
Source Code Management wih git

Matthieu Herrb

November 2023

https://homepages.laas.fr/matthieu/cours/pi2-git.pdf

https://homepages.laas.fr/matthieu/cours/pi2-git.pdf

License

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
To get a copy of the license, use the following address:
http://creativecommons.org/licenses/by-sa/3.0/

November 2023 2/85

http://creativecommons.org/licenses/by-sa/3.0/

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 3/85

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 4/85

What is a version control system ?

Software that manages the history of changes in a set of documents.

Typically: source code

But also:
documentation
web sites
configuration files
etc.

November 2023 5/85

Basic functionalities

keep an history of changes
make it possible to work in teams
allow parallel work
provide security (integrity, availability, confidentiality)

November 2023 6/85

Diff & patch

patch

patch

V2 V1 V1

V2

-
+

November 2023 7/85

Text diff

A patch represents the changes between 2 versions of a text file.

diff -u fileA fileB produces a patch in unified diff format (b − a):
--- a/src/server.c
+++ b/src/server.c
@@ -222,7 +222,9 @@ reset_log(void)
#ifdef HAVE_SS_LEN
#define sockaddr_len(s) s.ss_len
#else
-#define sockaddr_len(s) sizeof(s)
+#define sockaddr_len(s) (s.ss_family == AF_INET6 ? \
+ sizeof(struct sockaddr_in6) \
+ : sizeof(struct sockaddr_in))
#endif

void

November 2023 8/85

The patch command

patch applies a patch to a file to produce the new version (b = a + diff)

Example:
patch -p1 -E < diff

patch can handle small inconsistencies, thanks to the context.

November 2023 9/85

Merge

Applying a patch to a slightly different version

patch

patch

V2 V1 Vn

Vn+1

- +

May fail → conflict November 2023 10/85

About file formats

text source code or equivalent. File content is a sequence of ASCII or UTF-8
characters, structured in lines with newline characters.
Examples: .c, .h, .rs, .txt, .md, .conf, .ini, .xml, .json, .svg...

binary the file format has a structure controlled by the application that creates /
opens it.
Examples: multimedia files (.jpg, .png, .mp3, .webm, .mp4...), office
documents (.docx, .xlsx, .odt, .pdf,...) executable macine code (.o,
.so, .exe,...)

The text-based diff and patch commands only make sense on text files.
Git can handle binary files, but less efficiently, and no contents history will be available.

November 2023 11/85

GIT

Distributed version control system
by opposition to CVS or SVN which are Centralized
Developed by Linus Torvalds for the Linux kernel
Similar to Monotone, Darcs, Mercurial, Bazaar, etc.

November 2023 12/85

Git concepts (1)

Repository Storage area that keeps the history of modifications.
Revision Unique identifier of each state of the source files
Also called commit as language shortcut.

A B C

Ordered sequence : arrows point to the ancestor. Represented by a 128
hexadecimal SHA-1 hash.

→ Marketing project version 6= VCS revision !

commit (verb) action to register a version of a set of files
to the repository.
tag a symbolic identifier for a commit or a branch

November 2023 13/85

Git concepts (2)

Branch one line of development.
by default all development is done in main.

A B C D I J

E F

G

H K

November 2023 14/85

Uses of branches

Branches can be used to :
fix a bug in an released version
develop new ideas in parallel
manage a customized version of the software
merge back a version that diverged for some reason
track local modifications to externally maintained sources
...

November 2023 15/85

About the default branch

Because #BlackLiveMatters, “master” was a bad choice for the name of the main
branch.
This can be changed for all new repositories :

git config --global init.defaultBranch main

Other possible names for the default branch :
trunk
development

References :
git 2.28
gitlab
github

November 2023 16/85

https://github.blog/2020-07-27-highlights-from-git-2-28/
https://about.gitlab.com/blog/2021/03/10/new-git-default-branch-name/
https://github.com/github/renaming

Git concepts (3)

Working tree the set of files being worked on currently.
Index an object tracking modified, added, removed files.
Blob binary data used to store files, objects, and other data

November 2023 17/85

Git User Interfaces

Command line
Git GUIs

gitk (part of git distribution)
gitg (Gnome project)
git-cola https://git-cola.github.io/
TortoiseGit (Windows) https://tortoisegit.org/

Editor plugins
Atom (built-in)
Visual Studio Code (built-in)
Eclipse (https://eclipse.org/egit/)
Emacs (VC, magit,...)

