User’'s Guide for SEDUMI INTERFACE 1.04

Dimitri Peaucelle - Didier Henrion - Yann Labit - Krysten Taitz
LAAS- CNRS
7, Avenue du Colonel Roche - 31077 Toulouse cedex 4 - France
Tel. 0561336417 fax: 0561 3369 69
email: peaucelle@laas.fr - henrion@laas.fr - ylabit@laas.fr

13th September 2002

Abstract

Thisreport describesa user-friendly MATLAB package for defining Linear Matrix Constraints(LMCs).
It acts as an interface for the Self-Dual-Minimisation package (SEDUM 1) devel oped by Jos F. Sturm.

The functionalitiesof SEDUMI INTERFACE are the following:

e Declare an LMC problem.
Five MATLAB functions allow to define completely an LMC problem which can be charac-
terised by scalar and matrix variables, linear matrix equality (LME) constraints, linear matrix
inequality (LMI) constraints and a linear objective:

— Initidisethe LMC problem: sdnpb.

Declare the matrix variables: sdnvar .

Declare the block partitioned equality constraints: sdm me and sdrmequ.

Declare the block partitioned inequality constraints: sdm m and sdmi nequ.

Declare the linear objective: sdnobj .

e Solve an LMC problem.

A uniquefunction, sdnsol , callsthe SEDUMI solver. Options allow to tune the solver param-
eters.

e Modify an LMC problem.
At any moment it is possible to append an LMC problem by adding variables, inequalities or
linear terms to the objective. Moreover, the sdnset function allows to freeze matrix variables
to specified values.

o Analyse the solutionissued from the solver.
For al (feasible or not) problems, the solver outputs the last computed iterate (sdnget). SE-
DuMI INTERFACE alowstoanaysethisresultinaconvivia display. The solutionisdisplayed
directly in matrix format and indicators show which constraints are satisfied.

This document is an update with respect to SEDUMI INTERFACE 1.01 [23], [22], SEDUMI INTER-
FACE 1.02 [17] and SEDUMI INTERFACE 1.03 . The last major modifications concern the blocks
partitioning of LMCs, the maximisation of Trace(BX) where B is a data matrix and the increase
of LMC problem construction speed

SEDUMI INTERFACE 1.04: Copyright (©) 2002 Dimitri Peaucelle & Krysten Taitz.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. This program is distributedin the hopethat it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Genera Public License for more details.

Contents

1 Purpose
11 NOEHONS o
12 LMCoproblems
13 EXiStingSOIVErS e
14 ExigtingInterfaces
15 Functionalities. e
16 InstalingSEDUMI INTERFACE o 0 e e e e e e e e e e e e e
2 UsingSEDUMI INTERFACE - Getting started
21 LMCproblem: ansdnpb object
2.2 Definingmatrix variables: sdnvar
2.3 Defining aninequality constraint: sdmmi
24 Addatermtoaninequality constraint: sdmineq
25 Addalinear termtotheobjective: sdmobj oo
26 SolveanLMCproblem: sdmsol
2.7 Extractingthecomputedsolution
2.8 Anadysisof thecomputedsolution L
3 Advanced use ofSEDUMI INTERFACE
31 Structuredvariables: sdnvar
3.2 Advanced declaration of someinequality terms: sdnineq
321 Blockpartitioning
322 Leftandrightsidesof aninequality
3.2.3 Transposeof somematrix variable (LXTR)
3.24 Matrix termsdependingonascaarvariadbleo L.
325 ScaarLandRmultipliers
326 Hermitianterms (LXL*andLL*).
327 Termswithnomultiplyingdata
3.28 Termswith Kronecker products (L(K@X)RandL(X®@K)R)
33 Equalityconstraints e
3.3.1 Definingan equaity constraint: sdmime
3.3.2 Addatermtoanequdity constraint:sdmeq
34 Thetraceasanobjective (max trace(BX))
35 Setavaluetosomevariable:sdmset
3.6 Tuningthesolver parameters
3.6.1 SeDuMiparameters e
3.6.2 Definiteand semi-definiteinequalities
3.6.3 Feashilityradius
4 Warnings for MATLAB LMI Toolbox users
41 “Left” and“right” sidesof aninequality
4.2 Matrix and scalar multipliersfor inequalityterms

5 Conclusions

References

1 Purpose

Thetool described in thisreport isdesigned to associ ate both efficient Semi-Definite Programming (SDP)
algorithmsand the nice Linear Matrix Constraint (LMIsand LMES) formalism used for control applica-
tions. Thiswork wasinspired by the observation that on the one hand Linear Matrix Constraints (LMCs)
have a major position in current academic research [6, 10, 27], and on the other hand there are new
promising tools for solving relatively large-scale SDP problems [20]. But there are few tools that asso-
ciate both an efficient SDP solver and a pleasant interface for declaring LM C problems within the most
commonly used software environment: MATLAB.

SEDUMI INTERFACE is designed as an add-on for MATLAB and allows to declare LMC problems to
be solved with the SEDUM | solver proposed by Jos Sturm [25]. The magjor part of this report is a
description of SEDUMI INTERFACE functions. Before that, we expose the choicesthat lead usto choose
the SEDUM I solver and an interface much alike the LMI Control Toolbox for MATLAB [13].

Theuser mostly interested in using theinterface can skip the remaining part of thissection and go directly
to section 2.

1.1 Notations

i istheimaginary unit equa to the squareroot of —1.

RM*N (C™M) isthe set of m-by-nrea (complex) matrices.

1 and 0 are respectively the identity and the zero matrices of appropriate dimensions.

All matrices are written using capital letters (A) while scalars and vectors are in lowercase (a).

Aisthe conjugate of the complex matrix A, AT isits transpose and A* is its conjugate transpose. We
remind that in the MATLAB environment the conjugate transpose writes as A' while the transpose is
obtainedby A.’ . If A= AT, the matrix is symmetric and Hermitian if A= A*. For real valued matrices
both notions are equivalent.

"He' isthe matrix operator such that: He{A} = A+ A*.

For Hermitian matrices, > (>) istheLowner partial order, i.e.,, A> (>)Bif and only if A— Bispositive
(semi) definite.

In matrix equalities and inequalities as well as in optimisation problems, the decision variables and
unknownsare in bold face (x) while the datais written using the usual mathematic fonts (x).

Note that in the MATLAB environment real integers are nicely displayed as follows, while complex
integers are displayed as any other complex number:

>> 2
ans =
2
>> 242i
ans =
2.0000 + 2.0000i

Therefore, thenun2str MATLAB function will sometimes appear for nice display. Theresult isa string
that cannot be used for computation.

>> nunstr(2+2i)
ans =
2+2i

1.2 LMC problems

The academic results on LM s use the following optimisation formalism [6, 10]:
m
p°" =min c'x st. Fo+) xiFj >0 1)
=1

where the data are the m+ 1 symmetric matrices Fy, ..., Fnm and the column vector ¢, while the opti-
misation variables are gathered in the vector x with components x;. The formalism underlines that an
LMI problem is an optimisation problem with a linear objective and positive semi-definite constraints
involving symmetric matrices that are affine in the decision variables.

At this point note that there is another general formalism for writing LMIs [25]:
p°® =min c'x st. b— Ax ispositive semi-definite

Here thedataaretwo vectorsb, c and amatrix A. Theexpressionisof courseabusive. A vector z=b— Ax
is said to be positive semi-definite if the symmetric matrix Z, build out of z with some stack operator, is
positive semi-definite.

We do not get into more details. The point is that the generic formalisms of LMIs on which are based
SDP solvers are much too compact to be adapted easily to application problems. In particular, a major
difficulty is that control problems are formulated with matrix variables while the generic formulations
exposed above depend on vectors of decision variables. Going from one formalism to another may be
quite tedious.

Take for example the Lyapunov inequality, it writes as an LMI constraint:
ATP+PA <0

Assume A is a 2-by-2 matrix. P isasymmetric matrix considered as the variable in the LMI problem.
Expressed in terms of the scalar data and the scalar variables (bold face) the LMI writes as.

[811 321][p1 pZ]_I_[pl pZ][all alz]<®
app ap P2 P3 P2 P3 a1 ap
and this correspondsin the formalism (1) to:

Fo=0 xT = (p17 P2, p3)

F— —2a;; —ap Fy— —2a —ap-—ap
—ap 0 —ay1—axp —2Zap

_ 0 —an]
= [—ay —2ap
The manipulationsare trivial but tediouseven for small size problems. SEDUMI INTERFACE isdesigned
to tackle these manipulations. In particular, the syntax adopted in SEDUM| INTERFACE is adapted to

usual control LMI formulations. A large spectrum of optionsallowsto simplify some recurrent declara-
tions:

e First, alarge variety of matrix variables are admissiblein SEDUMI INTERFACE. It ranges from
full block matrices to any structured matrix variable including the symmetric, anti-symmetric,
Hermitian and anti-Hermitian variables.

e Second, both linear matrix inequality (LMI) and equality (LME) constraints can be declared. In
the sequel, an LMC problem is an optimisation problem with a linear objective and possibly both
LMI and LME constraints.

Third, varioustypes of linear matrix terms can be declared including Kronecker products between
data matrices and matrix variables.

Fourth, thelinear objectiveisa sum of linear terms and can contain the trace operator.

Fifth, data matrices and variables can be real or complex valued. LMIs are then interpreted as
Hermitian positive definite constraints.

e Sixth, the LMCs can be declared taking into account a block partitioning.

1.3 Existing solvers

Several research groups have produced software packagesfor SDP problemsand many improvementsare
currently made. Among the first solvers were the SP solver [28] and the LMI-lab which evolved into the
MATLAB LMI Control Toolbox [13]. Since then, a wide variety of solvers have been developed among
which: SEDUMI [25], SDPA [12], SDPHA [7], SDPpack [1], SDPT3[26], CSDP[5, 4], CUTSDP[16],
DSDP [3, 2]. Thislistis not exhaustive. All solvers have particularities. They have their own SDP
formalism, their options, their potentialities, their convergence speed, their robustness... For a recent
comparison of these solvers see [20].

