real (complex) matrices.
� and � are respectively the identity and the zero matrices of appropriate dimensions.
All matrices are written using capital letters (A) while scalars and vectors are in lowercase (a).

Ā is the conjugate of the complex matrix A, AT is its transpose and A� is its conjugate transpose. We
remind that in the MATLAB environment the conjugate transpose writes as A’ while the transpose is
obtained by A.’. If A � AT , the matrix is symmetric and Hermitian if A � A�. For real valued matrices
both notions are equivalent.
’He’ is the matrix operator such that: HefAg� A�A�.

For Hermitian matrices, � ��� is the Löwner partial order, i.e., A � ���B if and only if A�B is positive
(semi) definite.

In matrix equalities and inequalities as well as in optimisation problems, the decision variables and
unknowns are in bold face (x) while the data is written using the usual mathematic fonts (x).

Note that in the MATLAB environment real integers are nicely displayed as follows, while complex
integers are displayed as any other complex number:

>> 2
ans =

2
>> 2+2i
ans =

2.0000 + 2.0000i

Therefore, the num2str MATLAB function will sometimes appear for nice display. The result is a string
that cannot be used for computation.

>> num2str(2+2i)
ans =
2+2i
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1.2 LMC problems

The academic results on LMIs use the following optimisation formalism [6, 10]:

popt � min cT x s�t� F0�
m

∑
j�1

xjFj � � (1)

where the data are the m� 1 symmetric matrices F0, ..., Fm and the column vector c, while the opti-
misation variables are gathered in the vector x with components xj . The formalism underlines that an
LMI problem is an optimisation problem with a linear objective and positive semi-definite constraints
involving symmetric matrices that are affine in the decision variables.

At this point note that there is another general formalism for writing LMIs [25]:

popt � min cT x s�t� b�Ax is positive semi-definite

Here the data are two vectors b, c and a matrix A. The expression is of course abusive. A vector z� b�Ax
is said to be positive semi-definite if the symmetric matrix Z, build out of z with some stack operator, is
positive semi-definite.

We do not get into more details. The point is that the generic formalisms of LMIs on which are based
SDP solvers are much too compact to be adapted easily to application problems. In particular, a major
difficulty is that control problems are formulated with matrix variables while the generic formulations
exposed above depend on vectors of decision variables. Going from one formalism to another may be
quite tedious.

Take for example the Lyapunov inequality, it writes as an LMI constraint:

AT P�PA � �

Assume A is a 2-by-2 matrix. P is a symmetric matrix considered as the variable in the LMI problem.
Expressed in terms of the scalar data and the scalar variables (bold face) the LMI writes as:

�
a11 a21

a12 a22

��
p1 p2

p2 p3

�
�

�
p1 p2

p2 p3

��
a11 a12

a21 a22

�
� �

and this corresponds in the formalism (1) to:

F0 � � xT � �p1�p2�p3�

F1 �

� �2a11 �a12

�a12 0

�
F2 �

� �2a21 �a11�a22

�a11�a22 �2a12

�
F3 �

�
0 �a21

�a21 �2a22

�

The manipulations are trivial but tedious even for small size problems. SEDUMI INTERFACE is designed
to tackle these manipulations. In particular, the syntax adopted in SEDUMI INTERFACE is adapted to
usual control LMI formulations. A large spectrum of options allows to simplify some recurrent declara-
tions:

� First, a large variety of matrix variables are admissible in SEDUMI INTERFACE. It ranges from
full block matrices to any structured matrix variable including the symmetric, anti-symmetric,
Hermitian and anti-Hermitian variables.

� Second, both linear matrix inequality (LMI) and equality (LME) constraints can be declared. In
the sequel, an LMC problem is an optimisation problem with a linear objective and possibly both
LMI and LME constraints.
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� Third, various types of linear matrix terms can be declared including Kronecker products between
data matrices and matrix variables.

� Fourth, the linear objective is a sum of linear terms and can contain the trace operator.

� Fifth, data matrices and variables can be real or complex valued. LMIs are then interpreted as
Hermitian positive definite constraints.

� Sixth, the LMCs can be declared taking into account a block partitioning.

1.3 Existing solvers

Several research groups have produced software packages for SDP problems and many improvements are
currently made. Among the first solvers were the SP solver [28] and the LMI-lab which evolved into the
MATLAB LMI Control Toolbox [13]. Since then, a wide variety of solvers have been developed among
which: SEDUMI [25], SDPA [12], SDPHA [7], SDPpack [1], SDPT3 [26], CSDP [5, 4], CUTSDP [16],
DSDP [3, 2]. This list is not exhaustive. All solvers have particularities. They have their own SDP
formalism, their options, their potentialities, their convergence speed, their robustness... For a recent
comparison of these solvers see [20].

Having ourselves tested some of the solvers and in view of the report [20], we came to the choice of
SEDUMI. The advantages of this solver that guided our choice are:

� Asymptotic computational complexity. Let n be the number of decision variables and m the num-
ber of rows of the LMIs. The computational complexity of SEDUMI (including main and inner
iterations) is in O�n2m2�5�m3�5�while the algorithm in [13] has a complexity O�n3m�. The former
algorithm is more efficient for problems with a large number of variables. This is of major interest
when solving large scale problems or when implementing LMI-based iterative algorithms as in
[11, 15, 21, 14, 18].

� Sparse format. SEDUMI takes the SDP problem data in sparse format. Therefore, the disk space
memory needed for defining problems is reduced in the case of structured data. The results are
satisfying for automatic control problems for which most of the data are sparse.

� Large scale problems. This remark is closely related to the two previous ones. It appears that
SEDUMI is quite competitive for medium-size problems and can solve relatively large-scale prob-
lems.

� Complex valued problems. Both the data and the variables may be given or constrained with real
or complex values. At the difference of [8], this is done without increasing the size of the problem.

� Equality constraints. SEDUMI allows to declare explicitely linear equality constraints without
computing any kernel or artificially defining an equality as two opposite-side inequalities.

� MATLAB. Most of the researchers in the control community are used to work with MATLAB. It is
therefore attractive to have a tool that can be used within the MATLAB environment.

� Free software. SEDUMI is developed with an open source free software policy as well as SEDUMI

INTERFACE. We hope this will encourage the scientific community to support and follow up this
initiative.

� Potentialities. In SEDUMI INTERFACE we mainly took advantage of SDP programming. But SE-
DUMI has other potentialities. It can deal simultaneously with linear programming and quadratic
cones. These potentialities will be integrated into SEDUMI INTERFACE in the future, depending
on possible feedback remarks.
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1.4 Existing Interfaces

Quite few LMI interfaces for SDP solvers are available. The most famous is the software in the LMI
Control Toolbox [13]. Then comes the sdpsol software [29], which is associated to the SP solver [28],
and the LMITOOL package [9], which calls three different solvers: SP [28], SDPHA [7] and SDPPack
[1]. All three interfaces work in MATLAB environment.

Except the plurality of the solvers, the difference between these three interfaces is the way LMCs are
declared. They all adopt different formalisms. LMITOOL is purely a graphical user interface (GUI) tool
and is nice and convivial. As a by-product, the transformation of data into the various solver formalisms
is quite slow. The LMC problems are often faster solved than converted to the convenient format. For
the sdpsol interface, the speed results are less patent. The LMIs are declared in a text file in a natural
way. They are then interpreted by the interface. The speed of the interpretation is more efficient than
for LMITOOL but still is not convenient for large scale problems. At last, a GUI is also available in
the LMI Control Toolbox [13], but it is less convivial than the two former tools and similar low speed
complications are noticed.

We therefore chose not to develop such a GUI tool. First, we believe such tools are necessarily quite
slow. The second reason is that we do not have the required programming skills. The chosen framework
is an in-line declaration of the LMC problems as in the LMI Control Toolbox [13]. The result is less
convivial than a GUI but allows more flexibility. Nevertheless, efforts were made on nice display and
some complications we noticed in the LMI Control Toolbox do not occur in SEDUMI INTERFACE.

Note that more recently, almost at the same time as SEDUMI INTERFACE 1.01 was achieved, have
appeared two other tools [24, 19]. They adopt a quite close approach but focus on offering the interface
with multiple solvers. LMIlab Translator [24], proposes a translator that allows to call various solvers,
among which SEDUMI, using the interface of the LMI Control Toolbox. YALMIP [19], is a completely
new interface more alike LMITOOL [9] but without the GUI. Having focused on translation these two
tools are highly valuable to test the efficiency of solvers on different hard problems. The by-product is
that they do not exploit all the potentialities of each solver.

1.5 Functionalities

The functionalities of SEDUMI INTERFACE are the following:

� Declare an LMC problem.
Five MATLAB functions allow to define completely an LMC problem characterised by matrix
variables, linear matrix equalities (LMEs), linear matrix inequalities (LMIs) and a linear objective:

– Initialise the LMC problem: sdmpb.

– Declare the matrix variables: sdmvar.