Web browsers: cgit, gitweb.

November 2023 18/85

https://git-cola.github.io/
https://tortoisegit.org/
https://docs.microsoft.com/en-us/visualstudio/version-control/git-with-visual-studio?view=vs-2022
https://eclipse.org/egit/
https://www.emacswiki.org/emacs/VC
https://www.emacswiki.org/emacs/Magit

Git forges

Web sites dedicated to git projects hosting.
github https://github.com/
gitlab https://gitlab.com/
gogs https://gogs.io/ / gitea https://gitea.io/
redmine with the git plugin

Include interesting features for collaboration.

Better suited for distributed development than traditional centralized forges

November 2023 19/85

https://github.com/
https://gitlab.com/
https://gogs.io/
https://gitea.io/

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 20/85

Initial setup

Sets defaults for commit messages:
user name & email
preferred text editor

$ git config --global --add user.name "Matthieu Herrb"
$ git config --global --add user.email "<matthieu.herrb@laas.fr>"
$ git config --global --add core.editor emacs -nw
$ git config --global --add init.defaultBranch main

$ cat ~/.gitconfig
[user]

name = Matthieu Herrb
email = <matthieu.herrb@laas.fr>

[core]
editor = emacs -nw

[init]
defaultBranch = main

November 2023 21/85

Creating a repository

git init creates an empty repository in the current directory.
$ mkdir git-tutorial
$ cd git-tutorial
$ git init
Initialized empty Git repository in /home/mh/git-tuturial/.git/
$ ls -l .git
total 24
-rw-r--r-- 1 mh mh 23 Oct 26 09:14 HEAD
-rw-r--r-- 1 mh mh 111 Oct 26 09:14 config
-rw-r--r-- 1 mh mh 58 Oct 26 09:14 description
drwxr-xr-x 12 mh mh 408 Oct 26 09:14 hooks
drwxr-xr-x 3 mh mh 102 Oct 26 09:14 info
drwxr-xr-x 4 mh mh 136 Oct 26 09:14 objects
drwxr-xr-x 4 mh mh 136 Oct 26 09:14 refs

November 2023 22/85

Adding files

git add adds new or modified files to the index.
$ echo "Hello World" > file.txt
$ git add file.txt

November 2023 23/85

Querying status

Shows the status of the repository and the index.
$ git status
On branch main
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: file.txt
#

November 2023 24/85

Committing changes

$ git commit
Created initial commit 0ba7bd8: Initial version
1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 file.txt

Opens a text editor to enter a commit message
and commits the change to the repository.
$ git status
On branch main
nothing to commit, working tree clean

November 2023 25/85

More changes

$ echo "Hello Matthieu" > file.txt

Add changes and commit in one command (not recommended) :
$ git commit -a
Created commit 7fbf4cb: Modif
1 files changed, 1 insertions(+), 1 deletions(-)

November 2023 26/85

The git index

Represents modifications pending commit.
2 stages:

1 add modified files to the index (add,rm)
2 “flush” the index to the repository (commit)

Short-cuts chaining both operations:
git commit file
git commit dir (or git commit .)
git commit -a

November 2023 27/85

Interactive add

$ git add -p [files]

Enters an interactive session to pick up changes to be added to the index.

Allows to have several unrelated un-committed modifications, and still do clean,
separate commits.

November 2023 28/85

Commits

Adds a node at the end of the current branch.

A B C

Includes:
the patch from old to new revision for text files
the full new revision for binary files
attributes of the committed file (access modes)
name and e-mail address of the committer
a log message
optionally, a digital signature

November 2023 29/85

Commits

Adds a node at the end of the current branch.

A B C D

Includes:
the patch from old to new revision for text files
the full new revision for binary files
attributes of the committed file (access modes)
name and e-mail address of the committer
a log message
optionally, a digital signature

November 2023 29/85

Looking back: git log

Various ways to display the history of modifications.
$ git log
commit 7fbf4cb7c8977061fbfb609016f5414e833a3a1c
Author: Matthieu Herrb <matthieu.herrb@laas.fr>
Date: Tue Oct 28 12:29:33 2014 +0100

Modif

commit 0ba7bd8b93ef9ddd8917814bde8cbdaaf9732559
Author: Matthieu Herrb <matthieu.herrb@laas.fr>
Date: Tue Oct 28 12:28:38 2014 +0100