Having ourselves tested some of the solvers and in view of the report [20], we came to the choice of
SEDUMI. The advantages of this solver that guided our choice are:

e Asymptotic computational complexity. Let n be the number of decision variables and m the num-
ber of rows of the LMIs. The computational complexity of SEDUMI (including main and inner
iterations) isin O(n?m?54-m*®) whilethe algorithmin [13] has acomplexity O(n®m). The former
algorithm is more efficient for problemswith alarge number of variables. Thisis of major interest
when solving large scale problems or when implementing LMI-based iterative algorithms as in
[11, 15, 21, 14, 18].

e Sparse format. SEDUMI takes the SDP problem datain sparse format. Therefore, the disk space
memory needed for defining problems is reduced in the case of structured data. The results are
satisfying for automatic control problemsfor which most of the data are sparse.

e Large scale problems. This remark is closely related to the two previous ones. It appears that
SEDUM I isquite competitive for medium-size problemsand can solverelatively large-scal e prob-
lems.

e Complex valued problems. Both the data and the variables may be given or constrained with real
or complex values. At the difference of [8], thisis done without increasing the size of the problem.

e Equality constraints. SEDUMI alows to declare explicitely linear equality constraints without
computing any kernel or artificially defining an equality as two opposite-sideinequalities.

e MATLAB. Most of the researchers in the control community are used to work with MATLAB. Itis
therefore attractive to have atool that can be used within the MATLAB environment.

e Freesoftware. SEDUMI isdevel oped with an open source free software policy aswell as SEDUMI
INTERFACE. We hope thiswill encourage the scientific community to support and follow up this
initiative.

e Potentialities. In SEDUMI INTERFACE we mainly took advantage of SDP programming. But SE-
DuUMI has other potentialities. It can deal simultaneously with linear programming and quadratic
cones. These potentialitieswill be integrated into SEDUMI INTERFACE in the future, depending
on possible feedback remarks.

1.4 Existing Interfaces

Quite few LMI interfaces for SDP solvers are available. The most famous is the software in the LMI
Control Toolbox [13]. Then comes the sdpsol software [29], which is associated to the SP solver [28],
and the LMITOOL package [9], which calls three different solvers: SP [28], SDPHA [7] and SDPPack
[1]. All threeinterfaceswork in MATLAB environment.

Except the plurdity of the solvers, the difference between these three interfaces is the way LMCs are
declared. They all adopt different formalisms. LMITOOL is purely agraphical user interface (GUI) tool
and is nice and convivial. As aby-product, the transformation of data into the various solver formalisms
is quite low. The LMC problems are often faster solved than converted to the convenient format. For
the sdpsol interface, the speed results are less patent. The LMIs are declared in a text file in a natural
way. They are then interpreted by the interface. The speed of the interpretation is more efficient than
for LMITOOL but still is not convenient for large scale problems. At last, a GUI is also available in
the LMI Control Toolbox [13], but it is less convivia than the two former tools and similar low speed
complications are noticed.

We therefore chose not to develop such a GUI tool. First, we believe such tools are necessarily quite
slow. The second reason isthat we do not have the required programming skills. The chosen framework
is an in-line declaration of the LMC problems as in the LMI Control Toolbox [13]. The result is less
convivia than a GUI but allows more flexibility. Nevertheless, efforts were made on nice display and
some complicationswe noticed in the LMI Control Toolbox do not occur in SEDUMI INTERFACE.

Note that more recently, aimost at the same time as SEDUM1 INTERFACE 1.01 was achieved, have
appeared two other tools[24, 19]. They adopt a quite close approach but focus on offering the interface
with multiple solvers. LMIlab Trandator [24], proposes a trandator that allows to call various solvers,

among which SEDUM 1, using the interface of the LMI Control Toolbox. YALMIP [19], is a completely
new interface more alike LMITOOL [9] but without the GUI. Having focused on trandation these two
tools are highly valuable to test the efficiency of solvers on different hard problems. The by-product is
that they do not exploit all the potentialities of each solver.

1.5 Functionalities
The functionalitiesof SEDUMI INTERFACE are the following:

e Declarean LMC problem.
Five MATLAB functions allow to define completely an LMC problem characterised by matrix
variables, linear matrix equalities(LMESs), linear matrix inequalities(LMIs) and alinear objective:

Initialisethe LMC problem: sdnpb.

— Declare the matrix variables: sdnvar .

— Declare the block partitioned equality constraints: sdm me and sdnequ.

— Declare the block partitioned inequality constraints: sdm mi and sdmi nequ.
— Declare the linear objective: sdnobj .

e Solvean LMC problem.
A uniquefunction, sdnsol , callsthe SEDUM| solver. Optionsallow to tune the solver parameters.

e Modify an LMC problem.
At any moment it ispossibleto append an LM C problem by adding variables, inequalitiesor linear
termsto the objective. Moreover, thesdnset function allowsto freeze matrix variablesto specified
values.

e Analysethe solutionissued from the solver.
For all (feasible or not) problems, the solver outputsthe last computed iterate (sdnget). SEDUMI
INTERFACE alowsto analyse thisresult in a convivial display. The solutionis displayed directly
in matrix format and indicators show which constraints are satisfied.

1.6 Installing SEDUMI INTERFACE

SEDUMI INTERFACE iscomposed of smple MATLAB files(sdnmt ** . m) gathered in adirectory, SeDuM | nt 104,
and a subdirectory, @dnpb. The first directory contains:

e sdngui de. ps : thisreport.

e COPYI NG: the GNU general public licence.

e Contents. m: thehelpfilefor SEDUMI INTERFACE.

e sdmdeno. m: the demonstration MATLAB file.

e sdnupg. m sdnvec. m sdmmat.m sdnrank, sdntlear : fivefiles called by some of the SE-
DUMI INTERFACE operators.

The subdirectory, @dnpb, containsthe 14 essential operatorsfor LMC problem declaration.

The interface works with MATLAB version 5.3 or more and with SEDUMI version 1.05. We assume
that one of these two versions of the software is installed on your computer. If it isnot the case, refer to
theinstructionsat htt p: //fewcal . kub. nl / sturm sof t ware/ seduni . html . To install the SEDUMI

INTERFACE, you only have to link it to your MATLAB path. In the MATLAB environment this can be
done with the following command:

>> pat h(path, 'TheDirectoryWerelputlt/SeDuM Int104');

Thentest if SEDUMI INTERFACE and SEDUM I are properly installed by typing:

>> sdndeno

Demonstration examples of SEDUMI INTERFACE are then run. One follows the example in thisuser’'s
guide. The other describes the declaration of a Hy,/H. state-feedback problem from control theory.
The example is run for arandom problem of large size. It demonstrates the nice convergence speed of
SEDUMI.

2 UsingSEDUMI INTERFACE - Getting started

2.1 LMC problem: an sdnpb object

AnLMC problem within SEDUMI INTERFACE isdescribed by asingle MATLAB variable. It containsall
the information on the matrix variables, the inequality and equality constraints, the linear objective and
the optimal solution. The various fields containing this information are assigned as the LMC problem
is declared and then solved. We do not enter here in the detail of the structure of this object. The user
cannot access directly this class of variables but can operate on it in order to get some data or append the
object. It isdefined within MATLAB asanew class of objects called sdnpb.

6

To guide the user of SEDUMI INTERFACE we propose a helpful display of sdrmpb objects that allows
to get at every step important information about the LMC problem. In addition the function sdnpb/ get
allowsto retrieve any data of the problem. The various possibilities of sdnpb/ get are described in the
sequel aswe expose step by step the usage of SEDUM 1 INTERFACE functions.

For thistutorial we choose a standard control problem of static state-feedback synthesisfor Linear Time
Invariant (LTI) systems with an H., objective, [6]. Let Z be an LTI system and K a state-feedback gain
e () = AX()+ Bui(t) + Bt

[x(t) = AX(t) + Byu(t) + Bywit _

2 { 2(t) = CX(t) + Datit) u(t) = Kx(t

wherex € R", ue R™ w e R9and ze RP. Thesystem > isstabilisableviaastate-feedback gainK = YQ~1
and the closed-loop transfer from w to z has an H., norm lessthan y if and only if:

Q=Q">0
[AQ+ QAT +B,Y+YTB! +B,B], QCJ +YTDJ, <0
C,Q+DaY ~¥1
The optimal synthesis problem isan LMC problem composed of three variables, alinear objective and

two inequality constraints. The second matrix inequality is necessarily symmetric and composed of four
blocks. It can write as:

variables. | Q=QT e R™", Y ¢ R™" YR

n $ He{-iQ}<o0

inequalities: | 1, 4 He{[AQ—I_BUY—I—%EMBM 0]}<®
p 1 CQ+DaY | -3¥L

objective: max —Yy?

First, let usinitialisethe sdnpb object within MATLAB and giveit a name:

>> qui z=sdnpb(’ Optimal H nfty State-Feedback Synthesis’)
LMC problem Optinmal H nfty State-Feedback Synthesis

no matrix variable

no equal ity constraint

no inequality constraint

no linear objective

unsol ved

The operator sdmpb creates an empty object. An optional input argument alows to give a label to
the LMC problem. This label is used only for nice display. At this step we have declared an empty
sdnpb object. The class of the variable qui z in MATLAB issdnpb. Each declared LMC problem isan
sdnpb obj ect:

>> whos quiz
Nane Si ze Bytes O ass
qui z 1x1 6406 sdnpb obj ect

In the following subsectionswe assume that the data A, Bu, Bw, Cz, Dzu, n, m g and p, describingthe LTI
system are defined in the MATLAB environment. For example, we chose for thistutorial:

7

>> n=4; n¥l; g=1; p=2;
>A=[100-1;0-110; -1010; 0-1011;
>>Bu=[1;0;0;0];

>Bw[0; 1;0; 01;

>C=[0001; 10011];

>> Dzu=[1; 01];

2.2 Defining matrix variables: sdnmvar

All variables in SEDUMI INTERFACE are real or complex matrix variables. Extensions to complex
variableswereintroducedin 1.02 version of SEDUMI INTERFACE. By default, the variables are real full
rectangular matrices declared as follows:

>> [quiz, Yindex] = sdmvar(quiz, m n, 'Y);

IN Thefirst input argument of the function is the sdnpb object for which the user wantsto declare a
new matrix variable. The second and third input arguments are respectively the number of rows
and the number of columnsin the matrix variable. The last input argument is optional. It isalabel
used mainly for nice explicit display.

ouT The output arguments are first the appended sdnpb object, and second an index, Yi ndex, that
makes reference to the declared variable. Theindex isan integer used later onfor various purposes.
It can be retrieved at any time by the user asfollows:

>> qui z
LMC problem Optinmal H nfty State-Feedback Synthesis
matrix variabl es: i ndex nane

1 Y

no equal ity constraint
no inequality constraint
no |linear objective
unsol ved

Inthisexample Y isthefirst variable with an index equal to 1.

For scalar variables the usage of sdnvar isidentical. Scalar variables are 1-by-1 matrices:

>> [quiz, gindex] = sdnvar(quiz, 1, 1, 'gamma"2');

In LMC problems, the matrix variables may have some structural properties. In our example Q issym-
metric. The SEDUMI INTERFACE tool makes possibleto declare alarge variety of structured variables.
For this purpose, see the sdnvar complete description in the following section of this guide. Here we
expose only how to declare symmetric variables:

>> [quiz, Qndex] = sdnvar(quiz, n,

s, Q)

To declare symmetric (therefore square) variables, the user setsthethird argument of sdnvar tothestring

S .