– Declare the block partitioned equality constraints: sdmlme and sdmequ.

– Declare the block partitioned inequality constraints: sdmlmi and sdminequ.

– Declare the linear objective: sdmobj.

� Solve an LMC problem.
A unique function, sdmsol, calls the SEDUMI solver. Options allow to tune the solver parameters.

� Modify an LMC problem.
At any moment it is possible to append an LMC problem by adding variables, inequalities or linear
terms to the objective. Moreover, the sdmset function allows to freeze matrix variables to specified
values.
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� Analyse the solution issued from the solver.
For all (feasible or not) problems, the solver outputs the last computed iterate (sdmget). SEDUMI

INTERFACE allows to analyse this result in a convivial display. The solution is displayed directly
in matrix format and indicators show which constraints are satisfied.

1.6 Installing SEDUMI INTERFACE

SEDUMI INTERFACE is composed of simple MATLAB files (sdm***.m) gathered in a directory, SeDuMiInt104,
and a subdirectory, @sdmpb. The first directory contains:

� sdmguide.ps : this report.

� COPYING : the GNU general public licence.

� Contents.m : the help file for SEDUMI INTERFACE.

� sdmdemo.m : the demonstration MATLAB file.

� sdmupq.m, sdmvec.m, sdmmat.m, sdmrank, sdmclear : five files called by some of the SE-
DUMI INTERFACE operators.

The subdirectory, @sdmpb, contains the 14 essential operators for LMC problem declaration.

The interface works with MATLAB version 5.3 or more and with SEDUMI version 1.05. We assume
that one of these two versions of the software is installed on your computer. If it is not the case, refer to
the instructions at http://fewcal.kub.nl/sturm/software/sedumi.html. To install the SEDUMI

INTERFACE, you only have to link it to your MATLAB path. In the MATLAB environment this can be
done with the following command:

>> path(path, ’TheDirectoryWhereIputIt/SeDuMiInt104’);

Then test if SEDUMI INTERFACE and SEDUMI are properly installed by typing:

>> sdmdemo

Demonstration examples of SEDUMI INTERFACE are then run. One follows the example in this user’s
guide. The other describes the declaration of a H2�H∞ state-feedback problem from control theory.
The example is run for a random problem of large size. It demonstrates the nice convergence speed of
SEDUMI.

2 UsingSEDUMI INTERFACE - Getting started

2.1 LMC problem: an sdmpb object

An LMC problem within SEDUMI INTERFACE is described by a single MATLAB variable. It contains all
the information on the matrix variables, the inequality and equality constraints, the linear objective and
the optimal solution. The various fields containing this information are assigned as the LMC problem
is declared and then solved. We do not enter here in the detail of the structure of this object. The user
cannot access directly this class of variables but can operate on it in order to get some data or append the
object. It is defined within MATLAB as a new class of objects called sdmpb.
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To guide the user of SEDUMI INTERFACE we propose a helpful display of sdmpb objects that allows
to get at every step important information about the LMC problem. In addition the function sdmpb/get
allows to retrieve any data of the problem. The various possibilities of sdmpb/get are described in the
sequel as we expose step by step the usage of SEDUMI INTERFACE functions.

For this tutorial we choose a standard control problem of static state-feedback synthesis for Linear Time
Invariant (LTI) systems with an H∞ objective, [6]. Let Σ be an LTI system and K a state-feedback gain
such that:

Σ :

�
ẋ�t� � Ax�t��Buu�t��Bww�t�
z�t� �Czx�t��Dzuu�t�

u�t� � Kx�t�

where x� Rn, u�Rm, w�Rq and z�Rp. The system Σ is stabilisable via a state-feedback gain K �Y Q�1

and the closed-loop transfer from w to z has an H∞ norm less than γ if and only if:
��
�

Q � QT � ��
AQ�QAT �BuY�YT BT

u �BwBT
w QCT

z �YT DT
zu

CzQ�DzuY �γγγ2�

�
� �

The optimal synthesis problem is an LMC problem composed of three variables, a linear objective and
two inequality constraints. The second matrix inequality is necessarily symmetric and composed of four
blocks. It can write as:

variables: Q � QT � Rn�n� Y � Rm�n� γγγ2 � R

inequalities:

n l Hef�1
2 Qg� �

n l
p l He

��
AQ�BuY� 1

2 BwBT
w �

CzQ�DzuY � 1
2 γγγ2�

��
� �

objective: max �γγγ2

First, let us initialise the sdmpb object within MATLAB and give it a name:

>> quiz=sdmpb(’Optimal Hinfty State-Feedback Synthesis’)
LMC problem: Optimal Hinfty State-Feedback Synthesis
no matrix variable
no equality constraint
no inequality constraint
no linear objective
unsolved

The operator sdmpb creates an empty object. An optional input argument allows to give a label to
the LMC problem. This label is used only for nice display. At this step we have declared an empty
sdmpb object. The class of the variable quiz in MATLAB is sdmpb. Each declared LMC problem is an
sdmpb object:

>> whos quiz
Name Size Bytes Class
quiz 1x1 6406 sdmpb object

In the following subsections we assume that the data A, Bu, Bw, Cz, Dzu, n, m, q and p, describing the LTI
system are defined in the MATLAB environment. For example, we chose for this tutorial:
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>> n=4; m=1; q=1; p=2;
>> A = [ 1 0 0 -1 ; 0 -1 1 0 ; -1 0 1 0 ; 0 -1 0 1 ];
>> Bu= [ 1 ; 0 ; 0 ; 0 ];
>> Bw= [ 0 ; 1 ; 0 ; 0 ];
>> Cz= [ 0 0 0 1 ; 1 0 0 1 ];
>> Dzu=[ 1 ; 0 ];

2.2 Defining matrix variables: sdmvar

All variables in SEDUMI INTERFACE are real or complex matrix variables. Extensions to complex
variables were introduced in 1.02 version of SEDUMI INTERFACE. By default, the variables are real full
rectangular matrices declared as follows:

>> [quiz, Yindex] = sdmvar(quiz, m, n, ’Y’);

IN The first input argument of the function is the sdmpb object for which the user wants to declare a
new matrix variable. The second and third input arguments are respectively the number of rows
and the number of columns in the matrix variable. The last input argument is optional. It is a label
used mainly for nice explicit display.

OUT The output arguments are first the appended sdmpb object, and second an index, Yindex, that
makes reference to the declared variable. The index is an integer used later on for various purposes.
It can be retrieved at any time by the user as follows:

>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
no equality constraint
no inequality constraint
no linear objective
unsolved

In this example Y is the first variable with an index equal to 1.

For scalar variables the usage of sdmvar is identical. Scalar variables are 1-by-1 matrices:

>> [quiz, gindex] = sdmvar(quiz, 1, 1, ’gammaˆ2’);

In LMC problems, the matrix variables may have some structural properties. In our example Q is sym-
metric. The SEDUMI INTERFACE tool makes possible to declare a large variety of structured variables.
For this purpose, see the sdmvar complete description in the following section of this guide. Here we
expose only how to declare symmetric variables:

>> [quiz, Qindex] = sdmvar(quiz, n, ’s’, ’Q’);

To declare symmetric (therefore square) variables, the user sets the third argument of sdmvar to the string
’s’.

At this stage the LMC problem of the example is characterised by:
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>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2
3 Q

no equality constraint
no inequality constraint
no linear objective
unsolved

The function sdmpb/get also allows to get information on the declared variables such as the number of
variables:

>> get(quiz, ’varnb’)
ans =

3

the name of a variable referenced by its index:

>> get(quiz, ’varname’, gindex)
ans =
gammaˆ2

and also the structure of a variable:

>> get(quiz, ’vardec’, Qindex)
ans =

6 7 8 9
7 10 11 12
8 11 13 14
9 12 14 15

In the considered example (n � 4) the variable Q is a 4-by-4 symmetric matrix. The array of integers
generated here by the sdmpb/get function describes its structure. The integers relate the dependence
of the matrix variable Q to the independent scalar decision variables of the matrix inequality canonical
form. For more information on this point see section 1.2 and the advanced usage of sdmvar in section
3.1.

2.3 Defining an inequality constraint:sdmlmi

All matrix inequality constraints in SEDUMI INTERFACE are square Hermitian matrices characterised
by their number of rows and an optional label. To initialise an inequality constraint the usage is:

>> [quiz, lmi1index] = sdmlmi(quiz, [n], ’Q>0’);
>> [quiz, lmi2index] = sdmlmi(quiz, [n p], ’Hinfty state-feedback’);

IN The first input argument is the sdmpb object to append. The second input argument is a vector
containing the size of the diagonal blocks in the LMI constraint. The last input argument is an
optional label used for nice display.

OUT The appended sdmpb object is returned along with an index, lmi1index, that makes reference to
the declared constraint.