Initial version
$ git log --stat
$ git log -p

November 2023 30/85

Examining changes: git diff

Display the changes between the working files and the index,
or between the index and the repository.
echo "Good bye" > file.txt
$ git diff
diff --git a/file.txt b/file.txt
index 6bd8f3c..c0ee9ab 100644
--- a/file.txt
+++ b/file.txt
@@ -1 +1 @@
-Hello Matthieu
+Good bye
$ git add file.txt
$ git diff --cached

November 2023 31/85

Marking a version: git tag

Create a tag object, containing a name and a comment.
Opens the text editor to enter the comment.
$ git tag -a git-tuto-1.0
$ git tag -l
git-tuto-1.0

November 2023 32/85

Fixing mistakes, reverting to a good version

Revert a given commit
$ git revert 03bace
Finished one revert.
Created commit c333ab5: Revert "3rd version"
1 files changed, 1 insertions(+), 1 deletions(-)

creates a new commit that stores the revert action.

Restore the working dir to a given committed version, loosing all local changes:
$ git reset --hard [commit-id]

If commit-id is missing, defaults to HEAD.

November 2023 33/85

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 34/85

Branches

A B C

main
Existing history

Branch creation
commits in the new branch
commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

main

mybranch

Existing history
Branch creation

commits in the new branch
commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

main

D

mybranch

Existing history
Branch creation
commits in the new branch

commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

main

D E

mybranch

Existing history
Branch creation
commits in the new branch

commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

D E

mybranch

F

main
Existing history
Branch creation
commits in the new branch
commits in main

merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

D E

mybranch

F G

main
Existing history
Branch creation
commits in the new branch
commits in main
merge the branch into main

further commits in the branch
etc...

November 2023 35/85

Branches

A B C

D E

F G

main

H

mybranch

Existing history
Branch creation
commits in the new branch
commits in main
merge the branch into main
further commits in the branch

etc...

November 2023 35/85

Branches

A B C

D E

F G

main

H I

mybranch

Existing history
Branch creation
commits in the new branch
commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

D E

F G

H I

mybranch

J

main
Existing history
Branch creation
commits in the new branch
commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

D E

F G

H I

mybranch

J K

main
Existing history
Branch creation
commits in the new branch
commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Branches

A B C

D E

F G

H I

J K

main

L

mybranch

Existing history
Branch creation
commits in the new branch
commits in main
merge the branch into main
further commits in the branch
etc...

November 2023 35/85

Switching branches

Create a new branch:
$ git checkout -b newbranch

Switch back to main:
$ git checkout main

November 2023 36/85

Listing available branches

$ git branch
* main
newbranch

November 2023 37/85

Merging changes from another branch

$ git merge branch

Merge commits from “branch” and commits the result.

2 kinds of merges:
fast forward: no conflicts, only new commits to add to your version
normal merge: there are local changes - use a 3 way merge algorithm.

November 2023 38/85

Handling conflicts

Conflicts happen when changes in a merged branch are incompatible with changes in
the target branch :

Files with conflicts contain conflict markers
They are not automatically added to the index.

To proceed :
Resolve the conflict (ie choose the correct version)
Add the manually merged files to the index
Commit the result

November 2023 39/85

Tools to help with merge

To solve conflicts git can use existing tools to help merging:
meld, xxdiff, opendiff, DiffMerge...

$ git config --global merge.tool meld

$ git mergetool

November 2023 40/85

https://meldmerge.org/
http://furius.ca/xxdiff/
http://www.rubycoloredglasses.com/2017/08/opendiff/
http://www.sourcegear.com/diffmerge/index.html

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 41/85

Stashing local changes

Git refuses to merge a branch if there are un-commited changes.

Solutions:
commit local changes before merging...
or stash local changes before merging.

$ git stash
$ git merge mybranch # or git pull --rebase
$ git stash pop

It’s also possible to create a new branch with the stashed changes
$ git stash branch newbranch

November 2023 42/85

Picking individual changes

Take one commit from another branch (bug fix)
and apply it to the working branch.

$ git cherry-pick SHA1_HASH

November 2023 43/85

Replaying changes from a branch

Merges create lots of unwanted links in the git data graph.
When a branch has only few local commits, rebase is more efficient.

$ git rebase main

Only use rebase before pushing to a remote repository !

