

Web Services –
DIAgnosability, MONitoring
and Diagnosis

WS-DIAMOND

IST-516933

Deliverable D1.1

Requirements, application scenarios, overall architecture, and

test/validation specification, common working environment and

standards at Milestone M1

Version: M1.0

Report Preparation Date: 01.03.2006

Classification: Public

Contract Start Date: 1.9.2005

Duration: 30 months

Project Co-ordinator: University of Torino (I)

Partners: Vrije Universiteit Amsterdam (NL)

 Politecnico of Milano (I)

 Université of Paris 13 (F)

 University of Klagenfurt (A)

 Laboratoire d’Analyse et d’Architecture des Systèmes - National Center
for Scientific Research (F)

 Université de Rennes 1 (IRISA) (F)

 Universtity of Vienna (A)

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 1

Executive Summary

The aim of this report is to give an overview on the approaches, techniques and tool in the domain
of web services that currently exist in scientific community and how to apply them for diagnosis
and repair tasks. These issues are the base for our future research: each diagnosis and repair
techniques must be compatible with existing standards in this domain, and append them.

Application scenarios provide detailed description of example situations for real life, where
discussed problems may happen. They include models of workflows, created according to the
existing standard and languages that are used for web-services workflow modelling, and heuristic
descriptions of failure situations within workflow and repair actions that have to be provided.
These descriptions show how diagnosis and repair processes have to be done, and which results
are expected.

Current standards and test cases give us initial requirements for diagnosis/repair solution. Four
main groups of requirements were considered: requirements for web services composition and
execution for self-healing environments, for model-based diagnosis and repair, for design for
diagnosability and repairability, and for semi-automatic acquisition of semantic mark-up for web
services.

Finally, the preliminary architecture, in chapter 5, show possible structures of diagnosis, repair and
monitoring solution modules and their place in the common WSDIAMOND-enabled Web
Services execution environment. Two main approaches are considered – centralised and
decentralised.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 2

Table of Contents

1 INTRODUCTION... 8

2 WORKING ENVIRONMENT .. 10

2.1 STANDARDS .. 10

2.1.1 WEB SERVICES STANDARDS ... 10

2.1.2 WEB SERVICES COMPOSITION, ORCHESTRATION, AND EXECUTION .. 13

2.1.3 CONCLUSIONS ... 42

2.2 SOFTWARE PLATFORMS ... 43

2.2.1 SELECTION CRITERIA.. 44

2.2.2 OVERVIEW ... 45

2.2.3 COMMON WORKING ENVIRONMENT .. 59

3 APPLICATION SCENARIOS... 61

3.1 TEST CASE: FOOD SHOP... 61

3.1.1 WORKFLOW ... 61

3.1.2 EXCEPTIONS .. 67

3.1.3 PRELIMINARY MODEL OF THE PROCESS ... 68

3.1.4 DIAGNOSIS PROCESS .. 78

3.1.5 REPAIR STAGE.. 79

3.1.6 COMPARISON... 84

3.2 TEST CASE: COOPERATIVE REVIEW ... 85

3.2.1 WORKFLOW ... 85

3.2.2 ARCHITECTURE AND WORKFLOW ... 86

3.2.3 EXCEPTIONS .. 103

3.2.4 DIAGNOSIS PROCESS .. 109

3.2.5 REPAIR STAGE.. 112

3.2.6 EVALUATION AND CONCLUSIONS .. 113

3.3 TEST CASE: TRAVEL SERVICES .. 117

3.3.1 WORKFLOW ... 118

3.3.2 EXCEPTIONS .. 125

3.3.3 DIAGNOSIS AND REPAIR STAGE ... 129

3.3.4 COMPARISON... 129

4 GENERAL REQUIREMENTS FOR THE PROPOSED SOLUTION.. 132

4.1 REQUIREMENTS FOR WEB SERVICE COMPOSITION AND EXECUTION FOR SELF-HEALING

ENVIRONMENTS ... 132

4.1.1 GENERAL SERVICE ASPECTS ... 132

4.1.2 SEMANTIC ANNOTATIONS .. 136

4.2 REQUIREMENTS FOR MODEL-BASED DIAGNOSIS AND REPAIR OF COOPERATIVE WEB SERVICES. 139

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 3

4.2.1 CURRENT TRENDS IN MODEL-BASED DIAGNOSIS AND REPAIR.. 139

4.2.2 MODEL-BASED DIAGNOSIS AND REPAIR FACED TO WEB SERVICES.. 140

4.2.3 REQUIREMENTS ... 140

4.3 REQUIREMENTS FOR DESIGN FOR DIAGNOSABILITY AND REPAIRABILITY 144

4.3.1 MODELS FOR DIAGNOSABILITY AND REPAIRABILITY ... 144

4.3.2 ARCHITECTURE OF THE SUPERVISION SYSTEM, IMPACTS ON DIAGNOSABILITY AND REPAIRABILITY 148

4.3.3 ON-LINE VERSUS OFF-LINE SUPERVISION ACTIVITIES FOR WEB SERVICES 148

4.3.4 DESIGN REQUIREMENTS ... 149

4.4 REQUIREMENTS FOR SEMI-AUTOMATIC ACQUISITION OF SEMANTIC MARKUP FOR WEB SERVICES150

4.4.1 GATHERING FUNCTIONAL PROPERTIES FROM STATIC INFORMATION ... 151

4.4.2 GATHERING FUNCTIONAL PROPERTIES FROM EXECUTING A SINGLE SERVICE 151

4.4.3 GATHERING DATA FROM EXECUTING A COMPOSITION OF SERVICES.. 151

5 PRELIMINARY ARCHITECTURE .. 153

5.1 DIAGNOSIS ARCHITECTURES.. 154

5.1.1 THE DIAGNOSER IS A WEB SERVICE ... 155

5.1.2 THE DIAGNOSIS ARCHITECTURE.. 156

5.2 CENTRALISED DIAGNOSIS AND RECOVERY ARCHITECTURE ... 156

5.3 DECENTRALISED/SUPERVISED DIAGNOSIS AND CENTRALISED RECOVERY ARCHITECTURE 157

5.4 DISTRIBUTED DIAGNOSIS AND DECENTRALISED RECOVERY ARCHITECTURE 157

6 SUMMARY AND OUTLOOK .. 164

7 GLOSSARY OF TERMS... 165

APPENDIX A. FOODSHOP EXAMPLE BPEL CODE... 167

REFERENCES ... 172

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 4

List of Tables

Table 1: Web Service orchestration vs. choreography ... 21

Table 2. Software tools evaluation table... 60

Table 3: Levels of faults occurrence, type of fault, and examples ... 81

Table 4 : QoS parameters associated with conferences and reviewers. ... 86

Table 5 : Correspondences between diagnosability levels and repair actions... 147

Table 6 : Consistent situations for diagnosability and repairability .. 149

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 5

List of figures

Figure 1: Service Oriented Architecture. ... 11

Figure 2 : WSDL elements.. 12

Figure 3 : A contextualized view on currently used terminology; the two main nomenclatures concerning

respectively internal and external perspective on Web Services can further be specialized by actor and

execution time ... 14

Figure 4 : Web Service composition-oriented protocol stack of vendor-specific and standardized protocols

and languages. Within the composition layer, we propose BPML in on top of WSCI as they share a common

process model. However, other executable BPM languages could be adopted as well [DP06] 15

Figure 5 : Emergence and evolution of today's principal standards and languages concerning WS

composition. The figure tries to reflect the official release or publication dates of the specifications (at the

best of the authors’ knowledge), first appearance of or discussions about them could differ from the

proposed dates. XLANG and WSFL are not treated in this paper; they heavily contributed to BPEL and are

reported for the sake of completeness [DP06] ... 17

Figure 6 : Ordered message exchange between a Web Service and its client. ... 18

Figure 7 : Interaction involving multiple Web Services; messages depend semantically and chronologically

from one another. ... 19

Figure 8: Orchestration refers to an executable process, choreography tracks the message sequences

between parties and sources [Pel03].. 22

Figure 9 : Vehicle-process as activity diagram.. 25

Figure 10: Vehicle -process by means of a statechart.. 26

Figure 11: Vehicle-process specified by means of a Petri net.. 27

Figure 12: vehicle-process as activity hierarchies ... 29

Figure 13: Choreography described with UML sequence diagrams.. 30

Figure 14: Explicit data flow approach.. 38

Figure 15 : Axis server architecture... 46

Figure 16: Axis client architecture.. 47

Figure 17: MAIS registry architecture ... 48

Figure 18: Service ontology structure .. 49

Figure 19: Engine Architecture... 50

Figure 20: ActiveWebflow snapshot ... 51

Figure 21 : the BPWS Runtime architecture .. 52

Figure 22: LAMP Application Server... 54

Figure 23: Oracle BPEL Process Manager. .. 56

Figure 24: BPEL Maestro tool. ... 58

Figure 25: JBOSS architecture... 59

Figure 26: FoodShopping example actors ... 61

Figure 27: CUSTOMER workflow ... 63

Figure 28: SHOP workflow .. 64

Figure 29: WAREHOUSE workflow... 66

Figure 30: SUPPLIER workflow .. 67

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 6

Figure 31: Definition of Supplier service ... 69

Figure 32: Definition of Shop Service .. 70

Figure 33: Definition of Customer Service... 71

Figure 34: Definition of Warehouse Service .. 72

Figure 35: BPEL process model /1... 74

Figure 36: BPEL process model /2... 75

Figure 37: BPEL process model /3... 76

Figure 38: BPEL process model /4... 77

Figure 39: General architecture of the cooperative reviewing system... 87

Figure 40: Looking for conferences. .. 88

Figure 41: Sequence diagram for conference search activity. ... 89

Figure 42: Looking for reviewers. .. 90

Figure 43: Sequence diagram for reviewers search activity. ... 91

Figure 44: Sequence diagram for author inscription activity. ... 92

Figure 45: Paper submission.. 93

Figure 46: Sequence diagram for paper submission activity. .. 94

Figure 47: Paper assignment ... 95

Figure 48: Sequence diagram for paper assignment activity. .. 96

Figure 49: Getting reviewers’ reports.. 97

Figure 50: Sequence diagram for report transmission activity. ... 98

Figure 51: Getting approval decision .. 98

Figure 52: Sequence diagram for author notification activity. .. 100

Figure 53: Getting final papers .. 100

Figure 54: Sequence diagram for final paper submission activity. .. 101

Figure 55: General activity diagram.. 102

Figure 56: Classification of Considered Mismatches... 103

Figure 57 QoS parameter classification... 104

Figure 58 :QAC contract parameters... 108

Figure 59 : Cooperative review Mismatches classification.. 108

Figure 60 : General architecture for diagnosis and reparation... 110

Figure 61 : Proposed architecture ... 111

Figure 62 : Sequence Diagram for diagnosis and repair... 112

Figure 63 : Diagnosis and Recovery module ... 113

Figure 64 :The architecture of the travel agent Example... 117

Figure 65 : Graphical representation of a WSDL operation.. 118

Figure 66 : Cutomer WSDL interface... 119

Figure 67 : Travel agent WSDL interface .. 120

Figure 68 : Hotel/Flight WSDL interfaces ... 121

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 7

Figure 69 : Notation UML vs BPEL constructors .. 122

Figure 70 : The Customers BPEL process ... 124

Figure 71 : The travel agent process behavior... 126

Figure 72 :Abstract and instantiated services .. 133

Figure 73 : Schema of services environment.. 133

Figure 74 : A Travel-Service example, its Management Interface, process flow, and annotation for Quality

.. 134

Figure 75 : Negotiation Handlers .. 135

Figure 76 : A Virtual Travel Agency Example ... 138

Figure 77 : A Multi-Channel Constrained Example... 139

Figure 78 : The logical organization of the diagnosis and repair task .. 141

Figure 79 : Petri net, automaton, and process algebra models of a simple system...................................... 145

Figure 80 : WS-Diamond environment... 153

Figure 81 : Cooperation of modules... 154

Figure 82 : Self-healing Web services framework model ... 155

Figure 83 : Centralised diagnosis and centralised recovery... 156

Figure 84 : Decentralised diagnosis and centralised recovery .. 157

Figure 85 : Distributed diagnosis and decentralised recovery .. 158

Figure 86 : Generic Web services execution environment ... 160

Figure 87 : Cooperation of the modules inside a node and with the execution environment....................... 161

Figure 88 : Sequence diagram of modules interaction... 162

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 8

1 Introduction

This document reports on the activities carried on in the first phase of the project, leading to
Milestone 1 at month 6. The document is organized in four main parts:

1. Definition of the working environment

2. Application scenarios

3. Requirements

4. Preliminary architecture

The first three of such item corresponds to the first three results in Milestone M1 (the fourth and
last result of Milestone M1 is outside the scope of this document, being the subject of D1.2). The
last item defines a preliminary architecture for the surveillance platform that will be developed in
the project.

The definition of the working environment implied a thorough analysis of the state of the art in
Web Services languages and standards. The report summarizes the current situation as regards the
standards and the evolution of languages for service execution, composition and orchestration. It
then introduces the choices we made in this first stage of the project motivating them (Section 2.1).
It must be noticed, at this point, that we are aware that standards (and languages) will evolve in the
next months and we are prepared to revise the choices accordingly if needed. As a consequence of
the choices we made as regards standards and languages, we made an analysis of the software
platforms that are currently available. After an overview we discuss the criteria that we took into
account to define the software platform for the project and for testing the diagnostic engines that
will be developed. The resulting choices are reported in Section 2.2.3.

The second part of the report (Section 3) focuses on the application scenarios that will be used as
test beds during the development of the surveillance platform. The application scenarios have been
selected starting from realistic applications after the initial suggestions coming from the project
Industrial Advisor. The application scenarios are thus realistic models of real-world applications,
containing all relevant features to be tackled in the design of the surveillance platform. We report
the three application scenarios on which we worked and, for each one of them, we describe the
main characteristics as regards the workflow, the exceptions (and failures) that may arise, the goals
that a diagnostic and repair process should achieve. Moreover, a model of the process is also
reported. A comparison of the scenarios points out the aspects that they will allow to tackle during
the design and test of the surveillance platform.

Section 4 introduces the general requirements that the surveillance platform that will be developed
in the project will have to meet. We considered four main groups of requirements: (1) the
requirements concerning the web service composition and execution languages and, specifically,
the features that have to be introduces for supporting self healing services (Section 4.1); (2) the
requirements for diagnosis and repair, that is those that the surveillance platform will have to meet
(Section 4.2); (3) the requirements concerning the design process and, in particular, those
concerning design for diagnosability and repairability that the project will have to meet; (4) the
requirements for the semi-automatic acquisition (learning) of the models of the services that are
needed to support the diagnostic process (Section 4.4). The set of requirements reported in this
document are inputs to the Workpackages 3,4,5 and 2 respectively and indeed have been used as
the first pint during the kick-off of these workpackages (2, 3 and 4; Workpackage 5 will start at a
later stage).

The definition of requirements was considered as a necessary but not sufficient step to start
effectively the work in these workpackages, especially as regards the design of the software
modules. For such a reason we laid down a preliminary architecture for the surveillance platform.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 9

This is, in our view a very important point to b used as a reference in the future work. Obviously
the architecture is still preliminary as several aspects have to be sorted out before making a final
choice. Section 5 reports these preliminary considerations, briefly discussing also the alternatives
that are currently under examination for the definition of the diagnostic process.