At this step, the LMC problem of the example is composed of 3 variables and 2 constraints:
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>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2
3 Q

no equality constraint
inequality constraints: index meig name

1 -Inf Q>0
2 -Inf Hinfty state-feedback

no linear objective
unsolved

To get data on these inequality constraints, such as the number of constraints, their names or the dimen-
sion of blocks, use the following syntaxes:

>> get(quiz, ’ineqnb’)
ans =

2
>> get(quiz, ’ineqname’, lmi2index)
ans =
Hinfty state-feedback
>> get(quiz, ’ineqdim’, lmi2index)
ans =

4 2

2.4 Add a term to an inequality constraint: sdmineq

By default the inequality constraints are empty. When a term is declared, it is added to the existing terms
at the left side of the inequality sign �. Iteratively all the terms are therefore declared with the unique
function sdmineq. The constraints are linear in the matrix variables, hence all terms can write as LXR
where L and R are data matrices and where X is a matrix variable. To add a term to an inequality the
usage is:

>> L = Cz;
>> R = 1;
>> quiz = sdmineq(quiz, [lmi2index 2 1], Qindex, L, R);

IN The first input argument is the sdmpb object to append. The second input argument is a vector
containing the index of the inequality constraint and the block index in row and column (blrow,
blcol) to which the term is added. The third input argument is the index of the variable. The last
two input arguments correspond to the left and right multiplying data matrices.

OUT The appended sdmpb object is the unique retrieved output argument.

Note that since matrix inequalities are Hermitian (symmetric in the case of real valued matrices), the
conjugate transpose term is automatically added. This is an important feature of SEDUMI INTERFACE.
By default, sdmineq always adds the conjugate transposed term R�X�L� to the symmetric block given
by (blcol, blrow) along with the declared term LXR. The last command line adds the term CzQ in the
�2�1� block, the symmetric term QC�

z is automatically added to the same �1�2� block.

To declare a constant term (such as LR for example), the usage of the function is the same at the difference
that the variable index (third input argument) is set to zero. Pay attention to the fact that the user is
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assumed to define both left (fourth input argument) and right (fifth input argument) matrices. Moreover,
the conjugate transpose term is automatically added: R�L� is added in the (blcol, blrow) block.

In our example, the constant term is such as BwBT
w in the (1,1) block. It can be declared as follows:

>> L = Bw;
>> R = 0.5*L’;
>> quiz = sdmineq(quiz, [lmi2index 1 1], 0, L, R);

Note that the factor 0�5� 1
2 is necessary. For blocks on the diagonal (blrow = blcol), the term R�L� is

added to LR in the same block. Beware not to declare it twice! This is why one of the multiplying data
matrices is divided by two in this example.

Following these rules the inequality constraints on the example are completely defined by adding the five
remaining terms:

>> quiz = sdmineq(quiz, [lmi1index 1 1], Qindex, -0.5, 1);

>> quiz = sdmineq(quiz, [lmi2index 1 1], Qindex, A, 1);
>> quiz = sdmineq(quiz, [lmi2index 1 1], Yindex, Bu, 1);
>> quiz = sdmineq(quiz, [lmi2index 2 1], Yindex, Dzu, 1);
>> quiz = sdmineq(quiz, [lmi2index 2 2], gindex, -0.5, 1);

The usage of sdmineq described in this section is the most generic and allows to define all possible
terms. In SEDUMI INTERFACE, other usages of sdmineq are also defined. A complete description of
these advanced functionalities can be found in section 3.2.

2.5 Add a linear term to the objective:sdmobj

By default the objective is empty. The LMC problem is then a feasibility problem. In order to define
a maximisation or minimisation problem, a unique function is used: sdmobj. Since SEDUMI is an
algorithm that maximises the objective under LMCs, the objective defined by sdmobj will be maximised.
To minimise some objective, one has then to maximise its opposite. Remark that if the objective is
complex, SEDUMI will maximise its real part.

As for inequality constraints, the objective is recursively declared by adding linear objective terms. All
terms write in a generic manner as elXer where el and er are respectively a row and a column vector so
that the product elXer defines a scalar linearly depending on the matrix variable X. For the H∞ state-
feedback example of this section the objective is declared as:

>> quiz = sdmobj(quiz, gindex, -1, 1, ’-gammaˆ2’);

IN The second input argument is the index of the variable on which depends the objective term. The
third and fourth input arguments are respectively the left and right multiplying vectors e l and er.
The last input argument is an optional label describing the objective.

OUT The unique output argument contains the appended LMC problem quiz.

As for the sdmvar and sdmineq operators, an advanced usage of sdmobj is available. In particular it
allows to declare the trace of some matrix variable as an objective term. The advanced usage of sdmobj
is described in section 3.4.

At this stage the LMC problem is entirely declared in the MATLAB environment. The sdmpb object
contains all the information (see table 1).
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>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2
3 Q

no equality constraint
inequality constraints: index meig name

1 -Inf Q>0
2 -Inf Hinfty state-feedback

maximise objective:-gammaˆ2
unsolved

Table 1: Completely declared LMC problem

The sdmpb/get operator makes it possible to get the name of the linear objective:

>> get(quiz,’objname’)
ans =
-gammaˆ2

2.6 Solve an LMC problem:sdmsol

Having defined an LMC problem, SEDUMI INTERFACE makes the interface with the SEDUMI solver
through the function sdmsol. The use is shown in table 2.

The variable containing the LMC problem is then appended and contains the last iterate of the SEDUMI

algorithm. SEDUMI runs with the default parameters. To modify these parameters see the advanced
description of sdmsol in section 3.6.1.

When a problem is solved with SEDUMI, the display informs the user on the feasibility of the LMC
problem. For the example chosen in this tutorial, the solved LMC problem is displayed in table 3.

An LMC problem solved with SEDUMI may have three status:

� feasible
This means that the maximisation problem was solved and converged towards the optimal point.
Here the optimal criteria is -27.3. When no objective is specified, feasibility means that the LMCs
admit at least one solution found by SEDUMI.

� infeasible
This means that the LMCs have no solution at all.

� marginal feasibility
This occurs when SEDUMI has some numerical problems and cannot determine exactly a feasible
solution. To avoid such complications see comments in section 3.6.

This information on the feasibility of the LMC problem is also available via the sdmpb/get operator:

>> get(quiz, ’feas’)
ans =

1

The sdmpb/get output is 1 if the problem is feasible, -1 if the problem is infeasible, 0 if the problem is
marginally feasible and a string ‘unsolved’ if SEDUMI was not executed on this LMC problem.
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>> quiz = sdmsol(quiz);

SeDuMi 1.05 by Jos F. Sturm, 1998, 2001.
Alg = 2: xz-corrector, Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 16, order n = 13, dim = 69, blocks = 4
nnz(A) = 74 + 0, nnz(ADA) = 256, nnz(L) = 136
it : b*y gap delta rate t/tP* t/tD* feas cg cg
0 : 1.73E+07 0.000
1 : -7.50E-01 1.02E+06 0.000 0.0588 0.0000 0.9000 1.14 1 1
2 : -1.81E+00 2.66E+05 0.000 0.2614 0.9000 0.9000 0.71 1 1
3 : -2.91E+00 9.37E+04 0.000 0.3520 0.9000 0.9000 0.28 1 1
4 : -8.32E+00 2.08E+04 0.000 0.2225 0.9000 0.9121 -0.21 1 1
5 : -4.47E+01 5.37E+02 0.000 0.0257 0.9000 0.9173 -0.41 1 1
6 : -2.99E+01 4.72E+01 0.054 0.0879 0.9900 0.9900 1.41 1 1
7 : -2.82E+01 4.05E+00 0.000 0.0859 0.9000 0.9174 1.00 1 1
8 : -2.78E+01 1.34E+00 0.000 0.3316 0.9000 0.9000 0.78 1 1
9 : -2.75E+01 1.43E-01 0.000 0.1067 0.9000 0.9194 0.78 1 1

10 : -2.74E+01 2.66E-02 0.121 0.1852 0.0000 0.9000 0.70 1 1
11 : -2.74E+01 7.74E-06 0.000 0.0003 0.9000 0.8498 0.67 1 1
12 : -2.73E+01 1.37E-06 0.000 0.1777 0.8558 0.9000 0.24 2 2
13 : -2.73E+01 9.81E-08 0.000 0.0714 0.9900 0.9900 0.84 2 2
14 : -2.73E+01 3.03E-09 0.003 0.0308 0.9900 0.9900 0.98 2 2
15 : -2.73E+01 1.89E-10 0.000 0.0625 0.9900 0.9900 1.00 2 2
16 : -2.73E+01 3.82E-11 0.000 0.2019 0.9000 0.9000 1.00 3 2
17 : -2.73E+01 1.71E-12 0.000 0.0447 0.9900 0.9900 1.00 3 3
iter seconds digits c*x b*y
17 1.1 Inf -2.7287769476e+01 -2.7287769465e+01
|Ax-b| = 1.1e-09, [Ay-c]_+ = 0.0E+00, |x|= 4.1e+02, |y|= 3.0e+02
Max-norms: ||b||=1, ||c|| = 1,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 193074.
feasible

Table 2: Solving an LMC problem with SeDuMi 1.05

>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2
3 Q

no equality constraint
inequality constraints: index meig name

1 eps Q>0
2 eps Hinfty state-feedback

maximise objective:-gammaˆ2 = -27.3
feasible

Table 3: Solved LMC problem
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2.7 Extracting the computed solution

In all cases SEDUMI returns the last iterate. The sdmpb/get function in SEDUMI INTERFACE allows
the user to get this solution directly in a matrix format. The user specifies ’varvalue’ as a second input
argument and provides a third input argument containing the index of the desired matrix:

>> g2_opt = get(quiz, ’varvalue’, gindex)
g2_opt =

27.2878

A faster way to obtain the values of the variables is the sub-reference with brackets:

>> Y_opt = quiz(Yindex)
Y_opt =
-41.2455 -53.0257 -0.8462 -25.0895

This syntax allows to get directly the value of the variable referenced by its index in a matrix format.