At this stage the LM C problem of the example is characterised by:

8

>> quiz
LMC problem Optinmal H nfty State-Feedback Synthesis

matrix variabl es: i ndex name
1 Y
2 gamm” 2
3 Q

no equality constraint
no inequality constraint
no linear objective
unsol ved

The function sdnpb/ get also allowsto get information on the declared variables such as the number of
variables:

>> get(quiz, 'varnb')
ans =
3

the name of a variablereferenced by itsindex:

>> get(quiz, 'varnane', gindex)
ans =
gama” 2

and also the structure of a variable:

>> get (quiz, 'vardec’, Q ndex)
ans =

6 7 8 9

7 10 11 12

8 11 13 14

9 12 14 15

In the considered example (n = 4) the variable Q is a 4-by-4 symmetric matrix. The array of integers
generated here by the sdnpb/ get function describes its structure. The integers relate the dependence
of the matrix variable Q to the independent scalar decision variables of the matrix inequality canonical
form. For more information on this point see section 1.2 and the advanced usage of sdnvar in section
3.1

2.3 Defining an inequality constraint: sdii mi

All matrix inequality constraintsin SEDUMI INTERFACE are sguare Hermitian matrices characterised
by their number of rows and an optional label. To initialise an inequality constraint the usageis:

>> [quiz, |nilindex]
>> [quiz, |ni2index]

sdm m (qui z, [n], "@0");
sdm i (quiz, [n p], 'Hnfty state-feedback’);

IN The first input argument is the sdnpb object to append. The second input argument is a vector
containing the size of the diagonal blocks in the LMI constraint. The last input argument is an
optional label used for nice display.

ouT The appended sdnpb object is returned along with an index, | mi 1i ndex, that makes reference to
the declared constraint.

At this step, the LM C problem of the example is composed of 3 variables and 2 constraints:

9

>> qui z
LMC problem Optinmal H nfty State-Feedback Synthesis

matrix variabl es: i ndex name
1 Y
2 gamm” 2
3 Q

no equality constraint
inequality constraints: index neig nane
1 - | nf Q0
2 - | nf H nfty state-feedback
no |linear objective
unsol ved

To get data on these inequality constraints, such as the number of constraints, their names or the dimen-
sion of blocks, use the following syntaxes:

>> get(quiz, 'inegnb’)
ans =
2
>> get(quiz, 'inegnane', |m 2index)
ans =
H nfty state-feedback
>> get(quiz, "ineqdim, Ini2index)
ans =
4 2

2.4 Add aterm to an inequality constraint: sdm neq

By default theinequality constraintsare empty. When atermisdeclared, it is added to the existing terms
at the left side of the inequality sign <. lteratively al the terms are therefore declared with the unique
function sdni neq. The constraints are linear in the matrix variables, hence all terms can write as LXR
where L and R are data matrices and where X is a matrix variable. To add a term to an inequality the

usageis:

>> L = Cz;
>> R =1,
>> quiz = sdmineq(quiz, [Im2index 2 1], Qndex, L, R);

IN The first input argument is the sdnpb object to append. The second input argument is a vector
containing the index of the inequality constraint and the block index in row and column (bl r ow,
bl col) towhich theterm isadded. The third input argument isthe index of the variable. The last
two input arguments correspond to the left and right multiplying data matrices.

ouT The appended sdnpb object isthe unique retrieved output argument.

Note that since matrix inequalities are Hermitian (symmetric in the case of real valued matrices), the
conjugate transpose term is automatically added. Thisis an important feature of SEDUMI INTERFACE.
By default, sdmi neq always adds the conjugate transposed term R*X*L* to the symmetric block given
by (bl col , bl r ow) along with the declared term LXR. The last command line adds the term C,Q in the
(2,1) block, the symmetric term QC, is automatically added to the same (1,2) block.

Todeclare aconstant term (such as LR for example), the usage of thefunctionisthe same at the difference
that the variable index (third input argument) is set to zero. Pay attention to the fact that the user is

10

assumed to define both left (fourth input argument) and right (fifth input argument) matrices. Moreover,
the conjugate transpose term is automatically added: R*L* isadded in the (bl col , bl r ow) block.

In our example, the constant term is such as B,,B], in the (1,1) block. It can be declared as follows:

C5*LT,

>> L=
>> R =
>> quiz = sdmineq(quiz, [Inm2index 1 1], 0, L, R);

Note that the factor 0.5 = % is necessary. For blockson the diagonal (bl row=bl col), theterm R*L* is
added to LR in the same block. Beware not to declare it twice! Thisiswhy one of the multiplying data
matrices isdivided by two in this example.

Following these rules the inequality constraints on the exampl e are compl etely defined by adding the five
remaining terms:

>> quiz = sdmneq(quiz, [Inilindex 1 1], Qndex, -0.5, 1);

>> quiz = sdmineq(quiz, [Ini2index 1 1], Q ndex, A L),
>> quiz = sdnmineq(quiz, [Ini2index 1 1], Yindex, Bu, 1);
>> quiz = sdmineq(quiz, [Inmi2index 2 1], Yindex, Dzu, 1);
>> quiz = sdmineq(quiz, [Inmi2index 2 2], gindex, -0.5, 1);

The usage of sdnmi neq described in this section is the most generic and alows to define al possible
terms. In SEDUMI INTERFACE, other usages of sdni neq are also defined. A complete description of
these advanced functionalities can be found in section 3.2.

2.5 Add a linear term to the objective:sdnobj

By default the objective is empty. The LMC problem is then a feasibility problem. In order to define
a maximisation or minimisation problem, a unique function is used: sdnobj. Since SEDUMI is an
algorithm that maximisesthe objective under LM Cs, the objective defined by sdnobj will be maximised.
To minimise some objective, one has then to maximise its opposite. Remark that if the objective is
complex, SEDUMI will maximiseitsrea part.

As for inequality constraints, the objective is recursively declared by adding linear objective terms. All
terms write in a generic manner as g Xe where g and e are respectively a row and a column vector so
that the product e Xe defines a scalar linearly depending on the matrix variable X. For the H., state-
feedback example of this section the objectiveis declared as:

>> qui z = sdnobj (quiz, gindex, -1, 1, '-gama 2');

IN The second input argument isthe index of the variable on which depends the objective term. The
third and fourth input arguments are respectively the left and right multiplying vectors e; and e;.
Thelast input argument isan optional label describing the objective.

OouT The unique output argument contains the appended LM C problem qui z.
As for the sdnvar and sdni neq operators, an advanced usage of sdnobj is available. In particular it

allowsto declare the trace of some matrix variable as an objective term. The advanced usage of sdnobj
is described in section 3.4.

At this stage the LMC problem is entirely declared in the MATLAB environment. The sdnpb object
contains al the information (see table 1).

11

>> qui z
LMC problem Optinmal H nfty State-Feedback Synthesis

matrix variabl es: i ndex name
1 Y
2 gamm” 2
3 Q

no equality constraint
inequality constraints: index neig nane
1 -1 nf Q0
2 - | nf H nfty state-feedback
mexi m se obj ective: - gamm” 2
unsol ved

Table 1: Completely declared LMC problem

Thesdnpb/ get operator makes it possible to get the name of the linear objective:

>> get (qui z,’ obj nane’)
ans =
- gama” 2

2.6 Solve an LMC problem: sdnsol

Having defined an LMC problem, SEDUMI INTERFACE makes the interface with the SEDUMI solver
through the function sdnsol . Theuseisshownin table 2.

The variable containing the LM C problem is then appended and containsthe last iterate of the SEDUMI
algorithm. SEDuUMI runs with the default parameters. To modify these parameters see the advanced
description of sdnsol insection 3.6.1.

When a problem is solved with SEDUMI, the display informs the user on the feasibility of the LMC
problem. For the example chosen in thistutorial, the solved LMC problem is displayed in table 3.

An LMC problem solved with SEDUMI may have three status:

o feasible
This means that the maximisation problem was solved and converged towards the optimal point.
Heretheoptimal criteriais- 27. 3. When no objectiveis specified, feasibility meansthat the LM Cs
admit at least one solution found by SEDUMI.

e infeasible
This means that the LM Cs have no solution at all.

e marginal feasibility
Thisoccurswhen SEDUM | has some numerical problems and cannot determine exactly afeasible
solution. To avoid such complications see commentsin section 3.6.

Thisinformation on the feasibility of the LMC problem isalso available viathe sdnpb/ get operator:

>> get(quiz, 'feas’)
ans =
1

Thesdnpb/ get outputisl if the problemisfeasible, - 1 if the problem isinfeasible, 0 if the problemis
marginally feasible and a string ‘unsol ved’ if SEDUM!I was not executed on this LM C problem.

12

>> quiz = sdmsol (quiz);

SeDuM 1.05 by Jos F. Sturm 1998, 2001

Alg = 2: xz-corrector, Step-Differentiation, theta = 0.250, beta = 0.500
egs m= 16, order n = 13, dim= 69, blocks = 4

nnz(A) = 74 + 0, nnz(ADA) = 256, nnz(L) = 136

it b*y gap delta rate t/tP* t/tD* feas cg cg
0: 1. 73E+07 0. 000
1: -7.50E-01 1.02E+06 0.000 0.0588 0.0000 0.9000 1.14 1 1
2 . -1.81E+00 2.66E+05 0.000 0.2614 0.9000 0.9000 0.71 1 1
3: -2.91E+00 9.37E+04 0.000 0.3520 0.9000 0.9000 0.28 1 1
4 : -8.32E+00 2.08E+04 0.000 0.2225 0.9000 0.9121 -0.21 1 1
5: -4.47E+01 5.37E+02 0.000 0.0257 0.9000 0.9173 -0.41 1 1
6 : -2.99E+01 4.72E+01 0.054 0.0879 0.9900 0.9900 1.41 1 1
7 : -2.82E+01 4.05E+00 0.000 0.0859 0.9000 0.9174 1.00 1 1
8 : -2.78E+01 1.34E+00 0.000 0.3316 0.9000 0.9000 0.78 1 1
9 : -2.75E+01 1.43E-01 0.000 0.1067 0.9000 0.9194 0.78 1 1
10 : -2.74E+01 2.66E-02 0.121 0.1852 0.0000 0.9000 0.70 1 1
11 : -2.74E+01 7.74E-06 0.000 0.0003 0.9000 0.8498 0.67 1 1
12 : -2.73E+01 1.37E-06 0.000 0.1777 0.8558 0.9000 0.24 2 2
13 : -2.73E+01 9.81E-08 0.000 0.0714 0.9900 0.9900 0.84 2 2
14 : -2.73E+01 3.03E-09 0.003 0.0308 0.9900 0.9900 0.98 2 2
15 : -2.73E+01 1.89E-10 0.000 0.0625 0.9900 0.9900 1.00 2 2
16 : -2.73E+01 3.82E-11 0.000 0.2019 0.9000 0.9000 1.00 3 2
17 © -2.73E+01 1.71E-12 0.000 0.0447 0.9900 0.9900 1.00 3 3
iter seconds digits c*X b*y
17 1.1 Inf -2.7287769476e+01 -2.7287769465e+01
| Ax-b] = 1.1e-09, [Ay-c]_+ = 0.0E+00, |x|= 4.1e+02, |y|= 3.0e+02
Max-nornms: ||bl|=1, ||c||] = 1,
Chol esky |add] =0, |skip|] =0, ||L.L|| = 193074.
feasible
Table 2: Solving an LMC problem with SeDuMi 1.05
>> quiz
LMC problem Optinmal H nfty State-Feedback Synthesis
matrix variabl es: i ndex nane
1 Y
2 gamm” 2
3 Q

no equal ity constraint
inequality constraints: index neig nane

1 eps 0
2 eps H nfty state-feedback
maxi n se objective:-gamm"2 = -27.3

feasible

Table 3: Solved LMC problem

13

2.7 Extracting the computed solution

In al cases SEDUMI returnsthe last iterate. The sdnpb/ get functionin SEDUMI INTERFACE allows
the user to get thissolution directly in amatrix format. The user specifies’ var val ue’ asasecond input
argument and provides a third input argument containing the index of the desired matrix:

>> g2_opt = get(quiz, 'varvalue', gindex)
g2_opt =
27.2878

A faster way to obtain the values of the variables isthe sub-reference with brackets:

>> Y _opt = quiz(Yindex)
Y opt =
-41.2455 -53.0257 -0.8462 -25.0895

This syntax allowsto get directly the value of the variable referenced by itsindex in a matrix format.

The function sdnpb/ get allowsalso to obtain the objective value at the optimum:

>> get(qui z,’ objopt’)
ans =
-27.2878

For the specified H., state-feedback problem, SEDUM| has found the minima H., norm achievable by
state-feedback:
VP = \/27.2878 = 5.2238

2.8 Analysis of the computed solution

To analyse the obtained point, the nei g data allow to check that every inequality constraint is satisfied.
These data are displayed with the LM C problem (table 3) and can also be obtained with the sdnmpb/ get
function as:

>> get(quiz, "inegmeig, |m lindex)
ans =
eps

Thenei g data correspond to the minimal eigenvalue of each inequality constraint evaluated on the point
obtained by SEDUMI. The constraints are satisfied if their minimal eigenvalue is positive. The nei g
data can have different values:

e - I nf : occurs when the LMC problem has not been solved.

e 0 : occurs when the minimal eigenvalue is strictly equa to zero (this may happen because in
SEDUMI theinequalitiesare in fact semi-definite).

e eps or - eps : occurs when the minimal eigenvalueis positive or negative and “close” to zero. The
SEDUM | algorithm has an accuracy set by default to 1072, All eigenvalues with absolute value
less than this accuracy level are assumed to be “equal” to zero and set to eps or - eps in SEDUMI
INTERFACE. Evenif they are negative (- eps), therelated LMI isconsidered to be satisfied.

e positivescalar : occurs when the constraint is strictly satisfied (positive definite).

e negative scalar : the constraint is not satisfied.

14

We believe that the discussion on semi-definite and definite inequality constraintsinitiated in thissection

may confuse some readers. Therefore, for more details we recommend reading section 3.6. For less
curious readers, we may say that except for badly conditioned problems the indication on feasibility is
relevant. “Playing” with the solver parameters almost always confirms thisinformation.

3 Advanced use oSEDUMI INTERFACE

3.1 Structured variables: sdnmvar

As exposed briefly in the previous section, the operator sdnvar adds a new matrix variable to the LMC
problem. Moreover, the operator allowsto specify the structure of thisvariable. Four classical structures
aredirectly available and afifth usage of sdnvar enablesto declare any other structure. Before describing
the arguments of sdnvar for each case, note that SEDUMI INTERFACE represents the structure of a
variable asamatrix of the same size with integer elements. Thisrepresentationillustratesthe dependency
of the matrix variable elements with respect to some vector containing all independent decision variables
(see section 1.2 for the definition of this vector of decision variables).

For example, take the variables declared in the LM C problem of the previous section. The sdnmpb/ get
operator can givetheir dependency to the decision variables as shown in table 4.

>> get(quiz, 'vardec’, Yindex)
ans =

1 2 3 4
>> qui z{ gi ndex}

ans =
5

>> qui z{ Q ndex}

ans =
6 7 8 9
7 10 11 12
8 11 13 14
9 12 14 15

Table 4: Get the structure of the variables

Note that two different notations were used here to get the structure matrices. The notations are equiv-
alent. The second one, composed of curly braces, is a faster manner to get directly the structure of the
variable referenced by itsindex.

When comparing the “ structure” matrices, one can see that they have the same structure as expected for
the variable. The three matrix variables are independent because they al depend on different decision
variables: Y isal-by-4 full block matrix that depends on the decision variablesindexed from 1to 4; yisa
scalar variable that depends on the 5-th decision variable; Q is a4-by-4 full block symmetric matrix that
depends on the decision variablesindexed from 6 to 15 (10 independent elements in a 4-by-4 symmetric
matrix).

In the sequel assume that the new variables are independent of the previous ones.

15

e real full rectangular
The first input argument to sdmvar is the variable describing the LMC problem (qui z); the sec-
ond and third input arguments are respectively the number of rows (m) and columns (n) of the
rectangular matrix variable; at last, as an option, the user can give alabel to the variable (nane).

>> [quiz, VAR ndex] = sdmvar(quiz, m n, nane);

The sdmvar operator outputs the appended sdnpb object and the index of the created variable. Beware
not to confuse this index with the decision variable structure. The index is an integer that makes refer-
ence to amatrix variable of the LMC problem, while the integer elements of the structure matrix make
reference to scalar decision variables. The variableindex VAR ndex isused in the sequel for specifying a
matrix variable in other operators of SEDUMI INTERFACE, while the decision variable indexes are only
used as argumentsfor sdnvar .

e complex full rectangular
To declare a complex valued matrix variable, the second input argument is dlightly modified to be
an imaginary integer. It writes as (n¥i) where (m) is the number of rows and (i) is the imaginary

number (i = v/—1).

>> [quiz, VAR ndex] = sdmvar(quiz, nfi, n, name);

Thisrule holdsfor all following structured matrix variables.

o [d] diagonal real or complex
Square matrix variable with independent entries on the diagonal and zero off-diagonal entries.
Theusage of sdnvar isthesameasfor full rectangular matrices except for the third input argument
that isreplaced withthe string’ d’ .
An example of C2 diagonal variableis:

>> [quiz, Dindex] = sdnvar(quiz, 3i, 'd, 'D: diagonal’);
>> nun®str(qui z{ Di ndex})

ans =
16+16i 0+0i 0+0i
0+0i 17+17i 0+0i
0+0i 0+0i 18+18i

° symmetric real or complex
Square symmetric matrix variable.
Contains m(m-+ 1) /2 independent decision variables when mis the number of rows of the matrix.
Thethird input argument of sdnvar issettothestringvalue’s’ .
An example of real symmetric variableis given in the previous section (variable Q).

° anti-symmetric real or complex
Square anti-symmetric matrix variable.
Contains m(m— 1) /2 independent decision variables when misthe number of rows of the matrix.
Thethird argument of sdnvar isset tothestringvalue’ as’ .
An example of R® anti-symmetric variableis:

16

>> [quiz, Gndex] = sdmvar(quiz, 3, 'as’, 'G);
>> qui z{ G ndex}

ans =
0 -19 -20
19 0 -21
20 21 0

. Hermitian
Square Hermitian matrix variable.
Only defined if the matrix iscomplex valued, i.e. the second input argument isimaginary: nti .
Contains m(m-+ 1) /2 independent decision variables when misthe number of rows of the matrix.
Thethird input argument of sdnvar issettothe stringvalue’ h' .
An example of C? Hermitian variableis:

>> [quiz, Hndex] = sdnvar(quiz, 2i, "h, "H);
>> nun2str(qui z{ H ndex})

ans =
22+0i 23-23i
23+23i 24+0i

. anti-Hermitian
Square anti-Hermitian matrix variable.
Only defined if the matrix iscomplex valued, i.e. the second input argument isimaginary: nti .
Contains m(m— 1) /2 independent decision variables when misthe number of rows of the matrix.
Thethird argument of sdimvar is set tothe string value’ ah’ .
An example of C3 anti-Hermitian variableis:

>> [quiz, Jindex] = sdnvar(quiz, 3i, "ah', 'J');
>> nun2str(qui z{Ji ndex})

ans =

0+0i -25+25i - 26+26i

25+25i 0+0i -27+27i

26+26i 27+27i 0+0i

At this step, note that the matrix describing the structure of the variables can be composed of zeros
and integers that are possibly multiplied by (-1), (1+1i), (1—i), (=1+1i) and (=1—1i). Theruleis
the following. Let X be a matrix variable and Xdec=qui z{ Xi ndex} be the matrix that describes its
structure. Moreover, let x be the vector of scalar (real or complex) decision variables (see section 1.2 for
itsdefinition). X i) isthe element of X inthe j-th row and k-th column. x,, isthe n-th decision variable.

Xdec(j,k)=0 if X(jk=0 constrained to be equal to zero.

Xdec(j, k) =+n if X(j,k) = Xn the n-th decision variableisreal, x, € R.
Xdec(j, k)=-n if X0 = oppositeof x, € R.

Xdec(j, k) =tn+n*i if X(j = the n-th decision variable is complex, x,, € C.
Xdec(j, k)=-n-n*i if X(j = oppositeof xp € C.

Xdec(j, k) =tn-n*i if X(j = conjugate of xp, € C.

Xdec(j, k)=-n+n*i if X(j = opposite conjugate of x,, € C.

Following this rule any structured variable can be declared:

17

o structured rectangular
Rectangular structured matrix variable depending on other decision variables.
The second input argument of sdnvar must be a matrix of real or complex “integers’ describing
the structure as exposed above. The third input argument must be set to the string value ’ st ' .
Some examples follow.