A final important contribution of these reports is the glossary as we discovered that the Web
Service and Model-based diagnosis community use a different terminology and that in some cases
the same terms have a very different meaning in the two communities. The glossary can thus be
read in two different ways. On the one hand it introduces and explains the various terms; on the
other hand it introduces a standard terminology that will be used as a reference throughout the
process.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 10

2 Working Environment

2.1 Standards

2.1.1 Web services standards

During the nineties, several enterprises recognized, even in those early stages, how the Internet
would affect the way they communicate with their customers. With the Internet the potential
audience grows and, consequently, new commercial relationships can be built more easily. In this
respect, the proliferation of such concepts as e-commerce, e-business, e-government, and e-
procurement has been the result of efforts to integrate, both vertically and horizontally, existing
information systems both within the same enterprise and between different enterprises. As early as
the eighties, in fact, when the number of information systems implemented, often on different
platforms, was growing, enterprises already needed to integrate them. Integration affects not only
different enterprises, but may also the same enterprise, where, for historical and organizational
reasons, different branches adopted different solutions when setting up their information system.
Nowadays, the Internet provides a network that enterprises are exploiting to automate supply
chains and to create virtual marketplaces. Such integration requires a great effort both from an
organizational and a technological standpoint, and solutions have to strike a balance between the
need for the various actors involved to exchange information, and the need to leave them with a
certain degree of autonomy. From an organizational standpoint, an enterprise plays the role both of
a service consumer and a service producer. The provided services, which represent the
functionality that the enterprise intends to export, define the borderline between what is public and
what is private for an enterprise. On the other hand, from a technological standpoint, in order to
achieve the required level of interoperability, an enterprise must agree on a set of standard
languages with which to describe services. In this way all the actors involved can understand what
a system exports and the characteristics of the services provided. Mechanisms to retrieve the
available services and to exploit the Internet as a communication infrastructure are also required.
Although organizational aspects are very important in order to understand how an enterprise
decides whether to export a service or keep it private, in this report we concentrate on the
technological aspects, and more specifically on Web Services as a solution for information system

integration. In fact Web Services not only provide a solution for system interoperability but can
also be used to provide new services. As a first step to describe a Web Service, as happens in
component based programming, it is important to separate the presentation logic from the
application logic. Web Services, in fact, are only related to application logic, therefore whoever is
going to use the service will be responsible for creating the presentation logic according to their
needs [PP04].

Before discussing technical aspects, and in order to better define our scope, we will explain exactly
what a Web Service is. In doing this, we want to avoid limiting our definition to the commonly
held view that a Web Service is made up of just three main specifications: Web Service
Description Language (WSDL) [CCMW01], Simple Object Access Protocol (SOAP), and
Universal Description Discovery and Integration (UDDI). For this reason, our starting point will
be the Service Oriented Architecture (SOA) where it is possible to define the goals, the usage, and
the future development of Web Services. This architecture fits in perfectly with what we the topics
presentee here above, especially in the business-to-business environment [PP04] Web Services are
driven by the paradigm of the SOA, which describes the relationships that exist among service
providers, consumers and service brokers, and thereby provides an abstract execution environment
for Web Services. Accordingly, current research addressing service composition is based on
technologies and solutions from the area of Service-Oriented Computing (SOC). From their first
appearance, SOA and SOC have emerged as key conceptual frameworks for the world of Web
Services. Focusing on service definition, the provider and the user are the main actors involved,

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 11

as is also the case in a typical client-server interaction. In an SOA, a new actor, called a Service
Directory or Service Broker, is introduced in the provider/user relationship, as shown in Figure 1.

Figure 1: Service Oriented Architecture.

The roles of the actors in this configuration are as follows:

• Service Provider: is responsible for building a service and making it available. A service is
advertised via the publish operation which stores a document summarizing the service features in a
public registry. Once the service is published, the Service Provider awaits for users interested in
the service.

• Service Directory or Service Broker: this component is responsible for maintaining the public
registry in which the description of services are stored, allowing users to find the services that best
meet their needs. The Service Directory can also define a set of access policies to limit user
accessibility for security or privacy reasons. In this report, we consider the registry as fully
accessible.

• Service Requestor: represents a potential user for published services. By means of the find
operation, users interact with the Service Directory to find the services that best meet their needs.
Once the service is identified, the Service Requestor communicates directly with the related
Service Provider (bind) and he starts to interact with the service (use).

These three actors involved can be distributed and can rely on different platforms, but during
interaction each uses the same communication channel, which is one of the parameters of the
architecture. Thus a SOA can be used for example in mobile systems, or on the Web, as well as in
e-mail systems, allowing the creation of multi-channel systems where the same service can be used
through different devices.

On the basis of these considerations, we define an e-Service as an instance of an SOA in which an
electronic channel identifies the communication channel, whereas for Web Service the
communication channel is represented by the Web.

A typical instantiation of the SOA uses SOAP as a protocol for the transport medium, service
described as Web Services in WSDL and UDDI for service retrieval. SOAP is an XML based
protocol capable of defining an interaction pattern among remote components on the Web.
Although one of the main purposes of SOAP is to support RPC (Remote Procedure Call) on the
Web, this protocol can support asynchronous or message based communications as well. In SOAP,
the way a remote operation is invoked is specified through an XML document, while HTTP
represents the transport protocol. By using HTTP, SOAP solves the problem encountered by

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 12

typical invocation protocols such as COM+, Java RMI, and CORBA, where firewalls often block
interaction messages.

WSDL (Web Service Description Language) allows one to formalize the service features
according to a schema very similar to a typical API definition. WSDL is an XML based language
able to specify the service feature we have just described in text form. The first element
comprising a WSDL specification is service, which identifies a set of services, each specified by a
port. It should be noted that a port only represents the physical address where the service operates
and the protocols the user should adopt to communicate with it, with no description of the
provided functionalities. This aspect is defined by the portType, directly associated with the port,
which is responsible for defining the available operations. Hence, portType defines what the
service does, whereas port defines where the service is (Figure 2).

Figure 2 : WSDL elements

The binding element is responsible for defining this specialization by mapping the operations
specified by the portType to a port, according to a particular protocol such as SOAP, HTTP, or
SMTP. For example, we can have a single service called LoanApproval indicated by the port tag.
This service is accessible at http://tempu ri.org/services/approve and the customer can invoke it
using the SOAP protocol. In more detail, a portType is composed of a set of operations which
reflect the functionalities characterizing the service available to the user. An operation must refer
to one of the following four predefined patterns:

• One_way. The operation is composed of only one incoming message for the service provider.

• Request_response. Upon a request from the customer, the service responds.

• Solicit_Response. Here the provider starts the communication and waits for a response from the
customer.

• Notification. Composed of a single outgoing message from the service.

Regardless of the type of pattern, the interaction is composed of a set of messages specified in
WSDL with the message tag specifying the format of the message. Each message is composed of a
set of parts which refer to data types. A type can be an XML predefined one (e.g., int, string), or a
custom type defined in the types section of the WSDL specification (in the example, the type
section is not considered since all messages are specified according to the basic types). In the
relationship between port and portType within a WSDL specification, the same portType, and
therefore service, can be accessed through different protocols, depending on the binding set

Message

OperationPort Type

Port

Binding

Service

Input & OutputFormats &

Protocols
How

to in
voke

How to encode

Implements

Provides

Message

OperationPort Type

Port

Binding

Service

Input & OutputInput & OutputFormats &

Protocols

Formats &

Protocols
How

to in
voke

How
to in

voke

How to encodeHow to encode

ImplementsImplements

ProvidesProvides

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 13

specified. Currently, the protocols that can be used for binding are SOAP, HTTP, and SMTP and it
is only possible to specify a Web Service over these protocols. Therefore, a good service definition
contains a set of WSDL documents: a WSDL Interface document where the type, the messages
and the portType are specified, and a WSDL Implementation document for each kind of binding,
where the related port is defined. In fact, even if the WSDL is very general purpose, the
specification is enough to describe a large number of types of service. The four communication
patterns allow both asynchronous and synchronous services to be specified. In the first case only
one-way and notification patterns are used, whereas in the second case the communication takes
place according to the request-response and the solicit-response patterns.

In Jan. 2006, W3C has published a candidate recommendation for WSDL-2, which modifies the
previous specification of WSDL. In particular, fault propagation rules may be defined, and new
communication patterns are introduced to enable the specification of mandatory and optional input
and output parameters.

WSDL only focuses on the static description of the service. Behaviour specifies how the service
works and what the available operations are depending on the service status. For this purpose,
several languages have been proposed. WSCL (Web Service Conversation Language) is an XML
based specification, which describes how a user can converse with a service by defining the
service as a state-finite machine, in which operations represent the states and the transition
between such states are also defined. BPEL4WS (Business Process Execution Language for Web
Services), which defines a service composition language that can also be used to specify the
behaviour of a single service.

2.1.2 Web services Composition, Orchestration, and Execution

Web services are one of the most promising approaches for the integration of heterogeneous
systems and web-based communication between business partners. As many enterprises started to
implement their own web services, composition of such services comes with the actual surplus.

Because the most of business process definition languages do not directly support the web services
standards, short-term solutions like individual web service composition protocols can sidestep this
gap[P03a]. Web service orchestration and choreography are long-term solutions and based on open
standards and facilitate the maintenance of web service composition.

Web service compositions are workflows based on web services. Systematic execution of business
processes is the primary task of a web service composition management system (WSCMS). A
business process is a group of manual or automatic activities undertaken by an organization in
pursuit of a commercial or organizational goal. These activities may be extended beyond the own
organizational scope and integrate the activities of consumers, suppliers and other partner
organizations. An activity is a unit of work within a process which specifies the actors (persons,
machines and applications) and resources (tools and machines) assigned to activities and temporal
dependencies between activities (order and duration of execution, etc). In web service
compositions, activities are either web services or processes.

As standards and technologies still have to reach stable definitions, also authors writing about
service composition are far from using a commonly agreed on terminology. For Web Services,
choreography “…tracks the message sequences among multiple parties and sources — typically
the public message exchanges that occur between Web Services — rather than a specific business
process that a single party executes…” [P03a].

[ACKM04] prefer the terms coordination (protocol) and composition, rather than choreography
and orchestration. Literally, they clarify “…we will use the term conversation to refer to the
sequences of operations (i.e., message exchanges) that could occur between a client and a service

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 14

as part of the invocation of a Web Service. We will use the term coordination protocol to refer to
the specification of the set of correct and accepted conversations…” And: “…we refer to a service
implemented by combining the functionality provided by other Web Services as a composite

service, and the process of developing a composite Web Service as service composition…”

The W3C’s Web Services Choreography Working Group defines choreography as the
specification of the sequences and conditions under which multiple cooperating independent
agents exchange messages in order to perform a task to achieve a goal state. Web Services
choreography concerns the interactions of services with their users. Any user of a Web Service,
automated or otherwise, is a client of that service. These users may, in turn, be other Web
Services, applications, or human beings. An orchestration defines the sequence and conditions in
which one Web Service invokes other Web Services in order to realize some useful function, i.e.,
an orchestration is the pattern of interactions that a Web Service agent must follow in order to
achieve its goal (W3C, n.d.).

internal

Perspective

Orchestration Choreography

CoordinationComposition

external

Execution Engine
(runtime)

Composition
Designer

(design time)

A
c
to

r

Figure 3 : A contextualized view on currently used terminology; the two main nomenclatures

concerning respectively internal and external perspective on Web Services can further be
specialized by actor and execution time

As this terminological comparison outlines, different authors prefer different names and thus
emphasize different aspects even within the same Web Service domain. Figure 3 attempts to
characterize and aggregate the currently used terminology through contextualizing the most
commonly used terms [DP06]. For this purpose, it distinguishes two main dimensions: the
perspective of the observer and the kind of observer along with its observation time. According to
a common approach, the perspective is divided into internal and external, with respect to the
observer’s view, whereas the novel aspect of Figure 3 is represented by the dimension actor,
which allows distinguishing between composition designers and execution engines. An execution

engine executes a composite service (runtime orchestration: the engine is already provided with
the set of component services, the orchestra) that has previously been defined by a composite
service designer (design time composition: the orchestra is composed by selecting the right
services). A service designer thus composes new services driven by a final goal and by taking into
account the restrictions imposed by the coordination protocols of the component services (design
time coordination: once selected, he coordinates the services). At the composite level and at
runtime, externally visible coordination effects can be interpreted as choreography with respect to
the orchestra of compound services.

The taxonomy of Figure 3 provides a coarse contextualization of the most used terms and has
orientation purposes (it should not be considered a widely acknowledged categorization).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 15

2.1.2.1 A possible Protocol Stack

Figure 4 shows a possible Web Service protocol stack that concentrates on service coordination
and composition. Besides traditional transport protocols such as HTTP, SMTP, or IIOP, SOAP has
become widely acknowledged as basic messaging protocol (nevertheless, other protocols could be
used).

WSDLMMMMMM
ebXML

CPP

ebXML
BPSS

ebXML

CPA

SOAP

BPELWSCIWS-CDL

HTTP, SMTP, IIOP,...Transport

Message

Description

Coordination

Composition

Agreement

Semantics

OWL-S

WSMO

BPML BPEL
MAIS-PL

OWL

Reas.

BPEL

MAIS SDL

Coordination-based Execution-based Goal-based
Quality-

based

OASIS W3C W3C OASIS
W3C

DAML
DERI MAIS

UDDI
ebXML

Rep.
Repository

IRS-III

Reasoner

OWL-S

IRS-III URBE

WSDL

Figure 4 : Web Service composition-oriented protocol stack of vendor-specific and standardized
protocols and languages. Within the composition layer, we propose BPML in on top of WSCI as

they share a common process model. However, other executable BPM languages could be adopted
as well [DP06]

Web Service description is achieved by means of WSDL, but when coming to service coordination
and composition, a wide range of different protocols and languages are proposed by different
vendors or organizations. The main are the following.

• ebXML (Electronic Business using eXtensible Markup Language); UN/CEFACT,
OASIS [EN01].This is a (vertical) suite of specifications of how electronic commerce
exchanges should be specified, documented, and conducted, and can be subdivided into
three different protocols:

o CPP (Collaboration Protocol Profile); A CPP is similar to a UDDI registry entry
and includes interface and message descriptions as well as business data and data
exchange capabilities of a particular trading partner.

o BPSS (Business Process Specification Schema); The BPSS protocol can define
both the choreography and communications between services. The definition of a
proper business process execution language is explicitly outside the scope of
ebXML.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 16

o CPA (Collaboration Protocol Agreement); A CPA contains the business
agreement among cooperating partners. It is derived from the intersection of the
CPPs of the cooperating trading partners.

• WSCI (Web Services Choreography Interface); initially Sun, SAP, BEA and Intalio;
now W3C Note [AAFJ02] It is an XML-based interface description language that
describes the flow of messages exchanged by a Web Service participating in
choreographed interactions with other services. WSCI is a coordination protocol, in that it
does not address the definition and the implementation of the internal processes that
actually drive the message exchange;

• WSDL-S [AK05]; WSDL-S is a straightforward extension to WSDL. It makes use of the
extensibility elements to embed pointers to (external) domain ontologies. The idea behind
WSDL-S is that it should be as easy as possible for software engineers to create semantic
annotations for web services by embedding them directly into the WSDL descriptions.
WSDL-S is agnostic with respect to the ontology language used for annotation;

• WS-CDL (Web Services Choreography Definition Language); W3C Working Draft
WS-CDL is an XML-based language that describes peer-to-peer collaborations of parties
by defining, from a global viewpoint, their common and complementary observable
behaviour, where ordered message exchanges aim at accomplishing a common business
goal. It is neither an "executable business process description language" nor an
implementation language.

• BPML (Business Process Management Language); Business Process Management
Initiative (BPMI.org, 2002). BPML is a language for the modelling of business processes
and was designed to support processes that a business process management system could
execute. BPML and WSCI share the same underlying process execution model. Therefore,
developers can use WSCI to describe public interactions among business processes and
reserve, for example, BPML for developing private implementations. However, other
coordination protocols than WSCI can be adopted.

• BPEL (also BPEL4WS, Business Process Execution Language for Web Services or

WS-BPEL); initially Microsoft, IBM, Siebel Systems, BEA, and SAP; now OASIS (Web

Services Business Process Execution Language) [WF02]. It provides an XML-based
grammar for describing the control logic required to coordinate Web Services participating
in a process flow. BPEL can act both as coordination protocol and proper composition
language. BPEL orchestration engines can execute this grammar, coordinate activities, and
compensate activities when errors occur.