The function sdmpb/get allows also to obtain the objective value at the optimum:

>> get(quiz,’objopt’)
ans =
-27.2878

For the specified H∞ state-feedback problem, SEDUMI has found the minimal H∞ norm achievable by
state-feedback:

γopt �
p

27�2878� 5�2238

2.8 Analysis of the computed solution

To analyse the obtained point, the meig data allow to check that every inequality constraint is satisfied.
These data are displayed with the LMC problem (table 3) and can also be obtained with the sdmpb/get
function as:

>> get(quiz, ’ineqmeig’, lmi1index)
ans =
eps

The meig data correspond to the minimal eigenvalue of each inequality constraint evaluated on the point
obtained by SEDUMI. The constraints are satisfied if their minimal eigenvalue is positive. The meig
data can have different values:

� -Inf : occurs when the LMC problem has not been solved.

� 0 : occurs when the minimal eigenvalue is strictly equal to zero (this may happen because in
SEDUMI the inequalities are in fact semi-definite).

� eps or -eps : occurs when the minimal eigenvalue is positive or negative and “close” to zero. The
SEDUMI algorithm has an accuracy set by default to 10�9. All eigenvalues with absolute value
less than this accuracy level are assumed to be “equal” to zero and set to eps or -eps in SEDUMI

INTERFACE. Even if they are negative (-eps), the related LMI is considered to be satisfied.

� positive scalar : occurs when the constraint is strictly satisfied (positive definite).

� negative scalar : the constraint is not satisfied.
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We believe that the discussion on semi-definite and definite inequality constraints initiated in this section
may confuse some readers. Therefore, for more details we recommend reading section 3.6. For less
curious readers, we may say that except for badly conditioned problems the indication on feasibility is
relevant. “Playing” with the solver parameters almost always confirms this information.

3 Advanced use ofSEDUMI INTERFACE

3.1 Structured variables:sdmvar

As exposed briefly in the previous section, the operator sdmvar adds a new matrix variable to the LMC
problem. Moreover, the operator allows to specify the structure of this variable. Four classical structures
are directly available and a fifth usage of sdmvar enables to declare any other structure. Before describing
the arguments of sdmvar for each case, note that SEDUMI INTERFACE represents the structure of a
variable as a matrix of the same size with integer elements. This representation illustrates the dependency
of the matrix variable elements with respect to some vector containing all independent decision variables
(see section 1.2 for the definition of this vector of decision variables).

For example, take the variables declared in the LMC problem of the previous section. The sdmpb/get
operator can give their dependency to the decision variables as shown in table 4.

>> get(quiz, ’vardec’, Yindex)
ans =

1 2 3 4
>> quiz{gindex}
ans =

5
>> quiz{Qindex}
ans =

6 7 8 9
7 10 11 12
8 11 13 14
9 12 14 15

Table 4: Get the structure of the variables

Note that two different notations were used here to get the structure matrices. The notations are equiv-
alent. The second one, composed of curly braces, is a faster manner to get directly the structure of the
variable referenced by its index.

When comparing the “structure” matrices, one can see that they have the same structure as expected for
the variable. The three matrix variables are independent because they all depend on different decision
variables: Y is a 1-by-4 full block matrix that depends on the decision variables indexed from 1 to 4; γγγ is a
scalar variable that depends on the 5-th decision variable; Q is a 4-by-4 full block symmetric matrix that
depends on the decision variables indexed from 6 to 15 (10 independent elements in a 4-by-4 symmetric
matrix).

In the sequel assume that the new variables are independent of the previous ones.
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� real full rectangular
The first input argument to sdmvar is the variable describing the LMC problem (quiz); the sec-
ond and third input arguments are respectively the number of rows (m) and columns (n) of the
rectangular matrix variable; at last, as an option, the user can give a label to the variable (name).

>> [quiz, VARindex] = sdmvar(quiz, m, n, name);

The sdmvar operator outputs the appended sdmpb object and the index of the created variable. Beware
not to confuse this index with the decision variable structure. The index is an integer that makes refer-
ence to a matrix variable of the LMC problem, while the integer elements of the structure matrix make
reference to scalar decision variables. The variable index VARindex is used in the sequel for specifying a
matrix variable in other operators of SEDUMI INTERFACE, while the decision variable indexes are only
used as arguments for sdmvar.

� complex full rectangular
To declare a complex valued matrix variable, the second input argument is slightly modified to be
an imaginary integer. It writes as (m*i) where (m) is the number of rows and (i) is the imaginary
number (i �

p�1).

>> [quiz, VARindex] = sdmvar(quiz, m*i, n, name);

This rule holds for all following structured matrix variables.

� d diagonal real or complex
Square matrix variable with independent entries on the diagonal and zero off-diagonal entries.
The usage of sdmvar is the same as for full rectangular matrices except for the third input argument
that is replaced with the string ’d’.
An example of C3 diagonal variable is:

>> [quiz, Dindex] = sdmvar(quiz, 3i, ’d’, ’D : diagonal’);
>> num2str(quiz{Dindex})
ans =
16+16i 0+0i 0+0i
0+0i 17+17i 0+0i
0+0i 0+0i 18+18i

� s symmetric real or complex
Square symmetric matrix variable.
Contains m�m�1��2 independent decision variables when m is the number of rows of the matrix.
The third input argument of sdmvar is set to the string value ’s’.
An example of real symmetric variable is given in the previous section (variable Q).

� as anti-symmetric real or complex
Square anti-symmetric matrix variable.
Contains m�m�1��2 independent decision variables when m is the number of rows of the matrix.
The third argument of sdmvar is set to the string value ’as’.
An example of R3 anti-symmetric variable is:
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>> [quiz, Gindex] = sdmvar(quiz, 3, ’as’, ’G’);
>> quiz{Gindex}
ans =

0 -19 -20
19 0 -21
20 21 0

� h Hermitian
Square Hermitian matrix variable.
Only defined if the matrix is complex valued, i.e. the second input argument is imaginary: m*i.
Contains m�m�1��2 independent decision variables when m is the number of rows of the matrix.
The third input argument of sdmvar is set to the string value ’h’.
An example of C2 Hermitian variable is:

>> [quiz, Hindex] = sdmvar(quiz, 2i, ’h’, ’H’);
>> num2str(quiz{Hindex})
ans =
22+0i 23-23i
23+23i 24+0i

� ah anti-Hermitian
Square anti-Hermitian matrix variable.
Only defined if the matrix is complex valued, i.e. the second input argument is imaginary: m*i.
Contains m�m�1��2 independent decision variables when m is the number of rows of the matrix.
The third argument of sdmvar is set to the string value ’ah’.
An example of C3 anti-Hermitian variable is:

>> [quiz, Jindex] = sdmvar(quiz, 3i, ’ah’, ’J’);
>> num2str(quiz{Jindex})
ans =
0+0i -25+25i -26+26i
25+25i 0+0i -27+27i
26+26i 27+27i 0+0i

At this step, note that the matrix describing the structure of the variables can be composed of zeros
and integers that are possibly multiplied by ��1�, �1� i�, �1� i�, ��1� i� and ��1� i�. The rule is
the following. Let X be a matrix variable and Xdec=quiz{Xindex} be the matrix that describes its
structure. Moreover, let x be the vector of scalar (real or complex) decision variables (see section 1.2 for
its definition). X � j�k� is the element of X in the j-th row and k-th column. xn is the n-th decision variable.

Xdec(j,k)= 0 if X� j�k� � 0 constrained to be equal to zero.
Xdec(j,k)=+n if X� j�k� � xn the n-th decision variable is real, xn � R.
Xdec(j,k)=-n if X� j�k� � �xn opposite of xn � R.
Xdec(j,k)=+n+n*i if X� j�k� � xn the n-th decision variable is complex, xn � C.
Xdec(j,k)=-n-n*i if X� j�k� � �xn opposite of xn � C.
Xdec(j,k)=+n-n*i if X� j�k� � x̄n conjugate of xn � C.
Xdec(j,k)=-n+n*i if X� j�k� � �x̄n opposite conjugate of xn � C.