November 2023 44/85

Rebase

A B

Existing commits

Development branch
Commits in main
Start of rebase: remove commits from the branch
End of rebase: recreate commits starting from HEAD of main

November 2023 45/85

Rebase

A B

C D E

Existing commits
Development branch

Commits in main
Start of rebase: remove commits from the branch
End of rebase: recreate commits starting from HEAD of main

November 2023 45/85

Rebase

A B

C D E

F G

Existing commits
Development branch
Commits in main

Start of rebase: remove commits from the branch
End of rebase: recreate commits starting from HEAD of main

November 2023 45/85

Rebase

A B F G

Existing commits
Development branch
Commits in main
Start of rebase: remove commits from the branch

End of rebase: recreate commits starting from HEAD of main

November 2023 45/85

Rebase

A B F G C’ D’ E’

Existing commits
Development branch
Commits in main
Start of rebase: remove commits from the branch
End of rebase: recreate commits starting from HEAD of main

November 2023 45/85

Interactive rebase

Useful to re-arrange commits locally, in order to clean up the history.
$ git rebase -i COMMITS

→ opens a text editor with the list of commits specified.
Rearrange the list according to instructions and save it.
→ history will be re-written, following the new list.

Only use rebase before pushing to a remote repository !

November 2023 46/85

References “Tree-ish”

Alternative ways to refer to objects or ranges of objects
full sha-1: 8f8aca4bd6c29048636966247aa582718559d871
partial sha-1: 8f8aca4b, 8f8aca, 8f8ac,...
branch or tag name: v1.0, main, origin/testing
date spec main@{yesterday} main@{1 month ago}
ordinal spec main@{5}
carrot parent main^2
tilde spec main~2
tree pointer main^{tree}
blob spec main:/path/to/file
ranges 4c032a..8faca4

See gitrevisions(1)
November 2023 47/85

Examples

18cae 2fbb3 4eadf 2f45e ce0e4 5ec47

c36ae df2fa a09c6 b3be1

main

November 2023 48/85

Examples

main^

18cae 2fbb3 4eadf 2f45e ce0e4 5ec47

c36ae df2fa a09c6 b3be1

main

November 2023 48/85

Examples

main^2

18cae 2fbb3 4eadf 2f45e ce0e4 5ec47

c36ae df2fa a09c6 b3be1

main

November 2023 48/85

Examples

main~2

18cae 2fbb3 4eadf 2f45e ce0e4 5ec47

c36ae df2fa a09c6 b3be1

main

November 2023 48/85

Examples

main~2^2 or main^^^2

18cae 2fbb3 4eadf 2f45e ce0e4 5ec47

c36ae df2fa a09c6 b3be1

main

November 2023 48/85

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 49/85

Good practices - repositories

Do not abuse git as a generic cloud storage
Git is good with text format files (source code, Markdown/LaTeX doccuments, ...)
Git is not useful on images, PDF or Office documents
Large binary files are wasting resources in a git repository

Keep repositories on topic
One repository per project
Do not store un-related files

Keep repository clean and minimal
do not add editor backup files
do not add files that can be generated automatically
do not add alternative versions as separate files. Use branches.

November 2023 50/85

Good practices - commits

Good commits are hard, but add a lot of value to the project
Always provide informative commit messages
Follow the git commit convention :

one line summary
one empty line
detailled information below (multiple lines)

Keep commits small and focused
Don’t blindly add changes. Use git status and git diff to review them
Use git add -p to break-up large uncommited changes

Commit early and commit often
Use amend or rebase to fix broken commits before pushing

November 2023 51/85

Good practices - branches

Keep the number of active branches small
Use self-documenting branches names
Prefer rebase to merge whenever possible
Try to keep a linear history on the main branch

November 2023 52/85

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 53/85

Identifying authors

$ git blame -- file.txt

for each line of the file, shows the id and author of the last modification.

$ git shortlog --summary --numbered --email

list all authors, ordered by number of commits.

November 2023 54/85

Making a release with git

(Alternative to automake’s make dist or CMake’s CPack)
Commit all changes, including the new marketing version number in
documentation.
Tag the result with git tag -a
Use archive to produce a release.