• OWL-S (Ontology Web Language for Web Services); DAML.org [M03a]. OWL-S is an
ontology-based description language that supplies Web Service providers with a set of
markup language constructs for describing the properties and capabilities of their Web
Services at a semantic level and in an unambiguous, computer-interpretable form. It
allows the definition of semantic descriptions as well as coordination rules. Previous
releases of this language were built upon DAML+OIL, known as DAML-S. Theoretically,
OWL-S is not limited to one specific grounding, but its current version provides a
predefined grounding for WSDL that maps OWL-S elements to a WSDL interface [PL05].
On top of OWL-S, proper OWL reasoners will allow automatic service composition and
execution.

• WSMO (Web Service Modeling Ontology); DERI [RLK04]. Based on the conceptual
model provided by the WSMF (Web Service Modeling Framework) [FB02], WSMO
serves the purpose of describing various aspects of semantic Web Services, ranging from
coordination constraints over semantics to composition issues, and aims at solving existing
integration problems. The vision of WSMO is that of an automated, goal-driven service

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 17

composition that builds on pre- and post-conditions associated to component services. In
its current version, WSMO does not define any grounding of services, but DERI is
planning to allow multiple groundings for their service descriptions.

• IRS (Internet Reasoning Service) [CDM04]; IRS is KMi's Semantic Web Services
framework, for semantically describing and executing Web Services. The IRS supports the
provision of semantic reasoning services within the context of the Semantic Web. The
primary goal is to support the discovery and retrieval of knowledge components (i.e.,
services) from libraries over the Internet and to semi-automatically compose them
according to specified goals. It is based on problem solving methods, using task
descriptions in terms of input roles, output roles, pre-conditions, assumptions, and goals
and ontologies.

• MAIS (Multichannel Adaptive Information Systems) [MMMP04] [CMPP04]; the Italian
MAIS research project proposes a quality-based approach to service description, selection,
and composition. Web Services, described through MAIS-SDL (Service Description
Language) based on WSDL and annotated with quality properties defined in WSOL
[TPP02], are dynamically composed in context variable process executions. Web Services
are selected from URBE, a UDDI-compatible registry with a service ontology and service
quality information, according to an abstract process description, formulated associating to
BPEL local and global quality constraints and on the basis of information available in the
current context of execution (using the MAIS-PL MAIS Process Language).

As the above list and Figure 4 show, composite service designers currently face a huge amount of
partly mutually exclusive, partly dependent specifications that all serve similar purposes. They are
supposed to know and master all the above specifications together with their peculiarities in order
to be able to choose the right combination for their particular composition problem.

2.1.2.2 Evolution of today’s Standards

The high number of candidate standards is mainly due to two reasons: first, vendor-related
political and strategic aspects (each supports its specification as a common standard); second, the
relatively young age of the Web Service technologies. Unavoidably, this results in a lack of
stability when one comes to choose reference specifications.

B P M L

S O A P 1 . 1

W S D L

U D D I

W S F L

B P E L

W S C I

X L A N G

M
e
s

s
a
g

in
g

D
e

s
c
ri

p
ti

o
n

D
is

c
o

v
e

ry
C

o
o

rd
in

a
ti

o
n

C
o

m
p

o
s

it
io

n

2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5

W S -
C D L

O W L - S

W S M O

S
e

m
a
n

ti
c

s

M A I S
I R S - I I I

Figure 5 : Emergence and evolution of today's principal standards and languages concerning WS
composition. The figure tries to reflect the official release or publication dates of the specifications
(at the best of the authors’ knowledge), first appearance of or discussions about them could differ

from the proposed dates. XLANG and WSFL are not treated in this paper; they heavily contributed
to BPEL and are reported for the sake of completeness [DP06]

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 18

Figure 5 graphically depicts the emergence of the above listed standards and/or specifications.
Along the diagram’s diagonal, a trend towards high-level and semantically enriched specifications
can be derived, which enables designers to comfortably specify or to automatically derive
executable service compositions. Hopefully, at the end of this ongoing evolution, the different
approaches and languages will contribute to or converge into a stable SOP (Service Oriented
Programming) framework.

2.1.2.3 The need for coordination protocols

As introduced earlier, coordination and choreography describe the external message exchange that
occur between a Web Service and its client or among several collaborating Web Services. The
main concerns that have to be addressed within the coordination layer are: Can messages be sent
and received in any order? Which rules govern message sequences? Is there a relationship among
incoming and outgoing messages? Is it possible to undo (parts of) already executed sequences?
The following sections will try to provide answers and details by discussing the conceptual
backgrounds and core ideas of the most representative coordination approaches.

2.1.2.3.1 Conversation between Service and Client

WSDL as interface description language already provides a limited set of constructs that aim at
specifying how to correctly interact with a particular Web Service. Several extensions have been
investigated that tried to extend the basic WSDL description with concepts for better describing
conversation-related aspects

Figure 6, for example, graphically depicts the problem of ordering of exchanged messages.

Figure 6 : Ordered message exchange between a Web Service and its client.

WSDL extensions such as WSCL (Hewlett-Packard Company, 2002) only had limited success,
probably since the underlying client-server conversation model does not really fit into the service-
oriented architecture of Web Services. Graphically, the functionality of WSCL could best be
described by a state machine model, whose expressive power allows describing conditions and
ordered messages, but does not distinguish between involved actors.

2.1.2.3.2 Multi-service Conversations

Figure 7, for example, depicts a conversation scenario that cannot be adequately described by
means of client-server protocols. The main novelty with respect to Figure 6 here is, that now
support for an arbitrary number of interacting services is required.

WS Client

1

2

3

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 19

WS1 WS2

WS3

1

2

3

4

5

6

Figure 7 : Interaction involving multiple Web Services; messages depend semantically and
chronologically from one another.

Each of them plays a different role within the overall conversation; roles are usually labelled with
names like supplier, purchaser, or broker. Graphically, such roles and the conversation itself could
best be described by UML activity diagrams where each role has its own “swim lane” in an overall
state chart diagram or by sequence diagrams.

As first representative, WSCI goes one step further in its support for long lasting, choreographed
and stateful message exchanges with respect to WSCL. In particular, it supports order, rules and
boundaries of messages, correlation, transactions and compensation as well as exception handling.
Through its concept of interface, WSCI goes beyond simple client-server interface descriptions
and supports interaction contexts with different external services, despite lacking an overall global
view of the conversations a service is involved in. A WSCI interface only describes one partner’s
participation in a message exchange and, therefore, a WSCI choreography must include a set of
WSCI interfaces, one for each partner constituting an interaction. The sample scenario in Figure 7
would thus require three different WSCI interface descriptions.

WS-CDL, the latest choreography protocol proposal, finally provides a global view over
multiparty coordination through explicitly modelling all the involved roles [KBRF04]. Its purpose
can be considered as twofold: on the one hand, it provides syntactical primitives for describing
involved roles and the messages exchanged during interaction, on the other hand it can be
interpreted as well as binding interaction agreement between business partners that intend
cooperating and require a language for formalizing their cooperation.

2.1.2.3.3 Other Protocols and Specifications

There also exists a set of proprietary vertical protocols, such as RosettaNet, or xCBL (XML

Common Business Library), which provide conversation description mechanisms for specific
domains. RosettaNet, for example, aims at facilitating dynamic and flexible trading relationships
between business partners in the context of IT supply chains. xCBL, in the context of order
management, combines an XML version of EDI (Electronic Data Interchange) with predefined
business protocols.

Along a somewhat orthogonal dimension of the composition problem, there further exist
specifications such as WS-Coordination or WS-Transactions that can be considered as meta-
specifications providing a framework for the definition of proper coordination protocols with
particular characteristics. For example, WS-Coordination proposes some solutions for the problem
of message correlation within conversations involving several different partners. For this purpose,
it defines a reference data-structure called coordination context, to be added to the exchanged

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 20

SOAP headers, that serves the purpose of passing a unique identifier between interacting Web
Services.

Vinoski (2004) – in a quite critical way and with no claim for completeness – further provides an
impressive list of WS-* specifications, each concerned with the support for particular
functionalities:

o WS-Addressing

o WS-Attachments

o WS-BusinessActivity

o WS-Coordination

o WS-Discovery

o WS-Enumeration

o WS-Eventing

o WS-Federation

o WS-Inspection

o WS-Manageability

o WS-MetadataExchange

o WS-Notification

o WS-PolicyFramework

o WS-Provisioning

o WS-ReliableMessaging

o WS-Resource

o WS-Security

o WS-Topics

o WS-Transactions

o WS-Transfer

As can be derived from the names of the single specifications, all WS-* efforts are re-inventing a
distributed computing platform on top of standard Web technologies. Comparable to the number
of APIs available to .Net or Java/J2EE developers, the amount of WS-* specifications is
continuously growing in order to provide suitable APIs and wire protocols for satisfying emerging
novel interoperability requirements. The first steps towards commonly agreed on, proper
programming libraries for the envisioned SOP infrastructure are being made.

2.1.2.3.4 Coordination Middleware

The coordination protocol specifications described in the last subsections are all so-called
description languages. They are not executable languages that actively coordinate conversations
among different Web Services. Therefore, the necessary runtime logic must be implemented either
by the services themselves or by higher-level process management languages.

[ACKM04] in order to actively support service coordination, suggest an additional middleware
layer on top of the coordination layer, containing so-called conversation controllers with message
routing and protocol compliance verification capabilities. Such conversation controllers could

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 21

address the message dispatching problem arising when it comes to one Web Service being
engaged in several concurrent conversations. For this purpose, the coordination context as
described by WS-Coordination could be exploited for messages correlation purposes.

2.1.2.4 Types of web service compositions

In the following two standards will be discussed.

Table 1 shows the important differences.

2.1.2.4.1 Web Service Orchestration

Web Service orchestration refers to an executable process that can communicate with the web
services inside as well as those outside of an organization. It contains information about massage
exchange between web services and definition of business logic and execution order of activities.
These activities can be associated to applications or organizations. The outcome is a long-term,
transactional process. In the orchestration, the process is always controlled by one business
partner.

2.1.2.4.2 Web service choreography

Web Service Choreography deals with the cooperation between web services. All involved
partners specify the communication with the process. Choreography defines the message exchange
between partners and the process and is associated with the communication between web services.
The outcome of choreography is a descriptive, non-executable process definition, an abstract
process.

Table 1: Web Service orchestration vs. choreography

Orchestration differs from choreography in specification of process flow between activities. No
partner in choreography has control over composition and solely message exchange is defined.
(Figure 8)

Orchestration Choreography

Executable process Non- Executable process (abstract)

Control and data flow Only visible (public) message exchange

Process itself will be published as web service Only components for message exchange

Composition engine (Server) is required No composition engine is required

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 22

Figure 8: Orchestration refers to an executable process, choreography tracks the message
sequences between parties and sources [Pel03].

The followings are prerequisite for both process definition language and the underlying
infrastructure [P03a]:

o Flexibility

Flexibility, offered through the language, is one of the most important aspects. It intends to a clear
separation between process logic and the communication with web services. This can be achieved
through a control instance that monitors the whole process. With it, removal or modification of
services is facilitated for organizations.

o Basic and structures activities

A language has two tasks: on the one hand it must offer activities in order to assure the
communication with web services and on the other hand it must be able to execute the workflow
semantic (business logic). Basic activities are components that allow a conversation with internal
or external web services. In the contrary, structured activities control the conversation. They
declare which basic activities and in which order have to be executed.

o Recursive composition

A single business process can interact with several web services and in turn be published as a web
service. Thereby, it is possible to compose higher level processes.

o Persistence and correlation

The ability of monitoring process state is an important requirement, especially in asynchronous
web service conversation. The language and infrastructure ought to support a mechanism which is
in the position to assure data persistency and correlate request and response of web services
enabling complex conversations.

Web

Services

Web

Services

Web

Services

Web

Services

Web

Services

Web

Services

Request

Accept

Acknowledge

Acknowledge

Orchestration OrchestrationChoreography

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 23

o Failure handling and transaction

A web service orchestration shall possess exception handling mechanisms and support
transactions. The most transactions are long-running and failures can lead to compensation
problems. For example no resource may be locked during a long period of transaction (locking
problem).

2.1.2.5 Main elements of web service compositions

Web service composition defines how web services can be strung together and executed in a given
sequence. The web service composition middleware consists of three main elements [ACKM04]:

o Composition model and language

It comprises specification of web services, which will be combined, their order of execution
(normally based on conditions that are evaluated at run time) and requests and responses for the
message exchange. Specification of a composite web service like a “workflow process description
language” includes business logic of a composite web service (control and data flow). This can be
described by a language, i.e. BPEL4WS, and is referred to as “composition schema”.

o Development environment

Usually characterized by a graphical user interface. The GUI possesses several functionalities in
order to include web service in the composition schema. The graphical illustration of all activities
helps users better understand process definitions. Web services can be linked with edges, which
are tagged with conditions. The resulted process graph will be mapped to a textual specification
(composition schema) in subsequent steps.

o Runtime environment

The runtime environment is often called the composition engine. It implements the business logic
of composite web services. The order of execution of web services is defined in composition
schema and each implementation of a composite web service is referred to as “composition
instance”.

2.1.2.6 Dimensions of a web service composition model

Six different dimensions of a composite web service are considered as component model,
orchestration and choreography models, data and data transfer model, service selection,
transactions and exception handling [ACKM04]. Below these dimensions will be discussed in
details.

2.1.2.6.1 Component model

Component model specifies the component type (HTTP, SOAP, WSDL, etc.) of each web service
and states which component types are supported. Limitation of heterogeneity simplifies the
composition of web services. The leading composition language, BPEL4WS, is confined to
components (web services) described by a WSDL specification. On the other hand, a composition
model can make only few demands on used components e.g. components exchange XML
messages. The advantage is a more general model and the disadvantage is a more costly and
complex composition. A quick fix would be support of several models and additional
implementation of not modeled components. This, in turn, may result in multiple models and too
complex languages.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 24

2.1.2.6.2 Orchestration and Choreography Models

Orchestration Models

An orchestration model defines the needed process definition language in order to specify the
control flow of related web services. The orchestration model allows the description of the internal
structure of composite web services (e.g. internal control flow like sequences, parallel execution
etc.) and their execution conditions. Most of the models are based on few basic models like:
activity diagrams, state charts, Petri nets, activity hierarchies and rule based orchestration.

State charts are formalisms based on an extended variant of state machines to enable the modeling
of performed activities while entering, exiting or within a state. In addition, it is possible to define
events and conditions. There exist as well other variants including composite transitions, parallel
states and synchronization after the execution of parallel composite states. Next figure models the
orchestration of vehicle -Process by the means of a statechart. Activities are almost hidden and the
concentration is on states. Through assignment of meaningful names to states, it is possible to get
useful information on the progress of process. In contrary, activity oriented models allow
identification of activities, which are in execution and not the associated state. That is the reason
why statecharts are better tools to monitor and track information.

o Petri Nets

Petri nets can be seen as a graphical modeling language with a strong and well understand
formalism behind it. Orchestration models based on Petri nets combine activity oriented models
(like activity diagrams) with the definitions of process definitions (like statecharts). Figure 11
makes these combinations visible. Each circle defines a state within the process execution (e.g.
local system accessed). The availability of vehicle on stock triggers and activity and the next state
is reached. If vehicle is not on stock, in the next step “orderVehicleExtern” is executed and
“READY FOR INFO” is reached.

Many static and dynamic properties of Petri nets can be mathematically proven. Detection of
deadlocks and other potentially erroneous condition, enabled through availability of many existing
automated tools, and a well formed semantic are important advantages of Petri nets. The basic
Petri net model has many extensions, which are more process oriented. Some of them can be found
in[VTKB03].