Following this rule any structured variable can be declared:
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� st structured rectangular
Rectangular structured matrix variable depending on other decision variables.
The second input argument of sdmvar must be a matrix of real or complex “integers” describing
the structure as exposed above. The third input argument must be set to the string value ’st’.
Some examples follow.

The first example consists in building a new matrix variable that depends only on existing decision
variables. Assume that the new variable F should be rectangular and composed of the conjugate of a
diagonal block and an anti-symmetric block as follows:

F �
�

D̄ G
�

where D and G are already defined matrix variables. To declare F the commands are:

>> Ddec = quiz{Dindex};
>> Ddecbar = conj(Ddec);
>> Gdec = quiz{Gindex};
>> Fdec = [ Ddecbar , Gdec ];
>> [quiz, Findex] = sdmvar(quiz, Fdec, ’st’, ’[D, G]’);
>> num2str(quiz{Findex})
ans =
16-16i 0+0i 0+0i 0+0i -19+0i -20+0i
0+0i 17-17i 0+0i 19+0i 0+0i -21+0i
0+0i 0+0i 18-18i 20+0i 21+0i 0+0i

The second example consists in building a new matrix variable depending on new (not yet declared)
decision variables. Assume that the new variable K should depend on three new independent scalar
variables with the following structure:

K �

�
k1 0 �k1

k3 k2 k̄3

�

where k1 � C, k2 � R and k3 � C. The procedure to declare this variable is first to get the number
of existing decision variables, then to build the structure matrix making reference to the new decision
variables and finally to declare the variable using sdmvar:

>> get(quiz, ’vardecnb’)
ans =

27
>> Kdec = [28+28i 0 -28-28i;30+30i 29 30-30i];
>> [quiz, Kindex] = sdmvar(quiz, Kdec, ’st’, ’K’);
>> num2str(quiz{Kindex})
ans =
28+28i 0+0i -28-28i
30+30i 29+0i 30-30i
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3.2 Advanced declaration of some inequality terms:sdmineq

All terms in an LMI constraint can be declared with sdmineq as follows:

>> quiz = sdmineq(quiz, [LMIindex blrow blcol], Xindex, L, R);

The modified LMI constraint is declared by its index, LMIindex, and the matrix variable is referred to by
the index, Xindex. The term LXR is added to the (blrow,blcol) block and the Hermitian term R�X�L�

is added in the symmetric block (blcol,blrow). If Xindex=0 then the constant terms LR and R�L� are
respectively added in the symmetric blocks.

Some options to this function are now detailed.

3.2.1 Block partitioning

For some LMI constraints it may not be necessary to define a block partitioning. For example take the
first LMI of the previous section. It writes as:

Q � � � Hef�1
2

Qg � �

It can be declared as previously as if composed of a single block:

>> [quiz, lmi1index] = sdmlmi(quiz, [n], ’Q>0’);
>> quiz = sdmlmi(quiz, [lmi1index 1 1], Qindex, -0.5, 1);

An alternative is to remove all references to the blocks:

>> [quiz, lmi1index] = sdmlmi(quiz, n, ’Q>0’);
>> quiz = sdmlmi(quiz, lmi1index, Qindex, -0.5, 1);

Of course, the two notations are equivalent. But the usage of sdmineq without specifying blocks may
also be used for block partitioned LMIs (more than one block). The rule is the following:

� specifying blocks
When the second input argument of sdmineq is composed of three entries ([LMIindex blrow blcol])
then the term LXR is added to the (blrow,blcol) block and the Hermitian term R�X�L� is added
to the symmetric (blcol,blrow) block (same comment for constant terms LR).

� not specifying block
If the second input argument of sdmineq is a scalar (LMIindex) then the term LXR is added to the
entire LMI so as the Hermitian term R�X�L� (same comment for constant terms LR). Note that in
this case the number of rows of L and the number of columns of R should be equal to the global
LMI dimension (sum of the blocks dimensions).

An example of this usage is now described. First note that the second LMI of the previous example
writes equivalently as:

He

��
AQ�BuY� 1

2 BwBT
w �

CzQ�DzuY � 1
2 γγγ2

�

��
� �

m

He

��
AQ� 1

2BwBT
w �

CzQ �1
2 γγγ2

�

�
�

�
Bu

Dzu

�
Y
�
� �

��
� �
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Without modifying any other declaration (block decomposition of the LMI, block declaration of other
terms...) the Y dependent terms can be equivalently declared either by:

>> quiz = sdmineq(quiz, [lmi2index 1 1], Yindex, Bu, 1);
>> quiz = sdmineq(quiz, [lmi2index 2 1], Yindex, Dzu, 1);

or with the unique command line:

>> quiz = sdmineq(quiz, lmi2index, Yindex, [Bu; Dzu], [eye(n), zeros(n,p)]);

The usage of sdmineq without the block partitioning may be useful for LMI constraints where only
part of the terms are described with a block partitioning and the others do not explicitely respect this
partitioning.

Any LMI constraint can be seen either with a block partitioning of without. In the sequel, this block
partitioning is sometimes avoided not to have complicated notations.

3.2.2 Left and right sides of an inequality

By default, a new declared term is added to the left of the inequality sign�. For example assume that up
to this point some terms have been declared and the inequality constraint writes in a schematic form as
(without describing the possible block partitioning):

L�x�� �

The command

>> quiz = sdmineq(quiz, [LMIindex blrow blcol], Xindex, L, R);

modifies the constraint into:

L�x��

	

 � � �

� LXR�R�X�L� �

� � �

�
� � � or L�x��

	







� � � � �

� � � LXR �

� � � � �

� R�X�L� � � �

� � � � �

�
����� � �

(Diagonal blocks) (Other blocks)

But SEDUMI INTERFACE allows also to declare terms on the right-hand side. This can be done by
multiplying by �1 the constraints index. The command

quiz = sdmineq(quiz,[-LMIindex blrow blcol], Xindex, L, R);

modifies the constraint into:

L�x��

	

 � � �

� LXR�R�X�L� �

� � �

�
� or L�x��

	







� � � � �

� � � LXR �

� � � � �

� R�X�L� � � �

� � � � �

�
�����

(Diagonal blocks) (Other blocks)

The rule for left and right sides of inequality constraints are the following:

� left
If the first entry of the second input argument of sdmineq is positive (+LMIindex) the term is
added in the LMIindex constraint, to the left-hand side of the inequality sign �.
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� right
If the first entry of the second input argument of sdmineq is negative (-LMIindex) the term is
added in the LMIindex constraint, to the right-hand side of the inequality sign �.

Following this rule, the next two command lines are equivalent:

>> quiz = sdmineq(quiz, +LMIindex, 0, -L, R);

>> quiz = sdmineq(quiz, -LMIindex, 0, +L, R);

Assume that the constraint before this command was schematically described as L�x�� R �x�. The two
commands append respectively the constraint such that:

L�x��LR�R�L� � R �x� L�x�� R �x��LR�R�L�

The two resulting constraints are identical.

3.2.3 Transpose of some matrix variable (LXT R)

By default, a new declared term depends linearly on the matrix variable such as in LXR. The conjugate
transpose term R�X�L� being automatically added, there is no point in declaring terms that depend on
the conjugate transpose of the matrix variable. In the case when X is real there is therefore no need have
a functionality to add a term that depends on the transpose of X (X T � X�). Nevertheless, when X is
complex valued it may be useful to declare terms that depend on the transpose (not conjugate) of some
variable. SEDUMI INTERFACE allows the user to do so. In order to declare a term depending on the
transpose of a matrix variable, such as LXT R, the syntax is to multiply by �1 the third input argument
of sdmineq.

The rule for matrix variable transpose is the following:

� not transposed
If the third input argument of sdmineq is positive (+Xindex) the term depends on the variable (X)
such as in: LXR (and R�X�L� is added to the symmetric block).

� transposed
If the third input argument of sdmineq is negative (-Xindex) the term depends on the transpose of
the variable (XT ) such as in: LXT R (and R�X̄L� is added to the symmetric block).

Following the rule, the two next command lines are equivalent if the variable is real and are not if it is
complex valued:

>> quiz = sdmineq(quiz, [LMIindex blrow blcol], +Xindex, L, R);

>> quiz = sdmineq(quiz, [LMIindex blcol blrow], -Xindex, R’, L’);

3.2.4 Matrix terms depending on a scalar variable

A 1-by-1 matrix variable can be confounded with a scalar, but from a mathematical point of view mul-
tiplying a 1-by-1 matrix with an other matrix assumes that the dimensions fit together. Problems could
therefore occur when dealing with scalar variables declared as 1-by-1 matrices. But it is not the case
with SEDUMI INTERFACE. The user may proceed without worrying.
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3.2.5 ScalarL and R multipliers

For the same reason as exposed in the last paragraph, there could be some trouble when giving scalar
values to the matrices L and R (fourth and fifth input arguments of sdmineq). But SEDUMI INTERFACE

handles also these cases in the natural way.