The first example consists in building a new matrix variable that depends only on existing decision
variables. Assume that the new variable F should be rectangular and composed of the conjugate of a
diagona block and an anti-symmetric block as follows:

F=[D G]

where D and G are already defined matrix variables. To declare F the commands are:

>> Ddec = qui z{Di ndex};

>> Ddecbar = conj (Ddec);

>> Gdec = qui z{G ndex};

>> Fdec = [Ddecbar , Gdec];

>> [quiz, Findex] = sdnvar(quiz, Fdec, 'st’, '[D, G');
>> nun@str(qui z{ Fi ndex})

ans =
16- 16i 0+0i 0+0i 0+0i - 19+0i -20+0
0+0i 17-17i 0+0i 19+0i 0+0i -21+40
0+0i 0+0i 18- 18i 20+0i 21+0i 0+0

The second example consists in building a new matrix variable depending on new (not yet declared)
decision variables. Assume that the new variable K should depend on three new independent scalar
variableswith the following structure:

_ |k 0 —k
K—[kg ke kg]

where ky € C, k; € R and k3 € C. The procedure to declare this variable is first to get the number
of existing decision variables, then to build the structure matrix making reference to the new decision
variables and finally to declare the variable using sdnvar :

>> get(quiz, 'vardecnb")

ans =
27

>> Kdec = [28+28i 0 -28-28i;30+30i 29 30-30i];

>> [quiz, Kindex] = sdnvar(quiz, Kdec, 'st’, 'K);

>> nun@str (qui z{Ki ndex})

ans =

28+28i 0+0i -28-28
30+30i 29+0i 30- 30i

18

3.2 Advanced declaration of some inequality termssdni neq

All termsin an LMI constraint can be declared with sdmi neq as follows:

>> qui z = sdmineq(quiz, [LMindex blrow blcol], Xindex, L, R);

Themodified LMI constraintisdeclared by itsindex, LM i ndex, and the matrix variableisreferred to by
the index, Xi ndex. Theterm LXR isadded to the (bl r ow,bl col) block and the Hermitian term R*X*L*
is added in the symmetric block (bl col ,bl row). If Xi ndex=0 then the constant terms LR and R*L* are
respectively added in the symmetric blocks.

Some optionsto thisfunction are now detailed.

3.2.1 Block partitioning

For some LMI constraintsit may not be necessary to define a block partitioning. For example take the
first LMI of the previous section. It writes as:

Q>0 <« He{—%Q}<®

It can be declared as previoudly asif composed of a single block:

>> [quiz, Imlindex] = sdmm (quiz, [n], 'Q0");
>> quiz = sdmm(quiz, [Inmlindex 1 1], Qndex, -0.5 1);

An aternative isto remove all references to the blocks:

>> [quiz, Imlindex] = sdmm(quiz, n, 'Q0);
>> quiz = sdm m (quiz, Imlindex, Qndex, -0.5 1);

Of course, the two notations are equivalent. But the usage of sdm neq without specifying blocks may
also be used for block partitioned LMIs (more than one block). The rule isthe following:

e specifying blocks
When the second input argument of sdni neq iscomposed of threeentries([LM i ndex bl row bl col])
then theterm LXR isadded to the (bl r ow, bl col) block and the Hermitian term R*X*L* is added
to the symmetric (bl col , bl row) block (same comment for constant terms LR).

e not specifying block
If the second input argument of sdni neq isascalar (LM i ndex) then theterm LXR isadded to the
entire LMI so as the Hermitian term R*X*L* (same comment for constant terms LR). Notethat in
this case the number of rows of L and the number of columns of R should be equal to the global
LMI dimension (sum of the blocks dimensions).

An example of this usage is now described. First note that the second LMI of the previous example
writes equivalently as:

AQ+ByY+3BuBL | 0 H
He{[cQb.y |—tvilf ¢
0
AQ+3BuBL | 0] [By] }
He{[co -lyi +| b, Y[1 0];<0

19

Without modifying any other declaration (block decomposition of the LMI, block declaration of other
terms...) the' Y dependent terms can be equivalently declared either by:

>> qui z
>> qui z

sdmineq(quiz, [lm2index 1 1], Yindex, Bu, 1);
sdmineq(quiz, [Imi2index 2 1], Yindex, Dzu, 1);

or with the unique command line:

>> quiz = sdmineq(quiz, |m2index, Yindex, [Bu; Dzu], [eye(n), zeros(n,p)]);

The usage of sdmi neq without the block partitioning may be useful for LMI constraints where only
part of the terms are described with a block partitioning and the others do not explicitely respect this
partitioning.

Any LMI constraint can be seen either with a block partitioning of without. In the sequel, this block
partitioning is sometimes avoided not to have complicated notations.

3.2.2 Left and right sides of an inequality

By default, a new declared term is added to the left of theinequality sign <. For example assume that up
to this point some terms have been declared and the inequality constraint writes in a schematic form as
(without describing the possible block partitioning):

L(x)<0

The command

>> quiz = sdmineq(quiz, [LMindex blrow blcol], Xindex, L, R);

modifies the constraint into:

0 0 0| 0 |0
0 0 0 0 0 0|LXR|O
L(x)—|—{® LXR+ R X*L* ®] <0 o Lx+|o0] o Jo|] 0o [0]|<o0
0 0 0 O RX*L* 0] O |O
0 0 0| 0 |0
(Diagonal blocks) (Other blocks)

But SEDUMI INTERFACE allows aso to declare terms on the right-hand side. This can be done by
multiplying by —1 the constraints index. The command

quiz = sdmineq(quiz,[-LMindex blrow blcol], Xindex, L, R;

modifies the constraint into:

0 0 0| 0 |0
0 0 0 0 0 0|LXR|O
L(x) < {@ LXR+ R*X*L* ®] o Lxy<|o0o] 0o [o] o [0
0 0 0 0| RX*L*| 0| O |O
0 0 0| 0 |0
(Diagonal blocks) (Other blocks)

The rule for left and right sides of inequality constraints are the following:
o left

If the first entry of the second input argument of sdmi neq is positive (+LM i ndex) the term is
added inthe LM i ndex constraint, to the |left-hand side of the inequality sign <.

20

e right
If the first entry of the second input argument of sdmi neq is negative (- LM i ndex) the term is
added inthe LM i ndex constraint, to the right-hand side of the inequality sign <.

Following thisrule, the next two command lines are equival ent:

>> qui z = sdmineq(quiz, +LMindex, 0, -L, R);

>> quiz = sdmineq(quiz, -LMindex, 0, +L, R);

Assume that the constraint before this command was schematically described as L (x) < R (x). Thetwo
commands append respectively the constraint such that:

L(x) - LR—R'L* <R (x) L (x) <R (x) + LR+ R*L*

The two resulting constraints are identical .

3.2.3 Transpose of some matrix variable L(X'R)

By default, a new declared term depends linearly on the matrix variable such asin LXR. The conjugate
transpose term R*X*L* being automatically added, there is no point in declaring terms that depend on
the conjugate transpose of the matrix variable. In the case when X isreal there istherefore no need have
a functionality to add a term that depends on the transpose of X (XT = X*). Nevertheless, when X is
complex valued it may be useful to declare terms that depend on the transpose (not conjugate) of some
variable. SEDUMI INTERFACE alows the user to do so. In order to declare a term depending on the
transpose of a matrix variable, such as LXTR, the syntax isto multiply by —1 the third input argument
of sdm neq.

The rule for matrix variable transpose is the following:

e not transposed
If the third input argument of sdni neq is positive (+Xi ndex) the term depends on the variable (X)
such asin: LXR (and R*X*L* is added to the symmetric block).

e transposed
If the third input argument of sdm neq is negative (- Xi ndex) the term depends on the transpose of
the variable (XT) suchasin: LXTR (and R*XL* is added to the symmetric block).

Following the rule, the two next command lines are equivalent if the variable isreal and are not if it is
complex valued:

>> quiz = sdmineq(quiz, [LMindex blrow blcol], +Xindex, L, R);

>> quiz = sdmineq(quiz, [LMindex blcol blrow, -Xindex, R, L);

3.2.4 Matrix terms depending on a scalar variable

A 1-by-1 matrix variable can be confounded with a scalar, but from a mathematical point of view mul-
tiplying a 1-by-1 matrix with an other matrix assumes that the dimensionsfit together. Problems could
therefore occur when dealing with scalar variables declared as 1-by-1 matrices. But it is not the case
with SEDUMI INTERFACE. The user may proceed without worrying.

21

3.2.5 Scalarl and R multipliers

For the same reason as exposed in the last paragraph, there could be some trouble when giving scalar
valuesto the matrices L and R (fourth and fifth input arguments of sdni neq). But SEDUMI INTERFACE
handles al so these cases in the natural way.

3.2.6 Hermitianterms (LXL* and LL*)

Noticing that for Hermitian termsit is quite tedious to be aware of automatic duplication when working
in a diagonal block, another syntax is accepted by sdm neq. This syntax is based on the fact that most
Hermitian terms can be reformulated as:

LXL* LL*

for variable dependent and constant terms, respectively. In order to declare such Hermitian terms the
following rule is adopted:

e not Hermitian
If both the fourth (L) and the fifth (R) input arguments are declared and are non empty, then the
added term is LXR or LR (variable dependent term or constant term, respectively) in the block
(bl row,bl col) and R*X*L* or R*L* in the symmetric block (bl col ,bl r ow).

e Hermitian
If the fourth input argument (L) is specified and the fifth input argument (R) is omitted or empty
(R=[1), then the added term is LXL* or LL* (variable dependent term or constant term, respec-
tively). Thiscan only be doneif the block is on the diagonal and the variable X is Hermitian.

To show that this syntax simplifies some notations, take the constant term in the LMC problem of the
previous section (By B, = He{%BNBJV}). Thisterm can be equivalently declared with the two following
syntaxes:

>> quiz = sdmineq(quiz, [Im2index 1 1], 0, Bw, 0.5*Bw);

>> quiz = sdmineq(quiz, [Ini2index 1 1], 0, Bw;

When declaring Hermitian terms such as LXL*, the matrix X is assumed to be Hermitian. Otherwise,
there might be some complications. Infact, if X issquare non-Hermitian, SEDUMI INTERFACE outputs
awarning message and implements by default the term: 0.5L (X + X*)L*.

3.2.7 Terms with no multiplying data

Quite often, some terms of the constraints depend directly on a matrix variable without any dependency
on the data of the problem. A famous example is the Lyapunov matrix. In all control problems the
Lyapunov matrix is constrained to be definite positive (Q > 0). In the example of the previous section,
this specification is trandated into He{ — %Q} < 0. To simplify the declaration of such simple terms the
following rule is adopted:

e elementary terms
If the fourth and the fifth input arguments of sdmi neq are omitted, then the added term isequal to
the specified matrix variable.