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 25

Figure 2.9 depicts a simple web service composition and serves as a guide for further studies of
different models. Dashed lines connect internal activities with protocol messages (requests and

responses). For simplicity, the whole control and data flow is not included. The composition can
be understood as follows:

Advisor triggers the process by the activity “orderVehicle”. It is checked if there is an appropriate
Vehicle on stock (checkInStock). If this is the case (inStock=true) the activity
“orderVehicleIntern” is invoked in order to extend vehicle-data (Motor number, etc). If no suitable
vehicle (according to given data by costumer) is on stock (inStock=false), the asynchronous
activity “orderVehicleExtern” is executed (Supplier) and order information is mailed to advisor. In
the same manner as “orderVehicleIntern” vehicle and shipment information is received. For
straightforwardness, it is assumed that “orderVehicleExtern” terminates always successfully
(supplier can always deliver). The response is sent again to Advisor and (invoke orderVehicle-

Callback) and search for vehicle can terminate. Afterwards, a parallel process is started: (1) as an
additional service, vehicle will be insured (checkVehicleInsurance) and (2) before finalizing the
contract, workshop rechecks vehicle (testVehicle). After successful termination of both parallel
branches, a response is sent to Advisor (invoke onResult – callback) and the process terminates.

Activity diagrams

Activity diagrams are one of the most common process modeling paradigms for (1) conventional
middleware and (2) web service compositions. Figure 2.9 shows an activity diagram modeled on
the basis of an UML activity diagram (Object Management Group, 1999). The activity diagrams in
UML 2 have the semantics defined in terms of token flow (inspired by Petri nets). The reason for a
success of activity diagrams is the clear structuring of web service requests and responses.
Dependent on the used constructs of activity diagrams, other specifications than requests and
responses like service definition and exception handling may be included.

Statecharts

Figure 9 : Vehicle-process as activity diagram

Insurance

Local service

offered

by the

Supplier

Insurance

Workshop

orderVehicle

checkInStock
orderVehicleIntern

sendMail

orderVehicle R

orderVehicleExtern

orderVehicleExtern R

testVehicle T

Receive orderVehicle

Invoke checkInstock

Invoke checkVehicleExtern

Invoke SendMail

Receive orderVehicleExtern

Invoke OnResult

Invoke testVehicle

Receive testVehicle

Invoke OnResult

Invoke checkVehicleIntern

Invoke checkVehicleInsurance

Receive checkVehicleInsurance

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 26

Figure 10: Vehicle -process by means of a statechart

Started

Invoke checkInStock

Local vehicle search

Local search complete

[inStock=true] invoke orderVehicleIntern

Local search complete

[inStock=false] invoke orderVehicleExtern

Exterbal vehicle order

External search invoked

Invoke sendMail

Mail sent

Send mail complete

Receive orderVehicleExtern

Vehicle ordered

Callback to advisor

Invoke orderVehicle

 Advisor informed

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 27

Figure 11: Vehicle-process specified by means of a Petri net

START

LOCAL

SYSTEM

ACCESSED

READY

FOR

INFO

READY

FOR

ORDER

RECEIVE

READY

FOR

ADVISOR

INFO

Invoke

checkInStock

Invoke

orderVehicleExtern

inStock=false

Invoke

sendMail

Invoke

orderVehicleExtern

Invoke

orderVehicle

Invoke

orderVehicleIntern

inStock=true

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 28

o Π-calculus

Π-calculus is a process algebra and is an attempt at developing a formal theory for process models.
It provides a precise and well-studied formalism for describing and verifying processes. Π-
calculus has its origins in Communication sequential processes (CSP)[CH85], algebra of
communicating processes with abstractions (ACP) [JBK85] and calculus of current systems (CCS)
[MIL89]. The existing languages for web service composition (XLANG [ST01], BPEL) admit to
be inspired by Π-calculus.

The sequential, parallel and conditional process execution can be described by using the following
constructs:

A.B: activity A happens before activity B

A|B: activity A and activity B occur in parallel

A+B: either activity A or activity B is executed

A sample Π-calculus specification of the vehicle -process is presented in the following Listing:

A = receiveOrderVehicle . invokeCheckInStock

B = invokeOrderVehicleIntern

C = invokeOrderVehicleExtern . invokeSendMail . receiveOrderVehicleExtern

D = invokeSendConfirmation

E = invokeCheckVehicleInsurance . receiveCheckVehicleInsurance | invokeTestVehicle
.receiveTestVehicle

F = invokeOrderVehicle

VehicleOrder = A. (([inStock = t rue]B +

([inStock = f a l s e]C)) .D.E.F

Listing 2.1: Vehicle-process in Π-Calculus Notation

o Activity Hierarchies

Activity hierarchies try to specify a process in a hierarchically constructed activity tree. Leaf nodes
represent the activities to be executed and the intermediate nodes set the ordering constraints. The
advantage of this approach is the different levels of abstraction. Higher abstractions are toward the
root of the tree while more details will be toward the leaf nodes. Figure 12 shows the vehicle -
process modeled by means of activity hierarchies. An example of orchestration model based on

activity hierarchy is Little-JIL [CAM00]

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 29

Figure 12: vehicle-process as activity hierarchies

o Rule-based Orchestration

An orchestration model can be specified by means of a set of rules. These rules are based on
events. This means if an event has occurred, a particular action is executed. Furthermore,
conditions can be added to the event- controlled actions in order to provide more complex
orchestration schemas. If a rule-based language allows the specification of conditions, the rule
model is said to follow the ECA (event-condition-action) paradigm[CIY00]. In the context of web
service composition, the composition engine can be viewed as a reactive system. Actually, the
composition engine executes specific rules with consideration of their conditions when responses
from clients or other services are received or it reacts to requests. Listing 2.2 specifies a sequence
of rules with conditions. Obviously, this model is well suited for compositions that have few
constraints and the entire schema can be specified using few rules. Otherwise the schema will be
complex and hardly understandable.

ON r e c e i v e orderVehicle

IF t rue THEN invoke checkInStock

ON complete (checkInStock)

IF (inStock == true) THEN invoke orderVehicleIntern

ON complete (orderVehicleIntern)

IF t rue THEN invoke invoke orderVehicle

ON complete (checkInStock)

IF (inStock == f a l s e) THEN invoke orderVehicleExtern

ON complete (orderVehicleExtern)

IF t rue THEN invoke sendMail

ON r e c e iv e orderVehicleExtern

IF true THEN invoke orderVehicle

 . .

Listing 2.2: Vehicle-process by means of rule-based orchestration

Choreography Models

Vehicle-process

Receive

orderVehicle

Invoke

checkInStock

Based on local vehicle search

choice

Invoke

orderVehicle

…

Invoke

 orderVehicleIntern

Invoke

orderVehicleIntern

Invoke

sendMail

Receive

 orderVehicleExtern

External vehicle search

sequence

inStock=true

inStock=false

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 30

The choreography model describes collaboration between a collection of web services in order to
achieve a common goal. It captures the interactions in which the participants engage to achieve
this goal. It also describes the dependencies between these interactions, e.g. control flow
dependencies, data flow dependencies, message correlations etc. The interactions are captured
from a global perspective, i.e. all participating services are treated equally. Moreover, the
choreography does not describe any internal action that occurs within a participating service and
does not directly result in an externally visible effect.

o Sequence Diagrams

Sequence diagrams provide a view on interactions of multiple partners. The interactions are
modelled as messages exchanged between partners. The messages can be passed synchronously or
asynchronously. Individual participants are represented by so called lifelines. The sequence
diagrams in UML 2 allows to define within a sequence the areas with different behaviour specified
by an operator. Such areas are called combined fragments. An additional guard condition checks
which part of a combined fragment should be executed.

A sample choreography described with UML sequence diagrams is presented in Figure 13:

c: Customer : Company : Warehouse : ShippingService

submit order

get products

products

ship bundle(c)

bundle

reject order

alt

[check=ok]

[else]

c: Customer : Company : Warehouse : ShippingService

submit order

get products

products

ship bundle(c)

bundle

reject order

alt

[check=ok]

[else]

lifeline

operator

combined

fragment

guard

asynchronous

message

Figure 13: Choreography described with UML sequence diagrams

Other Choreography Models

Another model for describing choreography is Message Sequence Charts (MSC). MSC is a
graphical and textual language for the description and specification of the interactions between
system components. The main area of application for Message Sequence Charts is as an overview
specification of the communication behavior of real-time systems, in particular telecommunication

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 31

switching systems. Message Sequence Charts may be used for requirement specification,
simulation and validation, test-case specification and documentation of real-time systems.

The choreography can be also described using the activity diagrams as presented in [BAM05].

How orchestration depends on choreography

After this overview of Web Service choreography and orchestration and the main concerns they
address, in this section we highlight to what extent the two aspects depend from on another. To
this aim, we distinguish three dimensions: structural, functional, and resource dependencies.

o Structural Dependencies

Structural dependencies are those driving the overall structure or organization of a process
definition, and thus concern involved activities, conditions, ramifications within the process flow,
an so on.

[ACKM04] well explain the dependencies between coordination protocols and composition
schemas by stepwise refining the portion of a process definition relative to only one of the
participating services. Starting from an overall activity diagram, the authors first extract the role-
specific view of the process and then refine it in order to reach a granularity level where the single
activities of the remaining diagram reflects the single service invocations required for achieving
the specific functionality. This so-called process skeleton on the one hand describes the role-
specific view of the process, on the other hand provides a proper protocol description of that
participant’s public interactions. In this way, the authors show how the definition of the executable
process intrinsically must match the constraints imposed by the underlying coordination protocol.

o Functional Dependencies

Functional dependencies concern mainly functionalities or capabilities like transaction support,
security, reliability, or correlation; mainly those provided by the wealth of WS-* specifications
are considered. Dependencies arise whenever the functionalities they provide are used within a
process specification and the composition language “delegates” the relative competencies to the
underlying coordination protocols.

As already exemplified earlier, coordination can be achieved either explicitly at process level or
implicitly at coordination level. For example, once the choice of adopting the WS-Coordination
framework has been made, the process definition does not require further explicit coordination
constructs. The same considerations also hold in case of transaction support, reliable messaging, or
the like.

o Resource Dependencies

Most of the process definition languages have inherited their modelling approaches from the field
of workflow management. At process or composition design time, however, service composition
presents some methodological differences that are rooted in the dependencies that exist between
coordination and composition.

WfMSs allow for a straightforward top-down structure of the process model, describing, e.g., an
administrative workflow. Resources executing a specific work item are provided with the exact
amount of data that is required for the correct execution of that task. For executing one task, there
is no need to know about possible other tasks before or after that specific task within the same
process flow. Possible task constellations are subject only to the constraints imposed by the final
goal of the underlying business process. Involved resources do not have a task-surviving behaviour
with constraints affecting the overall process definition. Rearranging tasks (i.e., putting some of
them in parallel), when specifying process definitions, is a common practice for improving process
efficiency.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 32

When defining the logic that constitutes a composite Web Service, a strict top-down approach
does not guarantee that the resulting process definition is still always executable. As already
outlined earlier when dealing with the need for coordination protocols, a Web Service may by
subject to certain conversation rules in order to be executed correctly. For example, before
accepting a user’s credit card number for payment, the service must be provided with an
appropriate list of goods the user wants to buy. This externally visible behavior of Web Services
distinguishes the Web Service resource from those we have in WfMS. Single tasks cannot anymore
be rearranged arbitrarily without loosing functionality.

Composite service designers must know about the coordination requirements of the services they
use and take them into account when defining composite services. Thus, starting from an initial
process idea (top-down), designers select the services providing the right functionality, and then
refine their initial idea (by rearranging initially presumed invocations or adding new ones) in order
to conform with the coordination requirements the selected services impose (bottom-up).
Therefore, the resulting process definition combines the advantages of both a coarse-grained top-
down approach and a fine-grained bottom-up method.

2.1.2.6.3 From Coordination to Composition

Despite the intrinsic passive behaviour of description languages or protocols, they have proven to
have enough expressive power in the context of service coordination, which indeed does not
require any executable logic. However, coming to orchestration, things change and active support
for the execution of process or flow definitions is required. Furthermore, process execution implies
the need for dedicated execution environments, so-called execution or process engines able to
interpret process definitions and to carry out the specified activities.

There are several different interpretations of what orchestration actually should be. Some authors
refer to it as to proper programming languages, others tend to prefer a more general and
evolutionary interpretation: “…these systems are often labelled the second generation Workflow

Management Systems (WfMSs) because they provide much richer integration capabilities than
traditional WfMSs…” (BPMI.org, n.d.). This second interpretation is probably too simplistic and
puts too much emphasis on the business perspective of the problem. Nevertheless, current
orchestration approaches definitely inherit their core modelling concepts from research in the field
of WfMSs. For instance, various structured process models have been proposed using traditional
workflow constructs as a basis. A classification of typical workflow constructs, originating from a
structured programming language approach to workflow definition, has been proposed [VTKB03].
The following subsections provide insight into composition approaches and issues in the context
of Web Services.

Model-based Composition

Model-based service composition approaches concentrate on the explicit definition of the possible
process flow that governs a composite Web Service. Such process definitions are fed into a
process or execution engine that manages the overall execution of the compound activities and
thus actively orchestrates the composite service. Commercial composition tools usually provide
intuitive high-level visual modelling tools that aid designers in the predominantly explicit
definition of processes, such as Microsoft’s BizTalk Orchestration Designer (Microsoft
Corporation, n.d.). Internally, these models are then translated into low-level process models for
execution purposes. Several approaches for internal process structures have been proposed. These
approaches like Petri Nets, Statecharts, Π-Calculus have been introduces in the previous
subsections.

Two representatives of structured process models: BPEL(4WS) vs. BPML

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 33

BPEL is an XML-based Web Service composition language that is rooted in both Microsoft’s
XLANG and IBM’s WSFL. In BPEL, a composite service is named a process; processes export
and import functionality by using Web Service interfaces exclusively. Two main kinds of
processes are distinguished: executable processes model the actual behaviour of participants in a
business interaction (service composition), abstract processes describe business protocols,
specifying the mutually visible message exchange behaviour of each of the parties involved
(coordination). According to this twofold applicability, BPEL is located both in the Coordination
and Composition layers within the protocol stack depicted in 2.11. Besides processes, participating
services are called partners, and message exchanges or intermediate result transformations are
called activities. BPEL distinguishes between basic and structured activities. Basic activities
represent synchronous and asynchronous calls (<invoke>, <invoke>…<receive>), structured

activities manage the overall process flow (<flow> to denote parallelism, <switch> for
alternatives...).

BPEL is designed primarily as a composition language, but developers can use the same
formalism for both service composition and conversation definition. As such, it lacks many of the
necessary and, from a discovery and binding perspective, particularly useful properties needed for
defining conversations (e.g., for activation and compensation). Furthermore, the structure of BPEL
is flat, i.e., sub-processes cannot be defined.

BPML, with respect to BPEL, provides similar modelling capabilities, but also supports some
additional constructs, making it more flexible in general, such as sub-processes, dynamic partners,
etc. In particular, the BPML specification provides an abstract model and an XML syntax for
expressing executable business processes. But, BPML itself does not define any application
semantics, but rather defines an abstract model and a grammar for expressing generic processes.
This allows BPML to be used for a variety of purposes that include, but are not limited to, the
definition of enterprise business processes, the definition of complex Web Services, and the
definition of multi-party collaborations. BPML is conceived as block-structured programming
language. Recursive block structures play a significant role in scoping issues that are relevant for
declarations, definitions and process execution.

Both BPEL and BPML provide support for long-running business transactions and robust
exception handling facilities. BPML does not provide constructs for the definition of message
coordination protocols as BPEL does, but developers easily can use WSCI for this purpose, which
shares the same underlying process execution model. This apparent shortcoming of BPML, on the
other hand, allows for a more flexible use of BPML and WSCI when it comes to defining
conversations, due to the good separation of concerns. Currently, there is, however, less industry
support for BPML in comparison to BPEL.