3.2.6 Hermitian terms (LXL� and LL�)

Noticing that for Hermitian terms it is quite tedious to be aware of automatic duplication when working
in a diagonal block, another syntax is accepted by sdmineq. This syntax is based on the fact that most
Hermitian terms can be reformulated as:

LXL� LL�

for variable dependent and constant terms, respectively. In order to declare such Hermitian terms the
following rule is adopted:

� not Hermitian
If both the fourth (L) and the fifth (R) input arguments are declared and are non empty, then the
added term is LXR or LR (variable dependent term or constant term, respectively) in the block
(blrow,blcol) and R�X�L� or R�L� in the symmetric block (blcol,blrow).

� Hermitian
If the fourth input argument (L) is specified and the fifth input argument (R) is omitted or empty
(R=[ ]), then the added term is LXL� or LL� (variable dependent term or constant term, respec-
tively). This can only be done if the block is on the diagonal and the variable X is Hermitian.

To show that this syntax simplifies some notations, take the constant term in the LMC problem of the
previous section (BwBT

w � Hef1
2BwBT

wg). This term can be equivalently declared with the two following
syntaxes:

>> quiz = sdmineq(quiz, [lmi2index 1 1], 0, Bw, 0.5*Bw’);

>> quiz = sdmineq(quiz, [lmi2index 1 1], 0, Bw);

When declaring Hermitian terms such as LXL�, the matrix X is assumed to be Hermitian. Otherwise,
there might be some complications. In fact, if X is square non-Hermitian, SEDUMI INTERFACE outputs
a warning message and implements by default the term: 0�5L�X�X��L�.

3.2.7 Terms with no multiplying data

Quite often, some terms of the constraints depend directly on a matrix variable without any dependency
on the data of the problem. A famous example is the Lyapunov matrix. In all control problems the
Lyapunov matrix is constrained to be definite positive (Q � �). In the example of the previous section,
this specification is translated into Hef� 1

2 Qg� �. To simplify the declaration of such simple terms the
following rule is adopted:

� elementary terms
If the fourth and the fifth input arguments of sdmineq are omitted, then the added term is equal to
the specified matrix variable.
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Following this rule and the left-right rule, the declaration of the inequality Q � � has the two equivalent
syntaxes:

>> quiz = sdmineq(quiz, +lmi1index, Qindex, -0.5, 1);

>> quiz = sdmineq(quiz, -lmi1index, Qindex);

3.2.8 Terms with Kronecker products (L�K�X�R and L�X�K�R)

Sometimes, it may happen that the inequality constraint has one or more terms with a Kronecker product
between a matrix variable and a data variable. Such a product is linear in the variables but is quite
tedious to implement. It is frequently used to simplify the inequality notations but may complicate the
programming. Fortunately SEDUMI INTERFACE is designed to tackle the Kronecker products and does
it quite fast. Two configurations are considered:

L�K�X�R or L�X�K�R

To deal with such terms the sdmineq operator is called with 6 or 7 input arguments (one or two more
input arguments than for the generic usage). The rule is as follows:

� first Kronecker product : K�X
When the sdmineq operator is called with a sixth input argument (K), the term L�K�X�R is added
to the (blrow,blcol) block and the Hermitian term �L�K �X�R�� is added to the symmetric
(blcol,blrow) block.

� second Kronecker product: X�K
When the sdmineq operator is called with a sixth input argument (K) and a seventh input argument
set to �1, the term L�X �K�R is added to the (blrow,blcol) block and the Hermitian term
�L�X�K�R�� is added to the symmetric (blcol,blrow) block.

To illustrate the use of this rule consider the Lyapunov inequalities assessing Hurwitz and Schur stability
of a matrix A, respectively:

AT P�PA � � and AT PA�P� �

These two inequality constraints share the common expression:

�
� AT

�
K�P

�
�

A

�
� �

with K �

�
0 1
1 0

�
and K �

� �1 0
0 1

�
for Hurwitz and Schur stability, respectively. Applying both

the Kronecker product rule and the symmetric matrix rule the inequality constraint is entirely defined for
both stability conditions with the unique command:

>> quiz = sdmineq(quiz, LMIindex, Pindex, [eye(n),A’], [], K);
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3.3 Equality constraints

Equality constraints can be defined quite in the same way as the inequality constraints. The main differ-
ence is that equality constraints may not be square and may not be Hermitian. For this user’s guide the
following constraint is used. It is a purely fictitious constraints with no relation the the H ∞ problem in
automatic control.

3 1
� �

2 l
1 l

�
K �

� Q�1�1�

�
�

	

 H

�
i i 0
0 0 1

�
�

�
2i i 0
0 0 0

�
�

� D̄�1�1��1� i

�
�

3.3.1 Defining an equality constraint:sdmlme

To initialise an equality constraint the usage is:

>> [quiz, lmeindex] = sdmlme(quiz, [2 1], [3 1], ’[K 0;0 Q] = [H 0;0 conj(D11)-1+i]’);

The first input argument is the sdmpb object to append. The second and third input arguments are vectors
containing respectively row block dimension and column block dimension in the equality constraint.
The last input argument is an optional label used for nice display. The appended sdmpb object is returned
along with an index, lmeindex, that makes reference to the declared constraint.

At this step the LMC problem is described in table 5.

>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2
3 Q
4 D : diagonal
5 G
6 H
7 J
8 [D, G]
9 K

equality constraints: index norm name
1 -Inf [K 0;0 Q11] = [H 0;0 conj(D11)-1+i]

inequality constraints: index meig name
1 -Inf Q>0
2 -Inf Hinfty state-feedback

maximise objective:-gammaˆ2
unsolved

Table 5: Completely declared LMC problem

To get data on these equalities constraints such as the number of constraints, their block dimensions and
their names, use the following syntaxes:
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>> get(quiz, ’eqnb’)
ans =

1
get(quiz, ’eqdimrow’, lmeindex)
ans =

2 1
get(quiz, ’eqdimcol’, lmeindex)
ans =

3 1
>> get(quiz, ’eqname’, lme1index)
ans =
[K 0;0 Q11] = [H 0;0 conj(D11)-1+i]

3.3.2 Add a term to an equality constraint:sdmeq

All terms in an LME constraint are declared with sdmeq as follows:

quiz = sdmeq(quiz, [LMEindex blrow blcol], Xindex, L, R);

This command adds to the (blrow,blcol) block of the equality constraint referenced by the index
LMEindex a term LXR where X is the matrix variable referenced by the index Xindex. If the index is
equal to 0 a constant term LR is added.

Note that for the equalities there is no necessity for the constraints to be Hermitian. Therefore, nothing
similar to the Hermitian terms added in LMIs is performed when adding a term to an LME.

On the other hand, as for the inequality constraints, the generic rule for defining LME terms has advanced
usages. These are now described shortly.

Block partitioning

� specifying blocks
When the second input argument of sdmeq is composed of three entries ([LMEindex blrow blcol])
then the term LXR is added to the (blrow,blcol) block (same comment for constant terms LR).

� not specifying block
If the second input argument of sdmeq is a scalar (LMEindex) then the term LXR is added to the
entire LME (same comment for constant terms LR). Note that in this case the number of rows of L
must be equal to the number of rows of the whole LME (sum of row dimensions of the blocks) and
the number of columns of R should be equal to the number of columns of the whole LME (sum of
column dimensions of the blocks).

Left ad right sides of the equality

� left
If the first entry of the second input argument of sdmeq is positive (+LMEindex) the term is added
in the LMEindex constraint, to the left-hand side of the inequality sign �.

� right
If the first entry of the second input argument of sdmeq is negative (-LMEindex) the term is added
in the LMEindex constraint, to the right-hand side of the inequality sign �.
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Transpose and conjugate of some matrix variable

� not transposed, not conjugate
If the third input argument of sdmineq is positive and real (+Xindex) the term depends on the
variable (X) such as in: LXR.

� transposed, not conjugate
If the third input argument of sdmineq is negative and real (-Xindex) the term depends on the
transpose of the variable (XT ) such as in: LXT R.

� not transposed, conjugate
If the third input argument of sdmineq is positive and purely imaginary (+i*Xindex) the term
depends on the conjugate of the variable (X̄) such as in: LX̄R.

� transposed, conjugate
If the third input argument of sdmineq is negative and purely imaginary (-i*Xindex) the term
depends on the conjugate transpose of the variable (X�) such as in: LX�R.

Hermitian terms (LXL� and LL�)

� not Hermitian
If both the fourth (L) and the fifth (R) input arguments are declared and are non empty, then the
added term is LXR or LR (variable dependent term or constant term, respectively).

� Hermitian
If the fourth input argument (L) is specified and the fifth input argument (R) is omitted or empty
(R=[ ]), then the added term is LXL� or LL� (variable dependent term or constant term, respec-
tively). For LME constraints this advanced usage does not require the term to be added in a
diagonal block.