$ git tag -a foo-1.3
$ git archive --prefix=foo-1.3/ foo-1.3 \
| gzip -c - > foo-1.3.tar.gz

November 2023 55/85

Binary search of bugs

$ git bisect start
$ git bisect bad # Current version is bad
$ git bisect good v2.6-rc2 # v2.6-rc2 was the last version

tested that was good
...
$ git bisect reset # back to initial state

With a script that can tell if the current code is good or bad:
$ git bisect run my_script arguments

my_script returns 0 → good
my_script returns 1..124 → bad

November 2023 56/85

Reflog

reflog is the safety net of git.
records all changes done in the repository
keeps track of commits not otherwise accessible anymore
allows to recover from some mistakes
local only and expires after 90 days

Example:
$ git add foo.txt
$ git commit
$ git reset --hard <older version> # OOPS !
$ git reflog
$ git checkout HEAD@{n}

November 2023 57/85

Sub-modules

Sub-modules provide a way to glue several existing repositories into a bigger project.
git submodule add url path
adds a submodule, at path
git submodule init
init the sub-modules
git submodule update
clone or pull the submodules
git submodule status
display information about submodule status

November 2023 58/85

git-lfs Large Files

Extension to support large binary files in git repositories
uses external storage (cloud)
replaces actual files with a link
on checkout, fetch the real file from the external storage
saves space in the repository
but adds a dependency to an external service

https://git-lfs.github.com/

November 2023 59/85

https://git-lfs.github.com/

git-crypt - encrypt contents

Secrets (passwords, application keys,...) should not be stored in (public) git repositories
git-crypt provides a way to store encrypted contents with GPG or with simple shared
keys

Create .gitattributes:
secretfile filter=git-crypt diff=git-crypt
*.key filter=git-crypt diff=git-crypt

Use:
$ git-crypt init
$ git-crypt add-gpg-user USER_ID
$ git-crypt unlock

November 2023 60/85

https://www.agwa.name/projects/git-crypt/

BFG Repo-Cleaner

Tool to clean up mistakes commited in a repository :
remove Huge binary files (executables, images, video)

either commited by mistake
or removed voluntarly by git rm but still occupying space for nothing in the
repository

remove passwords or other kind of confidential data commited by mistake

Warning: this modifies the repository; need to inform all users before pushing

https://rtyley.github.io/bfg-repo-cleaner/

November 2023 61/85

https://rtyley.github.io/bfg-repo-cleaner/

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 62/85

Working in teams

No locks on source code.
Each developer has its own copy of the source and repository.
Conflicts handling:

First merge other people’s contribution
Automated merges as much as possible
Conflict detection → manual resolution
No new commit before solving the conflict.

November 2023 63/85

Centralized model

Pull

Pull

Push

Anne

Bernard Carole

Denis

Central repository

Pull
Pull

Push

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

November 2023 64/85

Semi-Distributed model

Commit

Commit
pull

push
pull

Gérard

pull

push

pull

Fabienne

Commit

pull
Hélène

Eric
November 2023 65/85

Copying a repository

git clone repo

repo: an url to the remote repository. Can be:
a pathname to a local repository on the same file-system
ssh://[user@]host/path - use SSH with given user
ssh://git@host/path - SSH with public key authentification (github, redmine)
https://host/path - access with HTTPS protocol
git://host/path - anonymous access with the GIT protocol

November 2023 66/85

ssh://[user@]host/path
ssh://git@host/path
https://host/path
git://host/path

Remote repository

Remote repo A B C D main

November 2023 67/85

Remote repository

Remote repo A B C D main

Local repo A B C D origin/main

main

clone

November 2023 67/85

Updating from a remote repository

$ git pull

Fetches the remote branches to the local repository,
Merges the default remote branch into the current one.

Can produce a conflict:
Solve the conflict
Commit the result

November 2023 68/85

Using rebase with remote repositories

git fetch fetches remote commits without merging them.

Fetch and rebase at once
$ git pull --rebase

equivalent to:
$ git fetch
$ git rebase origin/main

November 2023 69/85

Remote branches

$ git branch -r

lists remote branches (origin/branch).

Remote branches can be tracked (automatically merged/pushed) using:
$ git checkout -t -b newbranch origin/newbranch

November 2023 70/85

Sending changes to a repository

$ git push

Sends local commits to remote tracked branches.
Produces an error if not up-to-date (need to pull or rebase first).

Tags need to be pushed separately:
$ git push --tags

November 2023 71/85

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 72/85

Git work flows

Work flows that help maintaining a consistent central main branch.
Developers use private repositories.
Several models of workflow exist, using several tools :

e-mail : git send-email, git am
Forge-provided tools (example: Github pull request)
Direct access to the private repositories

In all cases, branches in the private repository allow to work on several changes until
they are accepted.