Ontology-driven Composition

Besides explicit process modelling approaches, the Semantic Web and service ontologies offer
alternative ways for the composition and execution of compound services. This kind of approach,
rather than concentrating on an explicit definition of the flow logic, aims at providing suitable
frameworks for the automatic derivation and execution of composite services, defined in an
implicit manner by means of goals as well as pre- and post-conditions over service inputs and
outputs.

For example, [AAZM04] propose an ontology-driven Web Services composition platform where
the requirements of the composite services are specified by users as inputs and expected outputs.
The described approach allows the automatic generation and execution of a composite service that
produces the expected outputs by combining existing individual services, using their semantic
descriptions. A human-assisted and an automatic composition mechanism are outlined.

Lightweight Web Service Semantics: WSDL-S

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 34

A recent alternative to the heavy-weight semantic web service ontologies OWL-S and WSMO is
WSDL-S, a simple extension to WSDL proposed by IBM and LSDIS Lab published as a W3C
technical note.

The motivation for WSDL-S was to lower the threshold for annotating semantic web services. As
opposed to complex ontologies about web services, WSDL-S allows for pointers from (XML
Schema defined) elements in the web service description to an external ontology. These external
ontologies can be defined in any ontology language. WSDL-S is agnostic towards it. Datatype
mappings can be either on the element level (one-to-one) or on the level of complex types by
specifying a more complex schema mapping for example in XSLT. WSDL-S is, however, also
agnostic towards the mapping language. WSDL-S also allows specifying preconditions and effects
of an operation in the same way by pointing to an external ontology. Furthermore, a category can
be assigned to the service as a whole.

OWL-S vs. WSDL-S: A Comparison

A web service description in OWL-S usually consists of several parts: First, the profile specifies a
categorization of the service as a whole by placing it into a profile hierarchy or taxonomy. The
profile specifies the semantics of input and output parameters of the individual operations of a
service as well as its preconditions and effects. Further, the OWL-S profile also specifies some
non-functional properties such as the name of the provider of the service. The OWL-S process

model specifies the internal workflow of a web service. A web service is modeled as a process. An
operation in a web service corresponds to an atomic process. To model workflows and business
processes, OWL-S offers the construct of composite processes. For modeling the workflow within
a composite process OWL-S offers control constructs similar to those offered by BPEL. OWL-S
relies on WSDL to describe the syntax of a web service interface. The OWL-S grounding makes
the connection between the concepts specified in the OWL-S ontology and the service as described
by the standard WSDL description. To ensure compatibility with “legacy” (non-semantic) web
services, the grounding supports XSLT transformations to map the XML used by the web service
to an RDF representation. An explicit, separate grounding is not necessary in WSDL-S, since the
semantic annotations are just extensions to the standard WSDL description, so the connection is
clear. OWL-S and WSDL-S follow diametrical philosophies here. In OWL-S, syntactic and
semantic descriptions are kept completely separate. The WSDL description remains unaltered; a
semantic description can separately be added on top. In contrast, WSDL-S is an extension to
WSDL and thus provides syntactic and semantic description within the same document. However,
in both cases the actual domain ontology is usually declared separately.

WSDL-S offers the same functionality as the OWL-S profile and grounding, including XSLT
transformations for schema mapping. In contrast to OWL-S, WSDL-S does not offer any support
for workflow or process descriptions. To specify composed web services as in OWL-S, BPEL is
needed in addition to WSDL-S. However, this does not affect the suitability of WSDL-S with
respect to (semi-automated) ontology driven composition of web services, where the requirements
are rather that matching web services can be discovered. WSDL-S is suited for semi-automated
discovery.

Comparing the two approaches, the advantage of WSDL-S is that it is much easier to handle. To
create an OWL-S description, a developer has to be familiar with an ontology that is quite
complex. In contrast to that, WSDL-S is a straightforward and backward-compatible extension to
WSDL using extensibility elements.

Two emerging standards: OWL-S vs. WSMO

OWL-S allows providers of Web Services to describe properties, capabilities, and behaviours of
their services by means of ontologies, and provides proper language primitives for their semantic
description. The final goal of OWL-S is to provide a machine-interpretable description of services,

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 35

in addition to the human-understandable descriptions already provided by WSDL, and thus to
support automatic service discovery, execution, and composition. The core of OWL-S, the
ontology-driven description approach, builds on the Ontology Web Language (OWL) [M03a],
which provides the necessary constructs for explicitly representing the meaning of terms and the
relationships existing among them within a specific domain. OWL and OWL-S are evolutions of
DAML+OIL, a semantic markup language for Web resources.

OWL-S ontologies are structured into three main parts: i) a service profile serves the purpose of
advertising and discovering services published by service providers and contains a semantically
enriched and machine-interpretable service description. ii) a process model describes how a
service operates (by means of proper control constructs and conversation descriptions) and
comprises inputs, outputs, preconditions, results and effects of the service. According to their
complexity, atomic, simple, and composite processes are distinguished, being composite the most
complex ones. iii) the service grounding provides the necessary details for accessing a specific
service, i.e., protocols and message formats. Whereas profile and model provide rather abstract
representations, grounding refers to the concrete specification. The semantics- and ontology-based
approach adopted by OWL-S is particularly suited for advanced service and conversation
description.

WSMO aims as well at describing relevant aspects of semantic Web Services. Within the Web

Service Modeling Framework (WSMF), WSMO provides an (open source) executable solution for
goal-driven service composition through extensive use of ontologies, semantic service descriptions
and pre- and post-conditions for service description. Besides ontologies, goals and service
descriptions, so-called mediators should bypass interoperability problems. Interoperability is one
of the main issues WSMO tries to solve, and this aspect differentiates it from OWL-S.

Just as for OWL-S, ontologies provide the formal semantics that allows for automatic information
processing and for human- and computer-understandable goal definitions. A goal specification
expresses the final objective a client may have when interacting with a service and consists
primarily of constraints over post-conditions after service execution. Mediators provide the
necessary support for integrating heterogeneous elements when combining several component
services. They define mappings and transformations between connected elements. Four types of
mediators exist, according to the elements they link: goal-goal mediators, ontology-ontology
mediators, Web-Service-goal mediators, and service-service mediators. Finally, Web Services are
described by means of their non-functional properties, the mediators they use, their capabilities,
and their interfaces and groundings.

Parallel to WSMO, DERI is working on an execution environment for WSMO-based Web
Services, called Web Services Execution Environment (WSMX) [H05]. The goal of WSMX is that
of providing an environment for dynamic inter-operation of Web Services, including automatic
discovery, selection, mediation and invocation mechanisms.

Other Composition Approaches

Besides proper language or protocol standardization efforts, several academic research works go
one step further in service composition and also investigate the value of additional aspects of the
composition problem, such as QoS, personalization, or context. Along a somehow orthogonal
dimension with respect to the previous approaches,[MMY05], for example, extend their state-
chart-based service composition model with an agent-based and context-oriented approach to
composite service execution. The authors define three kinds of software agents (composite-

service-agent, master-service-agent, and service-agent) and their execution contexts (C-context,
W-context, and I-context respectively), where the term context reflects the point of view of services
rather than to the one of users. More precisely, C/W/I-contexts and their respective agents refer to
three different abstraction levels of the composition problem, namely to the ones of composition,
Web Service (intended as resource) and instance (of services). At runtime, agents are engaged in
conversations with their peers on behalf of the user to agree on the actual Web Services to

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 36

participate in the process, according to the runtime context conditions and the global composition
model.

[BBG03] finally, provide a valuable approach to Web Service composition within the initially
mentioned workflow domain and with special focus on enterprise workflow interconnection. The
process interconnection model presented by the authors builds on Web Service-based workflow
integration and allows for heterogeneous workflow systems coexisting in a so-called “workflow of
workflows”. The main contribution of the work consists in the introduction of a certain level of
dynamism, proper of the Web Services area, into workflow definitions; more precisely, the authors
postpone the selection of nested sub-processes from build-time to runtime, by introducing proper
discovery, negotiation and wrapping mechanisms for so-called process services.

2.1.2.6.4 Data and Data Transfer Model

Data and the data transfer model specify how data are defined and how they can be passed
between involved components:

Data types

The literature classifies several categories of data [ACKM04].

o Control data

The web service composition management system (composition engine) monitors the execution of
composition using the control data. These data include the identification of actual state of
processes or activity instances as well as other internal state information. The control data are not
visible to process instances but they are passed between composition engines.

o Control flow relevant data (workflow relevant data)

Control flow relevant data are used by the service composition management system to determine
the state transitions of a process instance. They are used by the composition engine in order to
identify the next activity to be executed in conditional branches or pre- and postconditions are
called control-flow or workflow relevant data, e.g. the control flow in Fig. 2 depends on a value of
a variable inStock. Control flow relevant data must be available to the composition engine and
therefore they are usually stored in process variables.

Control flow relevant data, in contrast to application data, are hardly structured. These data have
mostly primitive data types such as String, Integer or Real data type and serve for specification of
execution order of involved web services in composition. There exist models that allow more
complex data types like arrays.

o Application data

Application data are passed between components (web services, activities) involved in a
composition, e.g. orderVehicleIntern sends and receives application data as request and response
messages.

The application data can be stored in process variables, similarly to the control flow relevant data.
In this case the composition engine has direct access to these data and their content. In an
alternative solution the application data are handled as a black box. In this approach process
variables store only URLs or other kind of pointers to the actual localization of data. Therefore
data are hidden in composition and only references are forwarded between activities. The activities
must have their own mechanisms of accessing the referenced data. The advantage of this approach
is that complex data structures can be ignored while exchanging messages. Complex messages as a
part of process may lead to a system overload. This approach presents a good alternative when the
used documents are extensive but minimally changed by participating activities. In this way data is
not a part of the process but available through the reference.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 37

Data Transfer

Data transfer concerns with a transfer or a data flow of application data from one component to
another. There are following approaches:

o Implicit data flow

Implicit data flow is realized via shared data elements (e.g. process variables) which may be
passed to and from activities. This resembles techniques used in many programming languages. A
shared element may be passed to an activity as an input parameter and an activity output may be
passed back to the same or another shared element. The variables can be transformed so that they
comply with the required data format.

o Explicit data flow

The explicit data flow approach is based on making data flow among activities an explicit part of
the composition. In doing so, data flow connectors are required. Data flow connectors provide the
request of an activity with passed response of a previously executed activity. In the example
illustrated in Fig. 6 a data flow is represented by dashed arrows, e.g. activity C uses response set of
activity A as request.

In the context of web services, the WSFL specification [LRT03] uses explicit data flow. Also
some workflow management systems like MQSeries (IBM, 1999) and BioOpera [BAP03] apply
this approach.

Generally speaking, explicit data flow approach is more flexible and extensive than implicit data
flow approach. Its design is more complex but comprises additional control mechanisms. In the
above example, activity A must be completed for activity C to start. Data flow approaches may
cause malfunction if the same input can be provided by different data flows. In this case we talk
about race condition.

2.1.2.6.5 Service Selection

One of the main novelties introduced by research efforts, as well as by the ontology- or semantics-
driven composition approaches, consists in the dynamic selection of the services to be composed,
besides the dynamic service composition itself.

Service selection is probably the point where current orchestration approaches definitely lack
flexibility with respect to traditional WfMSs, which usually include a (centralized) resource
manager that at runtime decides to which resource instance, respecting a precise role definition, a
specific task should be assigned (WfMC, n.d.). The question, hence, is whether component
services should be selected at process definition time or at runtime during process execution. Some
authors even distinguish between service selection at design time and deploy time. The overall
purpose of dynamic service selection is mostly that of guaranteeing the availability of a composite
service, being the Web a highly variable and fast changing environment.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 38

Figure 14: Explicit data flow approach

Selection decisions not only are influenced by the selection time, but – and even at a higher degree
– by the selection algorithm itself. As the ontology-driven approach shows, semantic and goal-
driven considerations could drive the selection algorithm [AAZM04], as well as context-based or
QoS-driven ones. Also, syntactical similarities or abstract services as representatives for a specific
class of equivalent services could constitute the decision domain.

Recent proposals have emerged to support WSMO and OWL-S service selection using IRS
[CDM04], using the IRS discovery and retrieval mechanisms, mapping semantic service
descriptions provided by those two approaches to the knowledge representation language
OCML[HDMC04].

In the URBE registry developed for MAIS, services are selected from the registry according to
their functional characteristics, organized according to a service model), their quality
characteristics, the invocation context, and application or user requirements [BD05]. Similarity
functions are provided to assess the functional suitability of a service, according to given
functional requirements, in conjunction with a lightweight ontology model.

Static or dynamic bindings affect the selection of a component (web service) by an activity. The
target of a request (URI) is an abstract part of a composition schema, typically as PortType.
Composition engine must resolve the PortType so that it can look the end point of web service up.
This happens at run time. In other words, a composition must bind to specific services through
resolving of PortTypes at run time. This can be done in four ways: static binding, dynamic binding
by reference, dynamic binding by LookUp, and dynamic binding selection.

Activity A

Activity B

Activity C

quantity

quantity

price

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 39

o Static Binding

The easiest method to bind a web service is explicitly hardcoding the URI as part of composition
schema. This is actually no selection because always the same URI is invoked. This simple
approach needs the composition schema be modified when web service URI is changed. Static
binding is specifically useful when prototyping and testing.

o Dynamic Binding by Reference

Some of the limitations of static binding can be avoided employing Dynamic Binding by
Reference approach, where web services URIs are specified as process variables. In contrast to
static binding, process variables and not composition schema need to be modified when web
service URI is changed. The variables can be assigned a value through: (1) previously executed
operation (2) URI information from clients invoking the composite service (3) explicitly at time of
service deployment. In case (1), binding can be provided by an API operation. A web service
registry can be accessed by API operation. The stored result (into a variable) can be referenced
subsequently (e.g. UDDI[ABC03]).

o Dynamic Binding by LookUp

The composition middleware allows the definition of a query on some directories (registers) for
each activity. Results are used for determination of invoked web service URI. The predecessor of
BPEL, the composition language WSFL, allows such a query mechanism on a UDDI register.

o Dynamic Operation Selection

Dynamic models allow not only dynamic binding of web service selection but also selection of
web service operations. Such service operations are called generic activities |[CAM00]. They do
not explicitly specify the service operation. Analogous to the previous mentioned service selection
mechanisms, the operations are selected at run time.

2.1.2.6.6 Transactions

As Web Services aim at supporting collaborations between business partners, robust transaction
support is required. The classical ACID properties [GPS99] of relational databases have proven
being to strict in a service-oriented environment involving several autonomous business partners,
and thus, in this context, they have to be slightly relaxed. Also, compensating mechanisms must be
taken into consideration, as already happened for WfMSs[GPS99].

Transactions define the transactional semantic associated with composition. Within an
orchestration schema some atomic regions may be defined, if allowed by the language. An atomic
region consists of a set of activities with all-or-nothing property. This means either none or all of
the activities should be executed. If a failure within an atomic region occurs, committed actions
must be compensated in order the original state be reestablished. To do this, rollbacks will be
performed by the so-called compensation handlers. Each activity or a group of activities can
implement such a compensation handler. In August 2002, IBM, Microsoft, and BEA proposed
WS-Transaction, a standard protocol for long-running business transactions that builds on the
framework provided by WS-Coordination. Transactions are one way to handle exceptions, but due
to its compensation mechanism not in every exceptional situation transactions provide the right
functionality.