� Elementary
If both the fourth and the fifth input arguments (L and R) are omitted, then the added term is X.

Terms with Kronecker products (L�K�X�R and L�X�K�R)

� first Kronecker product : K�X
When the sdmeq operator is called with a sixth input argument (K), the added term is of the form
L�K�X�R.

� second Kronecker product: X�K
When the sdmeq operator is called with a sixth input argument (K) and a seventh input argument
set to �1, the added term is of the form L�X�K�R.

All these rules can be applied together. They are applied for the two examples of equalities assumed at
the start of section 3.3.

A first declaration writes as:

quiz = sdmeq(quiz, [lmeindex 1 1], Kindex, 1, 1);
quiz = sdmeq(quiz, [lmeindex 1 1], Hindex, -1, [ i i 0 ; 0 0 1]);
quiz = sdmeq(quiz, [lmeindex 1 1], 0, -1, [2i i 0 ; 0 0 0]);

quiz = sdmeq(quiz, [lmeindex 2 2], Qindex, [1 0 0 0], [1 ; 0 ; 0 ; 0]);
quiz = sdmeq(quiz, [lmeindex 2 2], 0, -1, 1-i);
quiz = sdmeq(quiz, [lmeindex 2 2], i*Dindex, -[1 0 0], [1 ; 0 ; 0]);
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An equivalent version, but more involved, writes as:

quiz = sdmeq(quiz, [ lme1index 1 1], Kindex);
quiz = sdmeq(quiz, [-lme1index 1 1], Hindex, 1, [ i i 0 ; 0 0 1]);
quiz = sdmeq(quiz, [-lme1index 1 1], 0, 1, [2i i 0 ; 0 0 0]);

quiz = sdmeq(quiz, [ lme2index 2 2], Qindex, [1 0 0 0]);
quiz = sdmeq(quiz, [ lme2index 2 2], 0, 1, 1-i);
quiz = sdmeq(quiz, [-lme2index 2 2], i*Dindex, [1 0 0]);

Analysis of the computed solution

To analyse the obtained point, the norm data allow to check that every equality constraint is satisfied.
These data are displayed with the LMC problem (table 6) and can also be obtained with the get function
as:

>> get(quiz, ’eqnorm’, lme1index)
ans =
eps

LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2
3 Q
4 D : diagonal
5 G
6 H
7 J
8 [D, G]
9 K

equality constraints: index norm name
1 eps [K 0;0 Q11] = [H 0;0 conj(D11)-1+i]

inequality constraints: index meig name
1 eps Q>0
2 eps Hinfty state-feedback

maximise objective:-gammaˆ2 = -27.3
LMIs are feasible

Table 6: Solved LMC problem

The norm data correspond to the norm of each equality constraint evaluated on the point obtained by
SEDUMI. The constraints are satisfied if their minimal norm is zero. The norm data can have different
values:

� -Inf : occurs when the LMC problem has not been solved (as in table 5).

� 0 : occurs when the constraint is strictly equal to zero.

� eps : occurs when the constraint is “close” to zero. The SEDUMI algorithm has an accuracy set
by default to 10�9. All constraints with a norm less than this accuracy level are assumed to be
“equal” to zero. The norm data is set to eps in SEDUMI INTERFACE.

� positive scalar : occurs when the equality constraint is not satisfied.
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3.4 The trace as an objective (max trace�BX�)

The operator sdmobj is designed to declare linear objectives by adding recursively scalar terms of the
type elXer where el and er are respectively a row and a column vector. This usage was already defined in
the previous section. Here we demonstrate how it can be used to define a linear trace objective. Assume
the objective is:

max trace�BX�

SEDUMI INTERFACE can declare directly the trace of a matrix variable. The rule is:

trace objective
If the third and fourth input arguments of sdmobj are respectively the string ’tr’ and a matrix (or a
scalar) (B), the term added to the maximisation objective is : trace�BX�. With the help of this syntax,
the objective can be declared in one line as follows:

>> quiz = sdmobj(quiz, Xindex, ’tr’, B, ’trace(BX)’);
>> get(quiz, ’objname’)
ans =
trace(BX)

Remark that if the dimensions fit, the following relation holds:

trace�AC� � trace�CA�

Therefore, to declare a term such as trace�CXCT � one can declare trace�BX� with B �CTC.

3.5 Set a value to some variable:sdmset

In some cases the user may want to solve an LMC problem with one (or more) variable frozen to a speci-
fied value. This allows to test if some value belongs to the admissible set constrained by the inequalities.
The syntax is the following:

>> quiz = sdmset(quiz, Xindex, Xvalue);

The first input argument is the sdmpb object to append; the second input argument is the index of the
variable; the third input argument is the value of the variable the user has chosen. Having set a variable
to some value, the indexes of the other variables are not modified. The equalities, inequalities and the
objective are rearranged to take into account that the variable becomes a constant. The label of the
removed variable is appended as well as the labels of removed inconsistent constraints.

To illustrate the use of sdmset let us consider the H∞ state-feedback problem of the previous section. The
LMC problem was defined in order to minimise the H∞ cost and is displayed by SEDUMI INTERFACE

as shown in table 6. One can expect that since the optimal value is γopt �
p

27�2878, the LMC problem
also has a solution if γ is set to a higher value, for example γ�

p
30. To check this, set the value of γγγ and

solve the new LMC problem as shown in table 7.

Note that the LMC problem has been transformed from a optimisation problem to a feasibility problem
(the objective is then equal to zero). Moreover, note that the variable γγγwas removed from the inequalities
but it is still possible to get its fixed value.

For recursively defined variablessome complications may occur when using sdmset. Take as an
example the variable F defined as the concatenation of two previously defined variables:

F �
�

D̄ G
�
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>> quiz = sdmset(quiz, gindex, 30);
>> quiz = sdmsol(quiz);
...
>> quiz
LMC problem: Optimal Hinfty State-Feedback Synthesis
matrix variables: index name

1 Y
2 gammaˆ2 SET TO A CONSTANT
3 Q
4 D : diagonal
5 G
6 H
7 J
8 [D, G]
9 K

equality constraints: index norm name
1 eps [K 0;0 Q11] = [H 0;0 conj(D11)-1+i]

inequality constraints: index meig name
1 0.001 Q>0
2 0.001 Hinfty state-feedback

maximise objective:-gammaˆ2 = 0
feasible
>> quiz(gindex)
warning : index refers to a variable that was set to a constant
ans =

30

Table 7: Same LMC problem with a frozen value of γγγ

The question is: What happens to the variable F if the value of G is set to a constant?

The answer is: Nothing.

SEDUMI INTERFACE only modifies the inequalities and the objective that depend explicitly on the vari-
able whose value is set. For recursively defined matrices, there is no modification on the “copies” of the
frozen variable. This is illustrated in the above example by the fact that if G is frozen, its structure matrix
becomes empty, while the variable F still depends on the same decision variables (see table 8).

>> quiz = sdmset(quiz, Gindex, [0 -1 1 ; 1 0 2 ; -1 -2 0]);
>> quiz{Gindex}
Warning: index refers to a variable that was set to a constant
ans =

[]
>> num2str(quiz{Findex})
ans =
15-15i 0+0i 0+0i 0+0i -18+0i -19+0i
0+0i 16-16i 0+0i 18+0i 0+0i -20+0i
0+0i 0+0i 17-17i 19+0i 20+0i 0+0i

Table 8: Structure of G and F when G is set to a constant

3.6 Tuning the solver parameters

To illustrate the influence of some parameters on the solution issued from the SeDuMi solver we chose
an example for which some complications are noticed. The example is a mixed H2�H∞ state-feedback
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synthesis problem. The exact data of this example are not given for conciseness reasons (system of order
n � 10). When solved without any modification of the default solver parameters the result is shown in
table 9.

>> quiz = sdmsol(quiz)
...
LMC problem: H2/Hinfty state-feedback synthesis
matrix variables: index name

1 X
2 T
3 S

inequality constraints: index meig name
1 0.005 X>0
2 3e-09 Hinf
3 3e-08 gram
4 -eps H2

maximise objective:-trace(T) -g = -3.86
feasible

Table 9: Optimally solved LMC problem having accuracy complications

The display claims that the problem is feasible but the meig value of the fourth inequality is negative. As
exposed in the previous section, this status is not surprising. It indicates that SEDUMI stopped while the
computed point was as close to the optimum as the accuracy level.

3.6.1 SeDuMi parameters

To improve the accuracy the user has to specify new parameters to SEDUMI. This is done with the
syntax:

>> quiz=sdmsol(quiz,pars);

The optional second input argument of sdmsol must have the structure adopted by SEDUMI [25]. One
of the fields of the structure pars allows to choose a precision level (default is 10�9). Let us modify in
this way the accuracy of SEDUMI and hopefully the obtained iterate will have all eigenvalues strictly
positive. Table 10 shows the computation result.