22

Following thisrule and the left-right rule, the declaration of the inequality Q > 0 has the two equivalent
syntaxes:

>> quiz = sdmineq(quiz, +l mlindex, Qndex, -0.5 1);

>> qui z = sdmineq(quiz, -Inilindex, Q ndex);

3.2.8 Terms with Kronecker products (K@ X)RandL(X®K)R)

Sometimes, it may happen that theinequality constraint has one or more terms with a Kronecker product
between a matrix variable and a data variable. Such a product is linear in the variables but is quite
tedious to implement. It is frequently used to simplify the inequality notations but may complicate the
programming. Fortunately SEDUMI INTERFACE is designed to tackle the Kronecker products and does
it quitefast. Two configurations are considered:

LIK@X)R or L(X@K)R

To deal with such terms the sdmi neq operator is called with 6 or 7 input arguments (one or two more
input arguments than for the generic usage). Theruleisasfollows:

o first Kronecker product : K@ X
When thesdmi neq operator iscalled with asixth input argument (K), theterm L(K @ X)Risadded
to the (bl row, bl col') block and the Hermitian term (L(K @ X)R)* is added to the symmetric
(bl col, bl row block.

e second Kronecker product: X &K
When the sdni neq operator is called with asixth input argument (K) and a seventh input argument
set to —1, the term L(X @ K)R is added to the (bl row, bl col) block and the Hermitian term
(L(X ® K)R)* is added to the symmetric (bl col , bl row) block.

Toillustratethe use of thisrule consider the Lyapunov inequalities assessing Hurwitz and Schur stability
of amatrix A, respectively:

ATP+PA <0 and ATPA—P <0

These two inequality constraints share the common expression:

T 1
[1 A]K@P[A] <0
. 01 -1 0 . - . .
withK = [10] and K = [0 1] for Hurwitz and Schur stability, respectively. Applying both

the Kronecker product rule and the symmetric matrix rule the inequality constraint is entirely defined for
both stability conditionswith the unique command:

>> quiz = sdmineq(quiz, LMindex, Pindex, [eye(n),A], [], K);

23

3.3 Equality constraints

Equality constraints can be defined quitein the same way as the inequality constraints. The main differ-
ence is that equality constraints may not be square and may not be Hermitian. For this user’s guide the
following constraint is used. It is a purely fictitious constraints with no relation the the H ., problem in
automatic control.

3 1
&
21 [K 0] B H|:(|)(|)1:|—|-|:%I(I)0:| 0
17 0 Quy | =

3.3.1 Defining an equality constraint:sdm nme

Toinitialise an equality constraint the usageis:

>> [quiz, Ineindex] = sdmne(quiz, [2 1], [3 1], "[K0;0 Q@ =[HO0;0 conj(D11)-1+i]");

Thefirst input argument isthe sdnpb object to append. The second and third input arguments are vectors
containing respectively row block dimension and column block dimension in the equality constraint.
Thelast input argument is an optional label used for nice display. The appended sdnpb object isreturned
along with an index, | mei ndex, that makes reference to the declared constraint.

At thisstep the LMC problem isdescribed in table 5.

>> quiz
LMC problem Optinmal H nfty State-Feedback Synthesis
matrix variabl es: i ndex nane

1 Y

2 gamm” 2

3 Q

4 D : diagona

5 G

6 H

7 J

8 [D G

9 K
equality constraints: index norm name

1 - | nf [K0;0 Q1] =[HO0;0 conj(D11)-1+i]
inequality constraints: index neig nane

1 -1 nf Q0

2 - | nf H nfty state-feedback
mexi m se obj ective: - gamm” 2

unsol ved

Table 5: Completely declared LMC problem

To get data on these equalities constraints such as the number of constraints, their block dimensions and
their names, use the following syntaxes:

24

>> get(quiz, 'eqgnb’)
ans =

1
get(quiz, 'eqdinrow, |neindex)
ans =

2 1
get(quiz, 'eqdintol’, |neindex)
ans =

3 1
>> get(quiz, 'egname’, |melindex)
ans =
[K0;0 Q1] = [H 0;0 conj(D11)-1+i]

3.3.2 Add aterm to an equality constraint: sdneq

All termsin an LME constraint are declared with sdmeq as follows:

qui z = sdmeq(qui z, [LMEi ndex blrow blcol], Xindex, L, R);

This command adds to the (bl row, bl col) block of the equality constraint referenced by the index
LMEi ndex aterm LXR where X isthe matrix variable referenced by the index Xi ndex. If theindex is
equal to 0 a constant term LR is added.

Note that for the equalities there is no necessity for the constraintsto be Hermitian. Therefore, nothing
similar to the Hermitian terms added in LMIs is performed when adding aterm to an LME.

Onthe other hand, asfor theinequality constraints, the generic rulefor defining LM E terms has advanced
usages. These are now described shortly.

Block partitioning

e specifying blocks
When the second input argument of sdmeq iscomposed of three entries ([LMEi ndex bl row bl col])
then the term LXR is added to the (bl r ow, bl col) block (same comment for constant terms LR).

e not specifying block
If the second input argument of sdreq isascalar (LME ndex) then the term LXR is added to the
entire LME (same comment for constant terms LR). Note that in this case the number of rows of L
must be equal to the number of rows of the whole LME (sum of row dimensionsof the blocks) and
the number of columns of R should be equal to the number of columns of the whole LME (sum of
column dimensions of the blocks).

Left ad right sides of the equality

o left
If thefirst entry of the second input argument of sdneq is positive (+LMEi ndex) the term is added
in the LMEi ndex constraint, to the |eft-hand side of the inequality sign =.

e right
If the first entry of the second input argument of sdreq is negative (- LMEi ndex) theterm is added
in the LMEi ndex constraint, to the right-hand side of the inequality sign =.

25

Transpose and conjugate of some matrix variable

not transposed, not conjugate
If the third input argument of sdmi neq is positive and real (+Xi ndex) the term depends on the
variable (X) such asin: LXR.

transposed, not conjugate
If the third input argument of sdmi neq is negative and real (- Xi ndex) the term depends on the
transpose of thevariable (XT) suchasin: LXTR.

not transposed, conjugate
If the third input argument of sdmi neq is positive and purely imaginary (+i *Xi ndex) the term
depends on the conjugate of the variable (X) such asin: LXR.

transposed, conjugate
If the third input argument of sdni neq is negative and purely imaginary (-i * Xi ndex) the term
depends on the conjugate transpose of the variable (X*) such asin: LX*R.

Hermitian terms (LXL* and LL*)

not Hermitian
If both the fourth (L) and the fifth (R) input arguments are declared and are non empty, then the
added term isLXR or LR (variable dependent term or constant term, respectively).

Hermitian

If the fourth input argument (L) is specified and the fifth input argument (R) is omitted or empty
(R=[1), then the added term is LXL* or LL* (variable dependent term or constant term, respec-
tively). For LME constraints this advanced usage does not require the term to be added in a
diagonal block.

Elementary
If both the fourth and the fifth input arguments (L and R) are omitted, then the added term is X.

Terms with Kronecker products (L(K @ X)Rand L(X@K)R)

first Kronecker product : K@ X
When the sdnmeq operator is called with a sixth input argument (K), the added term is of the form
LK@ X)R.

second Kronecker product: X @ K
When the sdireq operator is called with a sixth input argument (K) and a seventh input argument
set to —1, the added term is of theform L(X @ K)R.

All these rules can be applied together. They are applied for the two examples of equalities assumed at
the start of section 3.3.

A first declaration writes as:

qui z
qui z
qui z

qui z
qui z
qui z

= sdmeq(quiz, [lneindex 1 1], Ki ndex, 1, 1);
= sdmeq(quiz, [lneindex 1 1], H ndex, -1, [i i 0; 001]);
= sdmeq(quiz, [lneindex 1 1], 0, -1, [2i i 0; 00 0]);
= sdmeq(quiz, [Inmeindex 2 2], Qndex, [1000], [1; 0; 0; 0]);
= sdnmeq(qui z, [l nmeindex 2 2], 0, -1, 1-i);
= sdmeq(quiz, [lnmeindex 2 2], i*Dindex, -[1 0 0], [1,; 0; 0]);

26

An equivalent version, but more involved, writes as:

qui z
qui z
qui z

qui z
qui z
qui z

sdmeq(qui z, [Inelindex 1 1], Ki ndex) ;
sdmeq(qui z, [-Inelindex 1 1], H ndex, 1, [
sdmeq(qui z, [-Inelindex 1 1], 0, 1, [2i

[EY

sdmeq(quiz, [Ime2index 2 2], Qndex, [1000]);
sdmeq(quiz, [|me2index 2 2], 0, 1 iy
Sdrreq(qUin ['lfTEZi ndex 2 2], i *Di ndex, [1 0 0]);

N

Analysis of the computed solution

To analyse the obtained point, the nor m data allow to check that every equality constraint is satisfied.
These data are displayed with the LM C problem (table 6) and can also be obtained with the get function

as.

ans
eps

>> get(quiz, "eqnorm, |melindex)

LMs

LMC problem Optinmal H nfty State-Feedback Synthesis
matrix variabl es: i ndex nane

equality constraints:

inequality constraints: index neig nane

maxi n se objective:-gamma"2 = -27.3

Y
gama” 2

O

1
2
3
4 D : diagonal
5 G
6 H
7 J
8 [D G

9 K

index norm name

1 eps [K0;0 Q1] = [H 0;0 conj (D11)-1+i]

1 eps 0
2 eps H nfty state-feedback

are feasible

Table 6: Solved LMC problem

The nor m data correspond to the norm of each equality constraint evaluated on the point obtained by
SEDUMI. The constraints are satisfied if their minimal norm is zero. The nor mdata can have different
values:

-1 nf : occurs when the LMC problem has not been solved (asin table 5).

0 : occurs when the constraint is strictly equal to zero.

eps : occurs when the constraint is “close” to zero. The SEDUMI algorithm has an accuracy set
by default to 107°. All constraints with a norm less than this accuracy level are assumed to be

“egual” to zero. Thenor mdatais set to eps in SEDUMI INTERFACE.

positive scalar : occurs when the equality constraint is not satisfied.

27

3.4 The trace as an objective rfiax trace(BX))

The operator sdrmobj is designed to declare linear objectives by adding recursively scalar terms of the
typeg Xe where g and e are respectively arow and a column vector. Thisusage was aready defined in
the previous section. Here we demonstrate how it can be used to define a linear trace objective. Assume
the objectiveis:

max trace(BX)

SEDUMI INTERFACE can declare directly the trace of a matrix variable. Theruleis:

trace objective

If the third and fourth input arguments of sdnobj are respectively the string ' tr' and a matrix (or a
scalar) (B), the term added to the maximisation objectiveis: trace(BX). With the help of this syntax,
the objective can be declared in one line as follows:

>> quiz = sdmobj (quiz, Xindex, 'tr’', B, 'trace(BX)');
>> get (qui z, ’'objnane’)

ans =

trace(BX)

Remark that if the dimensionsfit, the following relation holds:
trace(AC) = trace(CA)

Therefore, to declare aterm such as trace(CXC') one can declare trace(BX) withB = CTC.

