Experimental Evaluation of Resilience for Ubiquitous Mobile Systems

Marc-Olivier Killijian Nicolas Rivière Matthieu Roy

□ Why are you attending this workshop ?

- Ubiquitous systems are difficult to evaluate
 Usability, Acceptance, Performance, Resilience
- Analytically: need for models, tools, etc.
- Experimentally: need for platforms, prototypes, benchmarks, metrics, data, applications, etc.
- □ Why is it so difficult ?
 - What are ubiquitous systems ?
 - Scale (#/size devices/environment)
 - What to evaluate ?

□ User experience, network parameters, etc.

From prototyping to evaluating

- We need/have/want to build prototype
 - Prototyping ambient-ubi-mobile critical systems?
 - How to evaluate their properties/resilience?
 - Can we create a benchmark?
- Ubiquitous systems are very diverse
 - VANETs
 - Urban social networking
 - Nano-robots
- Can we have a unified approach
 - Scale, scale, scale

□ Typically composed of fixed and mobile devices

- Programmable mobile platform
- Light processing unit
- Wireless comm. interfaces (adhoc+infra)
- Positioning device
- Dedicated laboratory
 - Infrastructure
 - Computing, communication, positioning
 - Reproducible experiments
 - Fault injection
 - Different scales

Constraints

- Reproducible and characterized
- Variable scale
- Indoor
- Cost
- Technical issues
 - Precise indoor positioning
 - Programmable mobility
 - Range-controlled communication

Desired precision

- In-vehicle GPS ≈ 5m
- Scale reduction factor 50
 □ Indoor precision ≈ 10cm
- Several technologies
 - Scene analysis (motion capture)
 - Triangularization (RF, ultra-sound, UWB, etc.)
 - etc.
- Cricket
 - Precision ≈ 2-3cm
 - Accuracy, Cost

Cricket deployment

- □ Lab 100m² : 6x17m
- □ Crickets range ≈ Ø6m
 - 18 crickets for the infrastructure
 - Any place covered by 2 crickets

17 m

Programmable Mobility

Reproducible Mobile experiments
 Small robot platforms
 Carry PDA or laptop

- Different designs
 - Tape tracks

- Precision is « OK » and making progress
- □ 20cm/s for a few hours
- « Remote-controlled » using infrared
- Cricketized version
 - Better precision
 - □ Increased speed (expect 60cm/s for 200+ km/h)

Lynxmotion 4WD

The BIG issue: wireless communication

2 technical questions

- How to scale down WIFI ?
 - □ Hundreds meters \rightarrow few (2-3) meters
 - Precisely and controlled
- How to build communication obstacles ?
 - Tunnels, mountains, buildings, etc.
- Potential solutions
 - Via emulation
 - Reducing Tx power of adapters
 - Access driver, Signal attenuators
 - Faraday cages, tents, etc.

WIFI USB key+ external antenna + attenuators + faraday socks

Attenuators

The resulting platform

- Evaluate each part (mobility, position., comm.)
 - Accuracy, precision, speed, cost, etc.
- Evaluation via benchmarking
 - Representativity, validity
 - □ Check against « reality » ?

- Use community data sets, such as Crawdad
- Reproducibility
 - □ Stability of the results of repeated experiments
 - Do not forget concurrency
 - Some variability is normal (desirable?)
 - But can be measured

- □ More expensive than simulation
 - Money, time, space
- Closer to real systems
 - Real software (application, middleware, OS)
 - Integration
 - Hardware prototyping
 - Real mobility, positioning, etc.
- ➔ For critical systems
 - A prototype is to be developped
 - Spend a few bucks to evaluate resilience

Ubiquitous (mobile) systems are hard to evaluate

- Models, Metrics, Approach, Tools, etc.
- Evaluation of resilience is even worse
 - Fault/failure models
 - Fault injection
- Prototypes are necessary
 - Controlled environment: for evaluation
- Open issues
 - Validation, simulation
 - Fault-injection (accidental/malicious!)

Nano-bot engines at LAAS-CNRS

Positioning Infrastructure	≈ 3 k€
Nodes	
Communication	≈ 50 €
Robots	≈ 500 €
Cricket	≈ 200 €
Laptop	≈ 1k€

- Total
 - 4 nodes ≈ 10k€
 - 8 nodes ≈ 15k€
 - 16 nodes ~ 30k€

Panel : Ubicomp is so vast How to characterize it ?

□ From nano-robots

- A few micrometers
- □ To planet-wide systems of systems
 - RFIDs, PAN, Home, Urban, VANETs, WANs, etc.
- □ Identify a few typical application model/props ?
 - # entities, # administration domains
 - Cooperation vs. Individual behavior
 - Mobility models
 - Resilience to accidental/malicious faults
 - □ Fault/failure models, desired resilience props
 - Performance related props