2.1.2.6.7 Exception Handling

Exception handling is performed at runtime without interrupting the service. Exceptions are
typically caused by the system (i.e. server is not running) or upon receipt of a fail message of an

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 40

invoked web service. There are various ways to model and catch the exception. There are three
main models: flow-based, try-catch-throw and rule-based.

o Flow-based approach

This approach is used when the used language supports no exception handling mechanisms,
analogous to coding application logic in third generation languages that offer no exception
handling support. In general, at the end of a service invocation, the received response is tested for
error and appropriate actions are taken respectively. Inclusion of conditional branches after
response assures such a behavior when an unexpected response is received.

o Try-Catch-Throw approach

This technique is very similar to exception handling in Java (Sun Microsystems, 2005). The idea
behind this approach is association of an exception handling logic to activities or to a group of
activities. If an error condition expressed over response data is true, an activity (exception
handling portion of code) is executed automatically. Such a Boolean condition can be associated to
a single activity or to a specific group of activities, as well as to sub-processes. As it is possible to
construct activity hierarchies, exception handlers at higher hierarchy level can handle errors
occurred at lower levels of abstraction. Analogous to java (Sun Microsystems, 2005), errors can be
caught by higher level methods. If there is no specific exception handling available for a particular
activity or a group of activities, a suitable handler is searched by going up the hierarchy toward
parents. If no exception handler is found, the process is terminated. Clear separation of service and
exception handling logic is the great advantage of this approach.

o Rule-based approach

In the rule-based approaches the exception handling logic is specified by ECA-rules where events
define the exception handling. The condition is a Boolean expression over the response that is sent
from web service to composition instance. Receipt of no response (Time Out) causes in turn an
error. Such rules are defined by a textual language and are generally applicable with only limited
number of rules. Otherwise the schema becomes complex and inscrutable.

2.1.2.7 Message Correlation

Once the services that constitute the composite service have been selected, another (runtime)
problem must be addressed: message correlation. As there may be several concurrent instances of
the same composite service running within one and the same execution environment, these process
instances and the conversations they are involved in with external Web Srvices must be uniquely
identified for guaranteeing a correct overall process execution.

WS-Coordination proposes identifiers (the coordination context) carried by SOAP headers for
uniquely associating messages to conversations. When using WSCI, designers can identify certain
data items within exchanged messages that act as unique identifiers of the conversation. A possible
process specification on top of these protocols must explicitly provide the necessary logic
implementing the described mechanisms.

On the other hand, BPEL already proposes a solution at process level, namely so-called correlation
sets that – similar as within WSCI – allow defining sets of data items as unique identifiers. By
assigning the same correlation set to multiple messages, the designer can specify that messages –
whenever the respective data items have the same values – belong to the same process instance or
conversation.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 41

2.1.2.8 Web Service Distributed Management (WSDM)

The objective of the Web Service Distributed Management (WSDM) standard is ambitious since it
does not represent a new management protocol, but rather aims at using the Web Service
technology to unify different management infrastructures to provide a vendor neutral and a
platform independent management system. Using a common messaging protocol both for managed
resources and consumers, WSDM enables the migration from old management infrastructure to
new ones in which management components can be easily integrated into Web Service based
business processes.

One of the most interesting aspects of WSDM is its resource orientation approach. In traditional
management systems, consumers access resources through management agents that run on the
resource side and communicate with consumers using standard protocols (e.g., SNMP and
WBEM). WSDM uses a different approach in which resources are Web Services. This allows
consumers to access resources directly, without using management agents, since resources can be
easily integrated in generic SOA architectures that permit to search and invoke resources using
standard Web Service mechanisms. Using WSDM, consumers do not need to concentrate on
communication aspects. They are free to consider resources as Web Services that can be easily
composed and integrated into their business processes.

The core concept of WSDM is the manageable resource that is accessible by a manageability
consumer through a Web Service endpoint. Each manageable resource is described using an XML
document (i.e., the resource properties document) defined accordingly to the WSRF specification.

Once that a manageable resource has been defined, manageability consumers can interact with the
resource for:

o retrieving the management information about the manageable resource (e.g., retrieve the
current operating status);

o affecting the state of a manageable resource (e.g., turn operating status from active to
inactive);

o subscribing for receiving notifications from manageable resources (e.g., the resource
notifies its operating status changes).

In detail, the interaction with a manageable resource is enabled by a set of manageable capabilities
exported by the resource itself. Manageable capabilities are contained within the resource property
document of the resource, and are defined as a set of properties, operations, and events, which are
exposed via a Web Service interface. Using manageable capabilities, manageability consumers are
able to access the properties of a resource, perform operations over a resource, and subscribe to
notifications from a resource.

The WSDM standard allows developers to define their manageable capabilities, but also provides
a set of standard capabilities that can be exploited.

o the Identity capability, which exposes the ResourceId of a manageable resource;

o the ManageabilityCharacteristics capability, which exposes the list of the supported
capabilities by the manageable resource;

o the CorrelateProperties capability, which is useful to understand whether two different
ResourceId refer to the same manageable resource;

o the Description capability, which exposes the Caption, Description, and Version of a
manageable resource;

o the State capability, which exposes the state of a manageable resource. WSDM allows
resources to define its own state model;

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 42

o the OperationalStatus capability, which exposes the operational status of a manageable
resource. The exposed values can be Available, PartiallyAvailable, Unavailable or
Unknown;

o the Metrics capability, which exposes the metric information of the performance and
operations of a manageable resource. WSDM provides some metrics but allows resources
to define their own metrics;

o the Configuration capability, which exposes the properties of a manageable resource that
can be modified by a manageability consumer, changing the behavior of the manageable
resource;

o the Relationships capability, which exposes the relationships in which a resource
participates;

o the RelationshipResource capability, which exposes the properties of a manageable
resource representing a relationship;

o the Advertisement capability, which exposes a mechanism to generate notifications upon
the creation or the destruction of a manageable resource.

WSDM consists of two standards known as Management Using Web Services (MUWS) and
Management of Web Services (MOWS). The first standard has been developed to manage any
resource using Web Services and is composed of two specifications MUWS Part 1 (Vambenepe-1,
2005) and MUWS Part 2 (Vambenepe-2, 2005). The first one describes the basic capabilities of a
manageable resource (i.e., identity, manageable characteristics, and correlated properties), while
the second describes the remaining capabilities.

The MOWS standard consists of one document, and can be viewed as an application of the
MUWS standard. It describes how to deal with Web Services, considering themselves as
manageable resources.

2.1.3 Conclusions

The high number of candidate standards for Web Services composition and coordination is mainly
due to two reasons: first, vendor-related political and strategic aspects (each supports its
specification as a common standard); second, the relatively young age of the Web Service
technologies. Unavoidably, this results in a lack of stability when one comes to choose reference
specifications. Same problems were encountered in the workflow management systems, where
each vendor forced its own proprietary solutions. It took many years before the Workflow
Management Coalition agreed upon standards which enabled interoperability [XPDL, WfXML].
But in the Web Services the interoperability is one of the fundamental assumptions – Web
Services are autonomous and loosely coupled systems which publish their interfaces and
communicate using open and internet based standards. Currently XML is commonly accepted as
the (meta-) data format in Web Services. Also SOAP in the messaging layer, UDDI in the
discovery layer and WSDL as the interface description are generally accepted and used in the
lower layers of Web Services stack. But these are standards which merely describe the basic
functionality of simple Web Services. The real added value lies in the composed Web Services and
this is the place where several overlapping and competing standards have been proposed like WS-
BPEL, BPML, WS-CDL, WSCI, WSCL. They address some aspects of both choreography and
orchestration, and sometimes the distinction between the two is not very clear in those proposals.
But it is only a matter of time before one dominating standard for Web Service composition will
be accepted and implemented by most of the vendors. Moreover, there is an ongoing work on a
plethora of WS-* specifications, each concerned with the support for particular functionalities in
order to provide suitable APIs and wire protocols for satisfying emerging novel interoperability

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 43

requirements. These are the first steps towards commonly agreed on, proper programming libraries
for the envisioned SOP infrastructure.

Web Services are loosely-coupled and autonomous. From this perspective it is essential that an
enterprise is able to define its own business process described as a composed Web Service and
control the execution of this process or at least the execution of parts of the process, which belong
to this enterprise. The important components here are the process description language together
with the process modelling tools and the execution engines that can interpret this language.
Currently only BPEL provides all of that in a form that can be used in practical scenarios.
Moreover, there is still ongoing work on BPEL that can justify our prediction that in the near
future BPEL will be the dominating standard for the Web Service composition. The BPEL has
several advantages over its competitors:

• it is widely accepted de facto standard;

• there are ongoing standardization efforts lead by OASIS [WS-BPEL 2.0];

• this is the only standard proposal which has several implementations (both execution
engines and modelling tools) released by big vendors (e.g. IBM, Oracle, Microsoft) and
the open source community;

• there are numerous proposals for BPEL extensions, e.g. human users interactions in BPEL
[BPEL4People] or subprocesses in BPEL [BPEL-SPE];

• there are several proposals of formal semantics for BPEL (e.g. based on Petri nets
[HSS05] or process algebras [Fer04]) which enable verification of business processes
described in BPEL;

• BPEL enables both the description of the orchestration of a particular business process
(with the BPEL executable process description) and the behaviour of this process in the
choreography (with the BPEL abstract process description).

A typical application scenario employing BPEL involves several partners. Each of the partners has
its own BPEL engine and executes its private BPEL process, which communicate with BPEL
engines and processes of other partners. One or several interfaces to a BPEL process are described
with WSDL and made available to the other partners. The communication between partners is
provided by exchanging the SOAP messages.

BPEL describes the orchestration and the behaviour of an orchestrated process in the overall
choreography. However, it lacks the ability to describe the choreography itself. The choreography
should describe the protocol of message exchange between cooperating BPEL processes.
Currently the W3C works on a new proposal for describing choreographies – WS-CDL. But these
efforts are not supported by the industry and there is available only one partial implementation, so
it is difficult to say whether WS-CDL will be widely accepted.

Taking into account the perspectives of the BPEL and its acceptance and current support by many
modelling tools and execution engines we have decided to apply it very intensively in our project.
Nevertheless, we are aware of many limitations of BPEL and we will analyze them in context of
other standard proposals.

2.2 Software platforms

WS-Diamond project has a set of activities for extending and analysing the BPEL processes and
invocation of Web Services that has to be developed and tested in the form of software prototypes.
Software configuration has to provide the common environment for developing components that
release business-logics of diagnosing and executing repair strategies for composed services. It has

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 44

to extend and be based on the run-time engine, that executes BPEL process (invokes services, set
values of variables according to model of BPEL-process, produces results).

2.2.1 Selection criteria

The WS-Diamond project includes a set of prototypes that are to be developed within the project.
Each prototype has to show enhancements that are developed within the project, to existing
standards and models of web services diagnosability and reparability.

The prototype development circle includes solving different tasks for:

• developing mechanisms, that realize the business-logic of enhancements to the current
engines and their components;

• considering the abilities to deploy them within the existing business-logic components of
engine;

• testing samples are to be developed on the base of test-beds examples, and have to be
deployed to enhanced software engine;

• monitoring the processes, that take place within the engine, to consider how does it
process the data from testing samples;

• debugging the enhanced engine, finding the errors;

• analysis of how the new features and capabilities fulfil the requirements.

Prototypes are to be developed in different groups, and that’s why they have to be based and
developed on the software platform, that is acceptable by each participant and provides a good
environment for solving as many tasks of development process, as possible.

Selected platform has to be a workflow engine, that supports execution of BPEL processes. The
most popular and known platforms, that exist on market currently are described in the chapter
2.2.2.

The evaluation criteria set out below reflect some aspects of WS-Diamond project’s requirements,
work separations and goals. The BPEL engine we adopt ideally should have following features:

• be opensource project – source code has to be open for future developments and testing;

• provide API for developer – has to have declared object-model and interfaces, for
accessing the business-logic from third-party applications, have clear components/modules
structure and be updateable within these possibilities;

• be compatible with existing standards for web services composition – must have as little
limitation on data formats as possible, be compatible with BPEL1.1. specification, which
means, it has to work correct with any BPEL-compatible source code project, process all
types of invocations, actions, partner-links and variable assignment, be compatible with
BPEL1.1. specification standards: WS-Addressing, WSDL1.1., XML Schema 1.0, XPath
1.0;

• run on one of the preferred platforms – be Java-based or run on Microsoft Windows XP
platform;

• have a reasonable level of technical support available – supplier of platform has to provide
accessible help services for developers and researches;

• provide IDE for designing BPEL process, WSDL descriptions of web services – provide
not only run-time engine for executing BPEL process, but also a easy-to-use and flexible

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 45

editor for user, that has to design the process. This can be integrated with a BPEL engine
software or stand-alone;

• provide facilities for checking consistency of BPEL-source data, check the validity of
documents;

• allow to debug the process of BPEL project execution, to monitor the datasets during the
process execution, follow the values of input and output data for activities, values of
variables etc.;

• have the release version – not be “alpha”/”beta” version, that is on development and waits
for big changes of business-logic algorithms and components structure;

• be inexpensive – the cost of the engine has to be acceptable within projects limit. The
optimal configuration has to be provided with Academic License.

The selected software platform has to optimally fulfil these requirements to be selected for our
future developments within the project.

The evaluation version for 30 days of this tool is available for download from Parasoft site [PBM].

2.2.2 Overview

Current market provides plenty of BPEL engines’ realizations. This section provides the brief
description of their main functionality, features and characteristics. On the base of selection
criteria, described in chapter 2.2.1 one of them has to be selected as one of the main parts of the
overall configuration, as basis, that has to be extended by modules and components for
diagnosability and executing repair strategies on composed Web Services.

2.2.2.1 Axis

The Apache Axis 1.21 engine (Apache Axis) is one of the most interesting project developed
within the Apache Web Service initiative. Axis stands for Apache eXtensible Interaction System
and essentially is a third generation SOAP engine extended with a set of features that enable users
to deal with SOAP and WSDL 1.1, without worrying about the details of the specifications.

Axis is written in Java and its most interesting functionality is the capability of allowing an easy
Web Service development, both on client and server side. Users can automatically generate client
stubs from the WSDL description of the Web Service they want to invoke. This means that users
do not have to be aware of how SOAP and WSDL works, they can interact with Web Services
only by writing simple Java clients, since the parameters serialization/deserialization and the
SOAP communication are transparently managed by the auto generated stubs classes.

The same facilities are provided for Web Service developers. The server version of Axis can be
installed as a Web application into a Servlet container and gives to developers the ability to
publish Web Services with no need to write any integration code. This means that while
developers can concentrate on writing Java classes that realize the business functionalities of the
service, the Axis engine provides support for both the automatic generation of the WSDL
description of the service and the creation of serializer/deserializer that convert external SOAP
calls into Java calls. Axis supports four different styles of Web Services:

1 Axis 2 is now available as a beta release (Apache Axis2)

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 46

• RPC, which is the default type and follows the SOAP RPC encoding rules. Using this
style, SOAP messages are mapped to methods like this: public retType method(Type1

input1, Type2 input2);

• Document, which does not use the SOAP encoding rules and sends messages using plain
XML schema. Using this style, SOAP messages are mapped to methods like this: public

void method(Type element), where element is a JavaBean that can handle the structure of
the XML schema contained within the SOAP message;

• Wrapped, which is similar to the Document style for the structure of sent messages but it
is different for what concerns the mapping with Java methods. Using this style, SOAP
messages are mapped to methods like this: public void method(Type1 element1, Type2

element2), where element1 and element2 are the XML elements contained within the
XML schema of the SOAP message;

• Message, which does not use Java objects, and let developers to deal directly with the
XML documents during the execution of the published Web Services.

From an implementations point of view, one of the main advantages of Axis is that it is realized
using standard specifications designed for Web Services. This approach allows developers to deal
with standard API that can be easily exploited and extended to realize particular applications,
different from simple Web Services (e.g., integrate Axis into application servers).

In Axis, the management of SOAP messages is done using a SAAJ 1.2 [GK03] compliant
implementation, while the deployment of Web Services, the automatic generation of WSDL
documents, and the serialization/deserialization of SOAP messages are performed by a compliant
implementation of the JAX-RPC 1.1 [C03] specification. Axis also supports the WS-I Basic
profile specification,which consists of a set of non-proprietary Web Services specifications, along
with clarifications and amendments to those specifications which promote interoperability.

Figure 15 : Axis server architecture

Figure 15 describes the server side message path that is followed by each SOAP message sent
towards an Axis engine. The engine is composed of three layers:

• Transport layer, which receives SOAP messages in a transport-dependent manner. In this
layer, received messages are converted into Message objects;

• Global layer, which receives Message objects from the transport layers and selects the
correct service-specific functionalities that have to be invoked;

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 47

• Service layer, which is specific to a particular service and is responsible for invoking the
correct Web service instance.