3.5 Setavalue to some variablesdnset

In some cases the user may want to solve an LM C problem with one (or more) variable frozen to a speci-
fied value. Thisalowsto test if some value belongs to the admissible set constrained by the inequalities.
The syntax isthe following:

>> quiz = sdnset (quiz, Xindex, Xvalue);

The first input argument is the sdnpb object to append; the second input argument is the index of the
variable; the third input argument is the value of the variable the user has chosen. Having set a variable
to some value, the indexes of the other variables are not modified. The equalities, inequalities and the
objective are rearranged to take into account that the variable becomes a constant. The label of the
removed variableis appended as well as the labels of removed inconsistent constraints.

Toillustratethe use of sdnset let usconsider theH., state-feedback problem of the previoussection. The
LMC problem was defined in order to minimise the H., cost and is displayed by SEDUM| INTERFACE
as shown in table 6. One can expect that since the optimal value isy°P* = /27.2878, the LMC problem
also hasasolutionif yis set to a higher value, for example y= 1/30. To check this, set the value of y and
solve the new LMC praoblem as shownin table 7.

Note that the LMC problem has been transformed from a optimisation problem to a feasibility problem
(the objectiveisthen equal to zero). Moreover, note that the variabley wasremoved from the inequalities
but it isstill possibleto get itsfixed value.

For recursively defined variablessome complications may occur when using sdnset. Take as an
example the variable F defined as the concatenation of two previously defined variables:

F=[D G]

28

>> qui z = sdnset (qui z, gindex, 30);
>> quiz = sdnsol (quiz);
>> quiz
LMC problem Optinmal H nfty State-Feedback Synthesis
matrix variabl es: i ndex nane
1 Y
2 gamma” 2 SET TO A CONSTANT
3 Q
4 D : diagona
5 G
6 H
7 J
8 [D G
9 K
equality constraints: index norm name
1 eps [K0;0 Q1] = [H0;0 conj(D11)-1+i]
inequality constraints: index neig nane
1 0.001 0
2 0.001 Hnfty state-feedback
maxi m se objective:-gamm"2 = 0
feasible

>> qui z(gi ndex)
warning : index refers to a variable that was set to a constant
ans =

30

Table 7: Same LMC problem with a frozen value of y

The question is: What happensto the variable F if the value of G is set to a constant?
The answer is: Nothing.

SEDUMI INTERFACE only modifies the inequalitiesand the objective that depend explicitly on the vari-
able whose valueis set. For recursively defined matrices, there is no modification on the “copies’ of the
frozen variable. Thisisillustrated in the above example by thefact that if G isfrozen, its structure matrix
becomes empty, while the variable F still depends on the same decision variables (see table 8).

>> quiz = sdmset(quiz, Gndex, [0-11; 102; -1-20]);

>> qui z{ G ndex}

Varning: index refers to a variable that was set to a constant
ans =

[]
>> nun2str (qui z{ Fi ndex})

ans =

15- 15i 0+0i 0+0i 0+0i - 18+0i -19+0
0+0i 16- 16i 0+0i 18+0i 0+0i -20+0
0+0i 0+0i 17-17i 19+0i 20+0i 0+0

Table 8; Structure of G and F when G is set to a constant

3.6 Tuning the solver parameters

To illustrate the influence of some parameters on the solution issued from the SeDuMi solver we chose
an example for which some complications are noticed. The example is a mixed H,/H., state-feedback

29

synthesisproblem. The exact data of this example are not given for conciseness reasons (system of order
n = 10). When solved without any modification of the default solver parameters the result is shown in
table 9.

>> qui z = sdnsol (qui z)

LMC problem H2/Hi nfty state-feedback synthesis

matrix variabl es: index name
1 X
2 T
3 S
inequality constraints: index neig nane
1 0.005 X>0
2 3e-09 Hinf
3 3e-08 gram
4 -eps H2
maxi ni se objective:-trace(T) -g = -3.86

feasible

Table 9: Optimally solved LM C problem having accuracy complications
The display claimsthat the problem isfeasible but the nei g value of the fourth inequality isnegative. As

exposed in the previous section, this statusis not surprising. It indicatesthat SEDUMI stopped whilethe
computed point was as close to the optimum as the accuracy level.

3.6.1 SeDuMi parameters

To improve the accuracy the user has to specify new parameters to SEDUMI. Thisis done with the
syntax:

>> qui z=sdnsol (qui z, pars);

The optional second input argument of sdnsol must have the structure adopted by SEDUM1 [25]. One
of the fields of the structure par s allowsto choose a precision level (default is 10~9). Let us modify in
this way the accuracy of SEDUMI and hopefully the obtained iterate will have all eigenvalues strictly
positive. Table 10 showsthe computation result.

>> pars. eps=le- 12;
>> qui z=sdnsol (qui z, pars)

LMC problem H2/Hi nfty state-feedback synthesis

matrix variabl es: index nane
1 X
2 T
S

no equality constraint
inequality constraints: index neig nane

1 0.005 X0
2 3e-09 Hinf
3 3e-08 gram
4 -7e-10 H2
maxi ni se objective:-trace(T) -g = -3.86

mar gi nal feasible

Table 10: Same LMC problem solved with a smaller precision parameter

30

As can be seen, SEDUM| failed to find a feasible solution satisfying the new precision. In fact, the
last iterate is identical to the previous one. SEDUMI stopped due to numerical problems. The display
explicitly warns that the feasibility is not satisfied with the required precision (an eigenvalue is negative
and less than —10~12) but the algorithm does not prove that the LMC problem is infeasible. To have
details on the status of the obtained iterate, the user can get the output information from SEDUM1 with
the help of the sdnpb/ get operator:

>> get(quiz,’ solver’)
ans =

cpusec: 2.5600

iter: 17
feasratio: 0.9403

pinf: 0

dinf: 0

nunerr: 1

For details on the fields of this output see [25]. The last field numerr: 1 isnon-zero in this example.
This explicitly shows that some numerical error has occurred.

3.6.2 Definite and semi-definite inequalities

Up to this point we have discussed how to modify the algorithm parameters using the second argument
of sdnsol and how to get the status of the SEDUM | solver issued after computation. But we have not yet
solved the H, /H., state-feedback synthesisproblem. Thereis still one non-strictly satisfied inequality in
the result (the mei g data of the fourth inequality is negative - 7e- 10).

To explain the difficulty encountered here, note that for SEDUMI the constraints are semi-definite in-
equalities. Therefore, SEDUMI assumesthat if aminimal eigenvaluenei g of some constraintisequal to
zero (or close to zero at the precision level), the constraint is satisfied. In the Hy/H., synthesis problem
that is used as an example here, we are therefore disappointed not to have strictly positive eigenvalues
while the computed iterate is satisfying for SEDUMI.

To avoid such misunderstandings a way out is then to “transform” all semi-definite inequalities into
definite inequalities. To do so, the user has to introduce a constant positive definite term a1 in all
inequalities such that:

L(x) <R (x)—oa1 = L(x) <R (x)

This operation transforms the constraint “ all eigenvalues must be strictly positive” into “ all values must
be superior or equal to a > 0". The modified constraint is conservative but one can expect that the
modification is not disturbingas long as a issmall.

We now test this procedure on the Hy/H., state-feedback synthesis problem. First, one has to add the
constant term a1 to all inequalities. This may be tedious, therefore a simplified syntax is adopted in
SEDUMI INTERFACE:

e add a scalarto a LMC problem
If ascalar a isadded (or subtracted) to a sdnpb object, the result of this operation is an identical
sdnpb object where a constant matrix a1 of appropriate dimension has been added (or subtracted)
to theright side of all inequality constraints.
The subtraction operator is applied to the example with o = 10~°. Theresult is givenin table 11.

The result is satisfying: all eigenvalues of the constraints in the LMC problem qui z2 are positive or

31

>> quiz2 = quiz - le-6;

>> qui z2 = sdnsol (qui z2)

LMC problem H2/Hi nfty state-feedback synthesis

matrix variabl es: index nane
1 X
2 T
S

no equality constraint
inequality constraints: index neig nane

1 0.005 X>0

2 eps H nf

3 7e-09 gram

4 -eps H2
maxi ni se objective:-trace(T) -g = -3.86
feasible

Table 11: Same LMC problem solved with a-translated constraints

at least greater than the accuracy level —10~°. This means that the solution is acceptable for the LMC
problem qui z with al eigenvalues superior or equal toa —e = 10"6—10"° > 0.

3.6.3 Feasibility radius

Another and last way to tune the solver convergence without modifying strongly the LMC problem, is
to impose a feasibility radius. It constrains the norm of the vector of decision variables. The convexity
of the LMC problem is not modified but the additive constraint may add some extra conservatism. The
“trick” isto impose a sufficiently large feasibility radius and in the same time reduce at its maximum the
domain in which the solver has to seek the optimal solution.

The syntax for constraining the feasibility radiusisto give athird input argument to sdnsol . Constrained
witharadiusof 10°, themixed H,/H., state-feedback synthesisproblem convergesto the solutionof table
12.

>> qui z=sdnsol (qui z,[], 1e9)

LMC problem H2/Hi nfty state-feedback synthesis

matrix variabl es: index nane
1 X
2 T
S

no equality constraint
inequality constraints: index neig nane

1 0.01 x>0
2 6e-06 Hinf
3 2e-05 gram
4 8e-07 H2
maxi ni se objective:-trace(T) -g = -3.86

feasible

Table 12: Same LMC problem solved with afeasibility radius

Note that the solution found this time has all its eigenvalues strictly positive. It is a by-product of the
feasibility radius. The SEDUMI solver has quite often less numerical problems if a feasibility radius

32

is appropriately chosen. To guide the user in choosing this radius we recommend to solve the LMC
problem once without any radius. If the solution is not convenient, get the value of the norm on the
decision variable vector using the sdnpb/ get operator:

>> get (quiz,’ ynorm)
ans =
2. 7383e+06

At last solve again the same problem with afeasibility radius greater than the previously obtained norm.
This empirical procedure often gives successful results.

4 Warnings for MATLAB LMI Toolbox users

This section is specially written for users that are familiar with the LMI Control Toolbox of MATLAB.
Other readers can skip this section and therefore avoid potentially confusing remarks.

4.1 “Left” and “right” sides of an inequality

The notionsof “left” and “right” sides of a matrix inequality are quite differentin SEDUMI INTERFACE

and in the LMI Control Toolbox. In both interfacesthe left and right sides correspond to the formul ation:
L(x) < R(x)

But while in the LMI Control Toolbox it is possible on a feasible point x* to evaluate separately both
sides, in SEDUMI INTERFACE the notion of sidesis only used to define the constraints.