November 2023 73/85

Maintainer / pull request work flow

Only the maintainer can push to main.
Developers submit pull requests to the maintainer.
The maintainer reviews, merges and then pushes the result.

November 2023 74/85

Pull requests

Marie
Etienne

Dominique

git.openrobots.org

redmine.laas.fr

clone

push

pu
ll

push

clo
n

e/p
u

ll

p
u

ll req
u

est

commit

clo
ne

/pu
ll

merge

❶
❷

❸

❹ ❺

❻

❼

❽

November 2023 75/85

Pull requests

Marie is the maintainer, Dominique a developer and Etienne an end-user.
1 Dominique clones the repository,
2 Dominique works on the code, does some commit(s),
3 Dominique pushes his commits to his private repository,
4 Dominique sends a pull request to Marie,
5 Marie merges the pull request in her local repository,
6 Marie checks Dominique’s work,
7 If Marie is happy with the result, pushes it to the main repository,
8 Etienne can grab the result.

November 2023 76/85

Reviews work flow

Push to main is open
but no one can push to main without a review.
Developers ask others for reviews.
Reviewers reply with an ’OK’
Developer amends the commit message to add ’Reviewed-by:’ headers and pushes
the result.

November 2023 77/85

Reviews

Régine Etienne

Dominique

git.openrobots.org

redmine.laas.fr

clone

push

pu
ll

push

clo
n

e/p
u

ll

review
 req

u
est

commit

review
ed

-b
y:

clone/pull

❶❷

❸

❹ ❺
❻

❼

❽

November 2023 78/85

Reviews

Regine is a reviewer, Dominique a developer and Etienne the end-user
1 Dominique clones the repository,
2 Dominique works on the code, does some commit(s),
3 Dominique pushes his commits to his private repository,
4 Doninique sends a review request to the community,
5 Regine picks up the request,
6 Regine accepts the change and sends a reviewed-by message to Dominique,
7 Dominque amends his commit and pushes it to the main repository,
8 Etienne can grab the result.

November 2023 79/85

Using email

For small changes (patches), using email to interact with reviewers/maintainers is
easier/faster.

configure sendemail.smtpserver and sendemail.smtpuser
use git format-patch to generate the patches for the commits to submit for
review / pull
use git send-email to send an email containing the patches generated above
the maintainer or reviewer can use git am to apply patches from his mail client

See The advantages of an email-driven git workflow for more information

November 2023 80/85

https://drewdevault.com/2018/07/02/Email-driven-git.html

Managing remote repositories

git remote command

add name url add a remote
set-url name url changes the url
rename old new renames
rm name removes a remote

November 2023 81/85

Pushing to multiple remote repositories

git push remote branch push a given branch to a given remote

Example:
$ git push origin main # same as git push
$ git push github mybranch # push branch to github

November 2023 82/85

Good practices - distributed development

Ask for reviews
Review the patches that are sent to you
Always use pull --rebase when possible before pushing
Do not push experimental/test branches if not needed
Be careful to push to the correct branch
In case of a mistake, communicate with other developers

November 2023 83/85

Agenda

1 Introduction – VCS and Git concepts

2 Individual developer

3 Using branches

4 Advanced branching

5 Good Practices

6 Other goodies

7 Working in teams

8 Git work flows

9 Webography

November 2023 84/85

Webography

https://imgs.xkcd.com/comics/git.png →
https://git-scm.com/book/en/v2
The online Pro Git book
https://www.atlassian.com/git/tutorials
http://learngitbranching.js.org/
graphical tutorial on branches.
Git for computer scientists, Tommi Virtanen, june 2007.
Demystifying Git internals, Pawan Rawal, august 2016.
Confusing Git terminology, Julia Evans, november 2023.

November 2023 85/85

https://imgs.xkcd.com/comics/git.png
https://git-scm.com/book/en/v2
https://www.atlassian.com/git/tutorials
http://learngitbranching.js.org/
http://eagain.net/articles/git-for-computer-scientists/
https://medium.com/@pawan_rawal/demystifying-git-internals-a004f0425a70
https://jvns.ca/blog/2023/11/01/confusing-git-terminology/

	Introduction – VCS and Git concepts
	Individual developer
	Using branches
	Advanced branching
	Good Practices
	Other goodies
	Working in teams
	Git work flows
	Webography