>> pars.eps=1e-12;
>> quiz=sdmsol(quiz,pars)
...
LMC problem: H2/Hinfty state-feedback synthesis
matrix variables: index name

1 X
2 T
3 S

no equality constraint
inequality constraints: index meig name

1 0.005 X>0
2 3e-09 Hinf
3 3e-08 gram
4 -7e-10 H2

maximise objective:-trace(T) -g = -3.86
marginal feasible

Table 10: Same LMC problem solved with a smaller precision parameter
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As can be seen, SEDUMI failed to find a feasible solution satisfying the new precision. In fact, the
last iterate is identical to the previous one. SEDUMI stopped due to numerical problems. The display
explicitly warns that the feasibility is not satisfied with the required precision (an eigenvalue is negative
and less than �10�12) but the algorithm does not prove that the LMC problem is infeasible. To have
details on the status of the obtained iterate, the user can get the output information from SEDUMI with
the help of the sdmpb/get operator:

>> get(quiz,’solver’)
ans =

cpusec: 2.5600
iter: 17

feasratio: 0.9403
pinf: 0
dinf: 0

numerr: 1

For details on the fields of this output see [25]. The last field numerr: 1 is non-zero in this example.
This explicitly shows that some numerical error has occurred.

3.6.2 Definite and semi-definite inequalities

Up to this point we have discussed how to modify the algorithm parameters using the second argument
of sdmsol and how to get the status of the SEDUMI solver issued after computation. But we have not yet
solved the H2�H∞ state-feedback synthesis problem. There is still one non-strictly satisfied inequality in
the result (the meig data of the fourth inequality is negative -7e-10).

To explain the difficulty encountered here, note that for SEDUMI the constraints are semi-definite in-
equalities. Therefore, SEDUMI assumes that if a minimal eigenvalue meig of some constraint is equal to
zero (or close to zero at the precision level), the constraint is satisfied. In the H2�H∞ synthesis problem
that is used as an example here, we are therefore disappointed not to have strictly positive eigenvalues
while the computed iterate is satisfying for SEDUMI.

To avoid such misunderstandings a way out is then to “transform” all semi-definite inequalities into
definite inequalities. To do so, the user has to introduce a constant positive definite term α� in all
inequalities such that:

L�x�� R �x��α� �� L�x�� R �x�

This operation transforms the constraint “all eigenvalues must be strictly positive” into “all values must
be superior or equal to α � 0”. The modified constraint is conservative but one can expect that the
modification is not disturbing as long as α is small.

We now test this procedure on the H2�H∞ state-feedback synthesis problem. First, one has to add the
constant term α� to all inequalities. This may be tedious, therefore a simplified syntax is adopted in
SEDUMI INTERFACE:

� add a scalar to a LMC problem
If a scalar α is added (or subtracted) to a sdmpb object, the result of this operation is an identical
sdmpb object where a constant matrix α� of appropriate dimension has been added (or subtracted)
to the right side of all inequality constraints.

The subtraction operator is applied to the example with α � 10�6. The result is given in table 11.

The result is satisfying: all eigenvalues of the constraints in the LMC problem quiz2 are positive or
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>> quiz2 = quiz - 1e-6;

>> quiz2 = sdmsol(quiz2)
...
LMC problem: H2/Hinfty state-feedback synthesis
matrix variables: index name

1 X
2 T
3 S

no equality constraint
inequality constraints: index meig name

1 0.005 X>0
2 eps Hinf
3 7e-09 gram
4 -eps H2

maximise objective:-trace(T) -g = -3.86
feasible

Table 11: Same LMC problem solved with α-translated constraints

at least greater than the accuracy level �10�9. This means that the solution is acceptable for the LMC
problem quiz with all eigenvalues superior or equal to α�ε� 10�6�10�9 � 0.

3.6.3 Feasibility radius

Another and last way to tune the solver convergence without modifying strongly the LMC problem, is
to impose a feasibility radius. It constrains the norm of the vector of decision variables. The convexity
of the LMC problem is not modified but the additive constraint may add some extra conservatism. The
“trick” is to impose a sufficiently large feasibility radius and in the same time reduce at its maximum the
domain in which the solver has to seek the optimal solution.

The syntax for constraining the feasibility radius is to give a third input argument to sdmsol. Constrained
with a radius of 109, the mixed H2�H∞ state-feedback synthesis problem converges to the solution of table
12.

>> quiz=sdmsol(quiz,[],1e9)
...
LMC problem: H2/Hinfty state-feedback synthesis
matrix variables: index name

1 X
2 T
3 S

no equality constraint
inequality constraints: index meig name

1 0.01 X>0
2 6e-06 Hinf
3 2e-05 gram
4 8e-07 H2

maximise objective:-trace(T) -g = -3.86
feasible

Table 12: Same LMC problem solved with a feasibility radius

Note that the solution found this time has all its eigenvalues strictly positive. It is a by-product of the
feasibility radius. The SEDUMI solver has quite often less numerical problems if a feasibility radius
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is appropriately chosen. To guide the user in choosing this radius we recommend to solve the LMC
problem once without any radius. If the solution is not convenient, get the value of the norm on the
decision variable vector using the sdmpb/get operator:

>> get(quiz,’ynorm’)
ans =

2.7383e+06

At last solve again the same problem with a feasibility radius greater than the previously obtained norm.
This empirical procedure often gives successful results.

4 Warnings for MATLAB LMI Toolbox users

This section is specially written for users that are familiar with the LMI Control Toolbox of MATLAB.
Other readers can skip this section and therefore avoid potentially confusing remarks.

4.1 “Left” and “right” sides of an inequality

The notions of “left” and “right” sides of a matrix inequality are quite different in SEDUMI INTERFACE

and in the LMI Control Toolbox. In both interfaces the left and right sides correspond to the formulation:

L�x� � R �x�

But while in the LMI Control Toolbox it is possible on a feasible point x � to evaluate separately both
sides, in SEDUMI INTERFACE the notion of sides is only used to define the constraints.

The right side in SEDUMI INTERFACE is used to declare terms that appear with the minus sign in a
negative definite constraint. For example, if A is a real valued matrix,

>> quiz = sdmineq(quiz, -c, Xindex, +A)

is a command that adds a term such as:

L�x� � R �x��AXAT or L�x��AXAT � R �x�

In contrast with the LMI Control Toolbox it is NOT equivalent to:

>> quiz = sdmineq(quiz, +c, Xindex, -A)

that declares a term such that:

L�x����A�X��AT� � R �x� that is L�x��AXAT � R �x�

This remark also holds for constant terms that we chose to declare with the same structure as variable
terms. Therefore, beware that the two following commands are totally different:

>> quiz = sdmineq(quiz, -c, 0, +B)
>> quiz = sdmineq(quiz, +c, 0, -B)

They respectively declare the following terms (if B is real):

L�x� � R �x��BBT and L�x����B���B�T � R �x�

which is NOT the same at all.
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4.2 Matrix and scalar multipliers for inequality terms

A second warning concerns the use of scalar multipliers in sdmineq. As described previously, SEDUMI

INTERFACE allows to declare terms such as:

>> quiz = sdmineq(quiz, c, Xindex, 2, 3);
>> quiz = sdmineq(quiz, c, Pindex, 4, A);
>> quiz = sdmineq(quiz, c, Qindex, 5);
>> quiz = sdmineq(quiz, c, Rindex);

These commands add terms such that (assume all matrices are real):

�2��X�3����3��TXT�2��T � 6�X�XT�

�4��PA�AT PT�4��T � 4�PA�AT PT�

�5��Q�5��T � 25 Q

���R���T � R

Therefore the three following notations are equivalent (R is assumed to be symmetric):

>> quiz = sdmineq(quiz, c, Rindex);
>> quiz = sdmineq(quiz, c, Rindex, 1);
>> quiz = sdmineq(quiz, c, Rindex, 1, 0.5);

but they are not equivalent as in the LMI Control Toolbox to the notation:

>> quiz = sdmineq(quiz, c, Rindex, 1, 1);

5 Conclusions

SEDUMI INTERFACE makes the interface between a standard LMI formalism and the solver SEDUMI.
For control applications it is well suited and we are already working on future evolutions. We expect
potential users to contact us with remarks and possibly pass on some examples to illustrate this report.
These remarks and contributions may influence the future developments and make the tool more com-
plete. For example, since SEDUMI INTERFACE 1.02, both complex LMIs and complex variables have
been included to the tool, since SEDUMI INTERFACE 1.03, linear matrix equalities can be added to the
LMI constraints and since SEDUMI INTERFACE 1.04, block partitioning, maximisation of Trace�BX�
are available.

Among future evolutions are:

� Concatenation.
The concatenation of several LMC problems can be viewed as the optimisation problem con-
structed with all the linear matrix constraints of each LMC problem and where some of the matrix
variables are common. Such an operator can help for optimisation problems defined over the
intersection of feasible domains.

� Translator.
Following the example of [19, 24, 9], the tool can include some translator functionalities in order
to call other solvers when the translation is admissible.
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