Each layer is composed of a request chain and a response chain, where each chain consists in a
sequence of Handlers that are invoked in turn. Handlers are responsible for the management of the
messages that flows through the layers. The decision of which handlers execute over a particular
message is done at deployment time, when developers decide which set of handlers must be
associated to the published Web Service. The same approach is used on the client-side as
described in Figure 16. For the deployment procedure, on the server side it is executed using
deploy.wsdd configuration files, while on client it is performed using client-config.wsdd files. Both
files are formatted following the Axis guidelines.

Figure 16: Axis client architecture

2.2.2.2 URBE

URBE is in an enhanced UDDI Registry in which an extended service description is used as a
basis for providing service publication and retrieval facilities (see Fig.9). Service description
results from the co-occurrence of several components: (i) a UDDI registry is responsible for
handling offered service descriptions, (ii) a Domain Ontology provides the general knowledge
about concepts of the business domain in which services are used, and (iii) a Service Ontology
organizes services at different levels of abstraction. For service publication and retrieval, two
matching strategies are applied: a deductive strategy with a reasoning procedure exploiting
ontology knowledge to assess the type of match among services [BD05]; a similarity-

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 48

Figure 17: MAIS registry architecture

Based strategy exploiting retrieval metrics to measure the degree of match among services. The
similarity approach is applied after the deductive one in order to rank selected services according
to the measured matching degree.

For service description, a service descriptor is defined, as usually done in the software components
retrieval [DF97]. A descriptor is composed of information directly extracted from the service
signature expressed in the related WSDL specification. Here, the service name, the operation
names, and the names of the parameters involved in those operations, are considered. Once a
service provider publishes its services, for each of them a service descriptor is automatically
generated starting from the service WSDL specification. The set of service descriptors are
organized in a service ontology where they are classified according to the functionalities the
services provide.

The service ontology is organized in three levels as shown in Figure 18, where each box represents
a service descriptor. In the bottom level, the published services are grouped in clusters. These
clusters include the services which perform the same functionalities, and can be considered
compatible. For this reason, we introduce the term compatibility classes to define such clusters.
The upper level is populated by services able to represent the compatibility classes. Whereas the
services at bottom level are services which can be invoked, the services at upper level are built to
represent the cluster, therefore we refer to concrete services and abstract services to respectively
describe such a distinction. In particular:

• Concrete services are actual directly invocable services published by service providers.
The result of the discovery phase is one or more of these services.

• Abstract services are not directly invocable services, which represent the capabilities of
the concrete services belonging to the same compatibility class.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 49

Figure 18: Service ontology structure

In the retrieval process, inference is used to classify the match between the desired service R
(defined by a set of requested functionalities) and available abstract services Sa. Successively,
similarity evaluation can be exploited to further refine and quantify the functional similarity
between R and S.

The publication and retrieval processes have been implemented as a UDDI Registry extension.
Since one of the most discussed weakness of UDDI Registry is about the limited retrieval method,
with our implementation we aim at providing a new way of searching services. In particular, the
new searching method allows the user to submit a WSDL expressing the desired service, in order
to obtain the list of services able to perform the requested functionalities.

Figure 17 shows the architecture supporting the publication and retrieval process. Such an
architecture is designed to be completely compliant with the current UDDI v.2 implementations.
To this aim, the system relies on jUDDI, an open source implementation of UDDI which also
exposes its functionalities according to UDDI4J API. In particular, the MAIS Registry redefines
the functionalities about the service publication and introduces new functionalities which allow the
user to perform the advanced retrieval functions based on the service semantics evaluation.

The Affinity Engine performs the similarity evaluation, while the Reasoner performs the deductive
matching by exploiting the domain ontology and the service ontology.

During the publication phase, the MAIS Registry is able to read a user publication request and,
before performing the standard publication steps required by UDDI, identifies the corresponding
abstract service and updates the Service Ontology. In this way the Service Ontology can organize
the published services. On the other hand, in case a typical service retrieval method is requested,
the related functionality supported by jUDDI is invoked. Otherwise, if the user searches for a
service according to the new retrieval method, the new functionality offered by the MAIS Registry
is directly invoked. In this case the Affinity Engine, as well as the Service Ontology, are invoked
in order to perform the retrieval process.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 50

2.2.2.3 The Active EndPoints project

Active Endpoints project claims to provide a set of instruments for managing Web-based
processes. It provides ActiveBPEL, that is a standard and free downloadable BPEL engine under
the GNU General Public License (GPL). Another important instrument is ActiveWebFlow, that is
a comprehensive environment for creating, testing and deploying BPEL processes. It is based on
the Eclipse visual framework. This product is generally sold under commercial license, but it has
an interesting Active Endpoints Academic Program [AES] at reduces costs always giving support
and licenses according to the necessity.

The ActiveBPEL Engine

The ActiveBPEL engine [AES] is an Open Source implementation of a BPEL engine, written in
Java. It reads BPEL process definitions (and other inputs such as WSDL files) and creates
representations of BPEL processes. When an incoming message triggers a start activity, the engine
creates a new process instance and starts the process execution. The engine takes care of
persistence, queues, alarms, and many other execution issues.

The ActiveBPEL engine runs in any standard servlet container such as Tomcat. Figure 19 shows
the engine architecture.

Figure 19: Engine Architecture

The ActiveBPEL engine is released under the GNU General Public License (GPL).

Beyond the free use and the contribution of users that is the core of OpenSource projects , this
engine provides several benefits among which comprehensively implementations of BPEL4WS
1.1 specification and some advanced feature like process persistence, event notifications and
console APIs.

It is worth notice that the OpenSource BPEL engine is also used in the commercial tools sold by
Active Endpoints.

BPEL Process Designers & Tooling

ActiveWebflow Professional [AES] is a comprehensive environment for creating, testing and

deploying of BPEL processes. It is based on the Eclipse visual framework. It also includes an
embedded copy of the ActiveBPEL Engine.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 51

The Editor palette includes every BPEL activities. When a user drags an activity onto his
diagramming canvas, ActiveWebflow automatically generates all of the underlying BPEL code.

As the user creates his own process in diagramming view, he can always switch to code view to
inspect his BPEL process definition. The process deployment is supported by a deployment wizard
to package everything together and move it to ActiveWebflow server environment.

ActiveWebflow also provides for visual Web References controls for cataloging WSDL files,
making it easy to bring Web services into BPEL processes.

BPEL process testing is the most complex task for SOA application development sic requires the
analysis of every flow path, condition, and fault to ensure that processes are bullet-proof.

ActiveWebflow supports debugging activities by providing process simulation and debugging
tools.

Figure 20 shows a snapshot of ActiveWebflow editor.

Figure 20: ActiveWebflow snapshot

An editor tool for designing BPEL process is necessary to avoid all problems related to XML
writing. Even if the user need good knowledge of BPEL structure and of its relationship with
WSDL, this tool is user-friendly and its output is standard BPEL 1.1, this means that it should be
compatible also with BPEL engine different from ActiveBPEL.

The usefulness of testing feature is strongly related with the nature of the application the user is
going to build. In any case it represents a valid instrument for a static analysis of code before it is
published as Web-Service.

Finally the wizard for packing application and publishing it under ActiveBpel Engine is very
useful for a quick publication of developed process.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 52

2.2.2.4 BPWS4J

BPWS4J is an IBM execution and deployment environment implementing the BPEL4WS
Standard.

BPWS4J components composed by three main components

1. Runtime Process Model : it correspond in a in-memory serialisation of the process
specification. This model is defined in such manner that facilitate (complete information on the
process definition) the processes deployment and execution for the two other component. Its
produced sequentially by a parsing and writing steps.

2. Process Container : it provide a runtime and deployment environment for BPEL processes. It
play a central rôle in the process execution. It handle in and out coming message of the
processes.

3. Interpreter : it is an event driven flow engine which is responsible of the processes execution
management. It manage the with the runtime environment

2.2.2.4.1 Runtime Architecture Overview

 The Figure 21 represents the BPWS4J runtime architecture.

Figure 21 : the BPWS Runtime architecture

Each individual BPEL process model is deployed in the BPWS4J engine as a separate Web
application All instances of a process model are thus handled by the same Web application
managed by the Container ; The process container serves incoming and outgoing requests. The
service manager dispatches incoming invocations to individual flow instances of deployed
processes, and sends outgoing ones to process instance partners. The identification of partner
services (i.e. services that are able to send messages to a process instance or received them from it)
is under full control of the service manager. Flow instances, on the other hand, execute under the
control of the flow manager or the Interpreter, which can request The process container.

2.2.2.4.2 Process Container

This component play a central role in the process deployment and execution management.

• Deployment process

The BPEL4WS definition specify the partner by referencing one or more of their WSDL port
types. It doesn't mentioning which binding type is used during the process execution. The binding
(link to a specific protocol) steps is done during the process deployment only for partner who
initiate the interaction within the process it self. For that, the Process Container component

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 53

complete the Process Model information by specifying the binding information for each used
partner port type. At this point PPWS4J allow only static deployment.

• Instance management

process instance are created by receiving a specific message (“startable” invocation, defined in the
BPEL4WS specification by the attribute creatinstance= “true”). When receiving a message
invoking such startable operation the Processes Container decide using correlation information (of
existing processes) to create a new instance or to root the received message to an other instance.
The new instance is created by cloning the process Model and then passed to the interpreted to
manage its execution state.

• Message rooting

All the incoming and the out coming message are managed by the Process Container. For
incoming Message the container, using correlation information in the process model, and their
instantiation (the value of the correlation set) and the message content to root the message to the
first instance which match the correlation condition. While the out coming message concerns for
the most cases the invocation of partner operation. For that the Process Container take advantage
of Multi-protocol support provided by the WSIF API (Web service Invocation Framework) using a
dynamic binding. See next section for WSIF detail.

2.2.2.4.3 The Interpreter or Flow manager

It is the piece of the runtime responsible for one instance process execution. As noted earlier, the
interpreter is not aware of the outside world, and uses the Process Container for all of its external
interactions. A Process model is compiled into a runnable process Object. The structure of the
Object is nearly a direct correspondence with the BPEL4WS activities hierarchy. Each Activity is
implemented as Thread owned by the thread of its parent activity in the BPEL process hierarchy.
Each activity thread implements the control semantics of the corresponding constructor. The
execution of an instance of the process is a recursive set of control action exerted by the hierarchy
of activities thread. The control is implemented using the thread status (disabled, activate enabled
ruining, complete). Th event oriented constructor such as the pick and the scope activities are
realised by associating event handler to such associated Thread with embedded propagation
mechanism.

2.2.2.5 ActiveGrid: LAMP Application Server

ActiveGrid's LAMP Application Server is currently Open Source software distributed under the
Apache Software Licence 2.0. Their website talks of a commercial version of the software with
enhanced features to be released later in 2005. The server supports the latest XML standards
including BPEL [AGS].

ActiveGrid's summary of the Application Server's requirements is:

• Platforms: Red Enterprise Server or Advanced Server v3.0 or higher; Novell SUSE

• Enterprise Server, Version 9.0 with SP1 or higher

• Hardware: Pentium 4/Xeon 800 Mhz or better; 1GB RAM; 10GB hard disk space [AGS]

There is an implication elsewhere on the site that the server will run with any standard LAMP
stack (Linux, Apache, MySQL, PHP/Python/Perl).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 54

Figure 22: LAMP Application Server.

The company website seems to assume that users will use the ActiveGrid Application Builder
software as their authoring tool.

Support for the server package starts at $1000 per year [AGS].

2.2.2.6 Twister

The original Twister website is still available and Twister v0.3 is still available from
Sourceforge.net although nothing seems to have been added to the site or associated Blog since the
announcement of the Apache adoption on 11 April 2005.

Twister is an open source product licensed under LGPL and written to the "WS-BPEL standard".
It is written in Java. The software runs inside a Tomcat servlet container. The website provides
extensive documentation and detailed installation instructions. However, to be able to create new
processes using Twister you will need a fairly good knowledge of WS-BPEL[tos]. The Twister
website invites users needing trainings to contact Smartcomps.org, the original developers.
Sourceforge.net has an active Twister users' forum but the last message on it is from Matthieu
Riou -responsible for the Twister website - exhorting users to switch to the users' forum on the
Apache Agila site.

The software is available for free Download [TOS].

2.2.2.7 Apache Agila

The Apache Incubator Agila project has adopted the 'Twister' Web Service orchestration product
so that it will now consist of two parts: Agila BPEL and Agila BPM, the latter providing "end-user
oriented workflow". Little information is currently available about the Agila Project [AOS].

2.2.2.8 Cape Clear: Cape Clear 6 Enterprise Service Bus (ESB)

This product includes five components:

• Studio: an Eclipse-based design and development tool

• Server

• Data Transformer: allows the server to handle non-XML and semi-structured data

• Orchestrator: provides BPEL orchestration capability

• Manager: management and monitoring of deployed services

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 55

Cape Clear 6 (now in version 6.1) provides "comprehensive support for BPEL 1.1"[CCOS] using
native BPEL technology. A comprehensive range of support manuals and tutorials is provided via
the company website. Support includes a user forum.

The product runs under Windows 2000 v5 SP1 or later, or XP, or under versions of UNIX. It
integrates with many J2EE/CORBA/JMS servers. Orchestration Studio, the Eclipse-based visual
development and testing tool, which is included, requires Windows or LINUX.

The website, which is in other respects comprehensive, does not quote prices for the product or
support.

Cape Clear Orchestrator is a new product from Cape Clear designed to simplify the design,
deployment, and management of orchestrated business processes. Cape Clear Orchestrator
provides a comprehensive BPEL runtime, along with extensive graphical design and management
capabilities.

Key Features:

• Full BPEL 1.1 support;

• Intuitive Eclipse-based editor;

• Wizards for common workflows;

• Support for complex, long-running processes, with persistence and re-hydration;

• Support for human interactions;

• Transport-independent, sync or async.;

• Extensive logging, auditing, admin and interactive debug and test support;

• Web-based BAM console for process management and drill-down;

• Fully integrated with the Cape Clear ESB[CCOS].

2.2.2.9 Collaxa: BPEL Orchestration Server

Collaxa was bought by Oracle in the summer of 2004 and their BPEL server became the Oracle
BPEL Process Manager. [COS]

2.2.2.10 Oracle: BPEL Process Manager 15

The Oracle BPEL Process Manager is a development of the Collaxa BPEL Orchestration server.
At the time of writing the version number has jumped from 2.0 to 10.1.2, presumably to bring it
into line with the company's Application Server 10g.

The Process Manager provides native and comprehensive BPEL support[OBS] on Oracle
Application Server, WebLogic, and JBOSS. The website states that WebSphere is also supported
but there did not seem to be a specific download for it as at 15 August 2005. Equally, the FAQ
page indicates that the product will run on any J2EE server, but this was not obviously reflected on
the downloads page.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 56

Figure 23: Oracle BPEL Process Manager.

The website provides technical information and access to support.

Oracle provide a visual BPEL Designer which works with Eclipse 3.0 and/or Oracle's JDeveloper
development environment.

The price of a perpetual 'processor' licence is $40,000. Time-limited or user limited licences are
also available for considerably less[OBS].

2.2.2.11 Creative Science Systems: BizZyme BPEL Java Server

Creative Science BizZyme is part of the company's NetZyme Suite but can be used without the
other family members. It is compatible with Windows XP/2000/NT/98, Linux RedHat and SuSE,
Solaris, Solaris (x86), FreeBSD, Mac OS X and SGI (in fact any platform that runs Java SDK ...
1.4 or higher [CSS]). It supports any database with a JDBC driver. The company claim full
implementation of the latest version of BPEL4WS[CSS]. The product uses a one-pass BPEL
compiler and comes with a UML-style graphical design tool[CSS].