The right side in SEDUMI INTERFACE is used to declare terms that appear with the minus sign in a
negative definite constraint. For example, if Aisarea valued matrix,

>> qui z = sdmineq(quiz, -c, Xindex, +A)

is a command that adds a term such as;
L(x) < R(x)+AXAT or L (x) - AXAT < R (x)

In contrast with the LMI Control Toolbox itisNOT equivaent to:

>> qui z = sdmineq(quiz, +c, Xindex, -A)

that declares aterm such that:
L(x)+ (=A)X(-AT) < R(x) that is L (x) +AXAT < R (x)

This remark also holds for constant terms that we chose to declare with the same structure as variable
terms. Therefore, beware that the two following commands are totally different:

>> quiz
>> quiz

sdm neq(quiz, -c, 0, +B)
sdm neq(quiz, +c, 0, -B)

They respectively declare the following terms (if Bisreal):
L(x) < R(x)+BBT and L(x)+(-B)(-B)T

IA
Py
=

whichisNOT the same at all.

33

4.2 Matrix and scalar multipliers for inequality terms

A second warning concerns the use of scalar multipliersin sdm neq. Asdescribed previously, SEDUM |
INTERFACE allowsto declare terms such as:

>> qui z = sdnineq(quiz, c, Xindex, 2, 3);
>> quiz = sdnmineq(quiz, ¢, Pindex, 4, A);
>> quiz = sdmineq(quiz, ¢, Qndex, 5);

>> quiz = sdmineq(quiz, ¢, Rindex);

These commands add terms such that (assume all matrices are real):
(21)X(31) + (31) TXT(21)T = 6(X +XT)
(41)PA+ATPT (41)T = 4(PA+ATPT)
(51)Q(51)" = 25Q
(LHR(1)T = R

Therefore the three following notations are equivalent (R is assumed to be symmetric):

>> quiz = sdmineq(quiz, ¢, Rindex);
>> quiz = sdmineq(quiz, ¢, Rindex, 1);
>> quiz = sdmineq(quiz, ¢, Rindex, 1, 0.5);

but they are not equivalent asin the LMI Control Toolbox to the notation:

>> quiz = sdmneq(quiz, ¢, Rindex, 1, 1);

5 Conclusions

SEDUMI INTERFACE makes the interface between a standard LMI formalism and the solver SEDUMI.
For control applicationsit is well suited and we are aready working on future evolutions. We expect

potential users to contact us with remarks and possibly pass on some examples to illustrate this report.

These remarks and contributions may influence the future developments and make the tool more com-
plete. For example, since SEDUMI INTERFACE 1.02, both complex LMIs and complex variables have
been included to the tool, since SEDUMI INTERFACE 1.03, linear matrix equalities can be added to the
LMI constraintsand since SEDUM1 INTERFACE 1.04, block partitioning, maximisation of Trace(BX)
are available.

Among future evolutions are:

¢ Concatenation.
The concatenation of several LMC problems can be viewed as the optimisation problem con-
structed with al the linear matrix constraints of each LMC problem and where some of the matrix
variables are common. Such an operator can help for optimisation problems defined over the
intersection of feasible domains.

e Trandator.
Following the example of [19, 24, 9], the tool can include some translator functionalitiesin order
to call other solverswhen the trandation is admissible.

34

Acknowledgements

Thanksalot to Jos Sturm of the Faculty of Economics, Department of Econometrics, Tilburg University,
The Netherlands, for hiswork on SEDUMI and his encouragements. Thanks also to Micha Kvasnica of
the Slovak University of Technology in Bratislava, Slovakia, for his useful comments.

References

[1]

[2]

(3]

[4]

(9]

6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

F. ALIZADEH, J.-P. HAEBERLY, M.V. NAYAKKANKUPPAM, M.L. OVERTON and S. SCHMIE-
TA, “SDPpack Version 0.9 Beta for Matlab 5.0 Semidefinite Quadratic Linearly Con-
strained Programs’, New York University, 1997, URL: www. cs.nyu.edu/faculty
[overton/ sdppack/ sdppack. htm .

S.J. BENSON and Y. YE, “DSDP3: Dua Scaling Algorithm for General Positive Semidefinite
Programs’, Tech. report n. ANL/MCS-P851-1000, November 2000, Argonne National Laboratory.

S.J. BENSON, Y. YE and X. ZHANG, “Solving large scale sparse semidefinite programs for com-
binatorial optimization”, SSAM Journal of Optimization, vol. 10, 2000, pages 443-461.

B. BORCHERS, “CSDP, 2.3 User's Guide’, Optimization Methods and Software, vol. 11, n. 1,
1999, pages 597-611.

B. BORCHERS, “CSDP, A C Library for Semidefinite Programming”, Optimization Methods and
Software, vol. 11, n. 1, 1999, pages 613-623.

S. BoyD, L. EL GHAoul, E. FERON and V. BALAKRISHNAN, Linear Matrix Inegqualities in
Systemand Control Theory, SIAM Studiesin Applied Mathematics, Philadelphia, 1994.

N. BRiXIUS, R. SHENG and F.A. POTRA, “SDPHA User Guide”, Department of Computer Sci-
ence, University of lowa, July 1998, URL: www. ¢s. ui owa. edu / ~ bri xi us/ SDPHA.

M. CHILALI, “Méthodes LMI pour I’ Analyse et la Synthése Multi-Critere”, PhD thesis, Paris IX,
Dauphine, February 1996.

L. EL GHAoul, F. DELEBECQUE and R. NIKOUKHAH, “LM TOOL : a User-Friendly Inter-
face for LMI Optimisation”, 1995, User's Guide, Beta version, URL: robotics. eecs
. berkel ey. edu/ “el ghaoui /Inmitool/Imtool.htm.

L. EL GHAoul and S.-I. NICULEScuU, editors, Advancesin Linear Matrix Inequality Methodsin
Control, Advancesin Design and Control, SIAM, Philadel phia, 2000.

L. EL GHAouUI, F. OUSTRY and M. AITRAMI, “A Cone Complementarity Linearization Algorithm
for Static Ouput-Feedback and Related Problems’, |EEE Trans. on Automat. Control, vol. 42, n. 8,
1997, pages 1171-1176.

K FuJsawa, M. KoJdMmA and K. NAKATA, “SDPA (SemiDefinite Programming Algo-
rithm) User's Manua - Version 5.007, Tokyo Ingtitute of Technology, August 1999,
URL:ftp://ftp.is.titech.ac.jp/pub/ OpRes/ sof t war e/ SDPA.

P. GAHINET, A. NEMIROVSKI, A.J. LAUB and M. CHILALI, LMI Control Toolbox User’s Guide,
The Mathworks Partner Series, 1995.

K.M. GRIGORIADIS and E.B. BERAN, “Advancesin Linear Matrix Inequality Methods in Con-
trol”, chapter 13 : Alternating Projection Algorithmsfor Linear Matrix Inequalities Problems with
Rank Constraints, pages 251-267, SIAM, Philadelphia, 2000, Edited by L. El Ghaoui and S.-I.
Niculescu.

35

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

T. Iwasakl, “LPV System Analysis with Quadratic Separator for Uncertain Implicit Systems’,
LMI Methodsin optimisation, identification and control, Seminar, Compiegne, France, May 1999.

S.E. KARISCH, “CUTSDP - A Toolbox for a Cutting-Plane Approach Based on Semidefinite Pro-
gramming”, Department of Mathematical Modelling, Technical University of Denmark, June 1998,
Technical Report IMM-REP-1998-10, URL: www. i nm dt u. dk / ~sk/ cut sdp.

Y. LABIT, D. PEAUCELLE and D. HENRION, “SeDuMi interface 1.02: a tool for solving LMI
problems with SeDuMi”, proceedings of CACSD, Glasgow, Scotland, September 2002, a parditre.

F. LEIBFRITZ, “An LMI-based agorithm for designing suboptimal static H,/H. output feedback
controllers”, SAM Journal on Control and Optimization, vol. 39, n. 6, 2001, pages 1711 - 1735.

J. LOFBERG, “YALMIP; Yet Another LMI Parser”, August 2001,
URL: www. control .isy.liu.se/"johanl/yal mp.htnl.

H.D. MITTELMANN, “An Independent Benchmarking of SDP and SOCP Solvers’, Tech.
report, July 2001, Arizona State University, URL: www. optim zation-online.org
/ DB_HTM./ 2001/ 07/ 358. ht ni .

D. PEAUCELLE and D. ARZELIER, “An Efficient Numerical Solution for H, Static Output Feed-
back Synthesis’, proceedings of European Control Conference, Porto, Portugal, September 2001,
pages 3800-3805.

D. PEAUCELLE, D. HENRION and Y. LABIT, “User's Guide for SEDUM!I INTERFACE 1.01",
Optimization Online, November 2001, URL: www. opti mi zati on -online. org /DB _HTM./ 2001
/11/398. htmi .

D. PEAUCELLE, D. HENRION and Y. LABIT, “User'sGuidefor SEDUM!I INTERFACE 1.01: Solv-
ing LMI problemswith SEDUM!”, Tech. report n. 01445, October 2001, LAAS-CNRS, Toulouse,
France, URL: wwv. | aas. fr /" peaucel | / SeDuM I nt. htni .

PETE SEILER, “LMIlab Trandator”, Tech. report, July 2001, University of Berkeley, California,
URL: vehi cl e. ne. berkel ey. edu /" guiness/Imtrans. htm .

J.F. STURM, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’,
Optimization Methods and Software, vol. 11-12, 1999, pages 625-653, URL: fewcal . kub. nl
['sturm sof t ware/ sedum . ht i .

T.C. ToH, M.J. TobD and R.H. TuTuNcu, “SDPT3 — a MATLAB software package for
semidefinite programming, version 2.1, Optimization Methods and Software, vol. 11, 1999, pages
545-581, URL: www. mat h. nus. edu. sg / ~ mat t ohkc/ i ndex. ht ni .

J.G. VANANTWERP and R.D. BRAATZ, “A Tutoria on Linear and Bilinear Matrix Inegqualities’,
J. Process Control, vol. 10, 2000, pages 363-385.

L. VANDENBERGHE and S. BoyD, “SP : Softvare for semidefinite programming. User’s guide,
betaversion”, Tech. report, 1994, K.U. Leuven and Stanford University, URL: www. st anf or d. edu
[~ boyd/ SP. ht i .

S.-P. Wu and S. BoyD, “Design and implementation of a Parser/Solver for SDPs with Matrix
Structure”, proceedings of IEEE Conference on Computer Aided Control System Design, New
York, 1996.

36