Considerable documentation for the product, including an Administrator Guide and a User Guide,
is available for download from the website but there does not seem to be an evaluation download
and there is no pricing information.

Features:

• OASIS BPEL4WS 1.1 compliant;

• Small footprint;

• Cross-vendor support;

• Sync and async messaging;

• Powerful control flows allowing arbitrary nesting;

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 57

• Uses callbacks and correlation sets to compose services;

• Atomic and long-running support using correlation sets;

• Debugging facilities;

• Exception handling;

• Compensation and fault processing;

• Process persistence[CSS].

Only demo version of this tool available, and can be sent by mail on the demo CD. [CSS]

2.2.2.12 FiveSight Technologies: PXE Process execution Engine 10

The FiveSight PXE is an open source product licensed partly under the Common Public Licence
and partly under the MIT Licence. The Sourceforge.net pages describe the development status as
"4 - beta" but the downloadable files indicate 1.0. The intended audience are software developers
and architects. The current version is intended only for experimentation or single-server
production use; larger deployment options are under development.

PXE is written in Java to run in a "minimal environment", a J2EE application server or other
middleware stack. The documentation claims that it can run both BPEL4WS 1.1 and WS-BPEL
2.0 processes on a single runtime [POS]. However the FAQs page admits that they are working to
a BPEL 2.0 recent draft and because the standard is still evolving, all language features are not yet
supported. FiveSight plans to provide full support for the OASIS WS-BPEL specification
concurrent with its approval as a standard. Currently all BPEL activities are supported. However,
certain language constructs (principally BPEL event handlers) are not supported, and certain other
constructs may not be fully supported. [POS]

PXE does not have a visual development tool associated, indeed its management is by command
line. It should, however, accept "well-formed" BPEL from any source.

PXE runs on any operating system supporting the required Java environment; it has been
successfully tested on Windows 2000 and XP, Linux, MAC OS X, Solans and AIX. Although
PXE depends on common J2EE interfaces, it does not require a J2EE application server. PXE
relies on a Binding API that allows PXE to be embedded in most any environment that can supply
JTA facilities. PXE can be deployed into most common application servers but PXE is not an
enterprise application in the J2EE sense: PXE manages its own transactions and threads.
Consequently, if PXE is deployed using a WAR or EAR file, it will be in violation of a number of
J2EE contracts. [POS]

PXE is available for free download, but no source code available.

2.2.2.13 IBM Websphere Business Integration Server Foundation 13

IBM's WebSphere® Business Integration Server Foundation v5.1 includes native support for
"BPEL4WS". The server runs on a wide variety of platforms including versions of AIX, HP-UX,
Linux, Solaris and Windows.

The area of IBM's website devoted to the server provides access to extensive documentation and
support, including a number of user forums and newsgroups.

Use of BPEL on the server envisages use of IBM's WebSphere Studio Application Developer
Integration Edition v5.1, their tool for building, testing, integrating and deploying J2EE
applications, Web services and business processes[IBI].

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 58

Prices for the server start at approximately $49,000 including one year's software maintenance
[IBI].

2.2.2.14 Parasoft: BPEL Maestro 16

Parasoft's BPEL Maestro provides native support for BPEL standard [PBM]. Versions are
provided for Windows 2000/XP, Linux and Solaris to run in a J2EE sen/let container.

The company website provides information about the product, a user forum and technical support.
The software is available for evaluation but no price is provided for the product by itself.

BPEL Maestro includes an Eclipse-based toolkit for developing, reviewing, updating, managing,
deploying and debugging BPEL processes. Toolkit provides very easy-to-use interface for
designing the BPEL model, using “drag-and-drop” approach. It’s very easy to create new project,
add to it several WSDL descriptions of Web Services, and manage the BPEL code. Designers
toolkit provide all the features, required on the design stage : graphical representation of BPEL and
WSDL codes, editor of properties of each element, intuitive interface, checking the validity of all
XML-based code, including issues on importing namespaces. Because of BPEL Maestro is
Eclipse-based tool, it is possible within the same IDE to develop java-classes for realisation of
business-logic of web services.

Figure 24: BPEL Maestro tool.

The same tool allows to compile, assemble and deploy BPEL process to the build-in BPEL
container, and to debug and test it by sending SOAP-messages to the container engine.

2.2.2.15 JBOSS: jBPM

BPM (business process management) offers a programmatic structure for designing transactions

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 59

and executing them using automated decisions, tasks and sequence flows. For example, an

Figure 25: JBOSS architecture

insurance company can use BPM to automate the steps involved in processing insurance claims.
BPM solutions typically include three components: an engine that executes process definitions,
services that allow the engine to interact with the outside world, and tools that aid process
development and monitoring.
Although the notion of “workflow” and BPM have promised enterprise application integration
for a number of years, their mainstream acceptance has been delayed by the lack of real
standards, and more significantly by the enterprise software architectural model.
With JBoss jBPM support of BPEL and beyond, serves to both encourage and improve the BPEL
standard.
BPM can be seen as an orchestration engine that sits in the middle of enterprise applications,
enabling integration and coordination between different dedicated applications.

1. Process Engine. The process engine keeps track of the states and variables of all active
processes. It includes:

• A Request Handler: this is the communication infrastructure that forwards tasks to
the appropriate process, user or application.

• Interaction Services: these are standard and custom services that expose existing
applications as functions or data for use in end-to-end processes.

• A State Manager: this module handles potentially thousands of processes
including interlocking records and data, and prepares multi-table databases of
record as the outcome of actions.

2. Process Monitor: this module provides visibility into the current end-to-end state of
processes with which users and applications are interacting. It enables tracking of the
status of users or applications that are performing a process.

Process Language: the core engine is based on a directed graph. JPDL, the current jBPM process
language, is a powerful extension. On top of the directed graph core engine, can be build support
for other standards like BPEL, BPELJ, BPML, ebXML's BPSS, WSCI and WfMC's XPDL.

2.2.3 Common Working environment

Final evaluation of discussed tools may be represented in the table as follows:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 60

Table 2. Software tools evaluation table

opensource API I D E debug source check release compatable platform support inexpensive

Active BPEL Y Y Y Y Y Y Y Y U Y

BPWS4J N Y P P U Y Y Y U N

URBE U U N N N U N U U U

LAMP Y U Y Y Y Y U N P N

Twister Y Y N N N N Y Y N LGPL

Cape Clear N N Y Y Y Y Y Y U N

Oracle PM15 N N Y Y Y Y Y N U N

BizZyme N N Y N Y Y Y U U N

PXE Y Y N N N U Y Y P Y

Websphere 13 N N U Y Y Y Y Y Y N

BPEL Maestro N Y Y Y Y Y Y Y U N

JBOSS Y Y N P U Y P N Y LGPL

Y yes

P poor

N no

U unknown

This table show how each of tools fulfills selection criteria. Mark “Y” means, that tool supports
features, described in criteria, “N” that not, “U” means, that it’s unclear how full does tool support
requirement, and “P” means, that it supports requirement partially.

According to this table, we may select ActiveBPEL as main tool for our future research and
development of prototypes. It fulfills all most required issues and has all features that are for us
needed.

Because BPEL4WS is the most widely used and accepted standard for describing the orchestration
of Web services the consortium decided to use this language for common prototypes. Although
every research group is free to apply orchestration languages which fit their needs best, these
languages should be compatible with BPEL4WS.

At the current state it is not clear which choreography language and model will fit the needs of the
project best. A final decision regarding this issue will be taken in WP3. In addition a decision
regarding a Web service management environment remains open.

In order to support collaboration and integration of software the consortium will use JAVA as the
implementation language. In addition the consortium will encapsulate their prototypes (e.g.
diagnosis or repair modules) as Web services such that various groups can reuse and integrate
implemented systems.

In addition the consortium agrees to base their work on WSDL-S and URBE as a registry. Finally,
we require from databases used within WS-Diamond to be JDBC compliant.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 61

3 Application Scenarios

3.1 Test Case: Food shop

3.1.1 Workflow

The FoodShopping example is concerned with a FoodShop Company that sells and delivers food.

Figure 26: FoodShopping example actors

The company has an online SHOP (that does not have a physical counterpart) and several
warehouses (WH1, …, WHn) located in different areas that are responsible for stocking
unperishable goods and physically delivering items to customers, depending on the area each
customer lives in.

Customers (C1, …, Ck) interact with the FoodShop Company in order to place their orders, pay
the bills and receive their goods.

In case of perishable items, that cannot be stocked, or in case of out-of-stock items, the FoodShop
Company must interact with several suppliers (SUP1, …, SUPm).

Although most of the interactions in this example are electronic, and take place between Web
Services, in some cases there are physical actions and interactions that are performed by humans
(e.g. the sending of a package). These too are modeled in the context of Web Services.

The Conversation

In each conversation the following actors take part:

• one CUSTomer (represented in green);

• the online SHOP (represented in pink);

• one WAREHOUSE (represented in yellow);

• a variable number of SUPPLIERS, which could also be 0 (represented in gray).
When a CUSTomer places an order, the SHOP first selects the WAREHOUSE that is closest to
the customer’s address, and that will thus take part in the conversation.

Ordered items are split into two categories: perishable (cannot be stocked, so the warehouse cannot
possibly have them in stock) and unperishable (the warehouse might have them).

FoodShop Company

C1

SHOP

WH1

SUP1

WH2 WHn

SUP2 SUPm

C2 Ck

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 62

Perishable items are handled directly by the SHOP, while unperishable items are handled by the
WAREHOUSE.

The first step is to check whether the ordered items are available, either in the warehouse or from
the suppliers (we have not considered items exchanges among different warehouses, in order not
to make the example too complicated). If they are, they are temporarily reserved in order to avoid
conflicts between several orders.

Once the SHOP receives all the answers on availability, it can decide whether to give up with the
order (again, in order to keep things simple, this happens whenever there is at least one unavailable
item) or to proceed. In the former case, all item reservations are canceled and the conversation
ends.

If the order goes on, the SHOP computes the total cost (items + shipping) with the aid of the
WAREHOUSE, that provides the shipping costs. Then it sends the bill to the CUSTomer, that can
decide whether to pay or not. If the CUSTomer does not pay, all item reservations are canceled
and the conversation ends here.

If the CUSTomer pays, then all item reservations are confirmed and all the SUPPLIERS (in case
of perishable or out-of-stock items) are asked to send the goods to the WAREHOUSE. The
WAREHOUSE will then assemble a package and send it to the CUSTomer.

Workflow

We describe separately the workflow of each actor, including its interactions with other actors in
the same composite workflow.

Notation

Each individual workflow is represented with an activity diagram: each activity is represented by a
rectangle; flow is represented by incoming or outgoing arrows and data exchanged along the flow
is mentioned in the callout boxes associated with each arrow.

When two parallel flows are started by an activity, the two arrows depart from a black small box
that has the activity rectangle in input. Analogously, if two flows must synchronize in order for an
activity to take place, the two arrows enter into a black small box that has the activity rectangle in
output.

When two arrows enter or exit directly from an activity rectangle, this must be interpreted as a

disjunction: only one of the two can actually happen. When this happens with output arrows, the
conditions for each of the two possibility to happen is mentioned in the callout box together with

Done?

A

…

{if no}

B

…

{if yes}

Activity1

data1

…

dataN

Activity2

Activity2 Activity3

Activity1

Activity3

Activity2Activity1

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 63

the arrows.

Black arrows denote electronic interactions; blue arrows denote physical interactions.

Thick arrows are used to represent several simultaneous interactions with different senders and/or
receivers. For example, the following means that activity B can take place only after receiving
several physical items as a result of several different senders performing activity A:

CUSTomer workflow

 The customer workflow (Figure 27) is abstract: we represent only its interface with the other
services, while we do not represent internal activities. The reason is that the customer is an
external entity wrt the company, thus we cannot assume to have its detailed workflow. It seems
reasonable to have in the example both detailed and abstract workflows.

Figure 27: CUSTOMER workflow

The CUSTomer places an order (sendOrder) communicating the items he/she is interested in
(items) and its personal data (custInfo). Then it waits for an answer from the SHOP: if some of the
items are not available the conversation ends (exit). Otherwise the user receives the bill and
decides whether to pay (replyPay) sending its payment to the SHOP.

AA B

sendOrder

WAREHOUSE
prepares the parcel

and sends it

receive

custInfo

item_names

bill

payment

parcel

items

replyPay

Paid?

items

payment

items

{if yes}

exit

-

{if no}

OR

exit

SHOP
fulfils the order or
cancels it if the
payment is null

-

-

SHOP
checks the order

(finding out whether

all items are available)

SHOP
checks the order

(finding out whether

all items are available)

-

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 64

If the CUSTomer decides not to pay the conversation ends (exit). Otherwise, he/she waits for the
parcel sent by one of the company’s WAREHOUSEs. Notice that the parcel shipment is a physical
transaction, while the others are all electronic transactions.

Figure 28: SHOP workflow

SUPPLIER(S)
each checks whether
the non stockable
items are available,
and if it is so, it

reserves them

ns_rescodes

whInfo

custInfo

items

{if not paid}

SUPPLIER(S)
each cancels its
reservation

CUST
places order

selectWH splitOrder

checkAvail

checkAvail&reserve

allAvail?

unReserve WAREHOUSE
cancels its reservation

requestPay

Paid?

requestSupply

fwOrder

receiveOrder

items

ns_items

s_items

ns_items
whInfo

custInfo

items

s_items

s_answers

ns_rescodes

whInfo

custInfo

items

{if not all avail}

ns_rescodes

-

askShipCost

ns_rescodes

whInfo

custInfo

items

{if all avail}

WAREHOUSE
provides ship cost

computeCost

custInfo

items

items

custInfo

shipCost

ns_rescodes

whInfo

custInfo

items

totalCost

bill

payment

whInfo

ns_rescodes
ns_rescodes

whInfo

custInfo

items

whInfo

custInfo

items

ns_rescodes

whInfo

custInfo

items

ns_rescodes

whInfo

custInfo

items

{if paid}

-

whInfo

custInfo

items

WAREHOUSE
checks whether the
stockable items are
available, and if it is
so, it reserves them

CUST
exits

CUST
decides

whether to
pay and pays

SUPPLIER(S)
each performs the

supply

WAREHOUSE
finalizes the order

custInfo

item_names

ns_rescodes

ns_answers

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 65

SHOP workflow

On the contrary, the SHOP workflow (Figure 28) is detailed, and contains several internal
activities.

When the SHOP receives an order (receiveOrder) with the ordered items and the CUSTomer data
(custInfo), it selects the WAREHOUSE that is closer to the user (selectWH) and splits
(splitOrder) the ordered items into the set of perishable items (ns_items) and that of unperishable
items (s_items). It then checks the availability of perishable items (checkAvail&reserve) with the
SUPPLIERS, asking to temporarily reserve them in case they are available. The SHOP receives
back the set of reserved items (ns_resitems), the corresponding reservation codes (ns_answers),
and the answers on availability (ns_answers).

The list of unperishable items is instead sent to the WAREHOUSE (checkAvail), that sends back
a collective answer (s_answers) on availability.

If any of the items is unavailable, the order is canceled. The SHOP communicates this to the
CUSTomer, and cancels the reservations (unreserved) both with the SUPPLIERS and the
WAREHOUSE.

If on the other hand all the items are available, the SHOP asks the WAREHOUSE to compute the
ship cost (shipCost), which depends on the distance between the WAREHOUSE itself and the user
address, as well as the total weight of the ordered items (for this reason, the SHOP sends to the
WAREHOUSE both the list of items and custInfo).

Then the SHOP computes the totalCost and sends the bill to the CUSTomer, which sends back a
payment. if the CUSTomer decides not to pay, the SHOP cancels all the reservations (unreserved)
with the SUPPLIERS and the WAREHOUSE. If the payment is ok, the SHOP forwards the order
to the WAREHOUSE (fwOrder), which from now on is responsible for it, and tells the
SUPPLIERS to send the reserved items to the WAREHOUSE (requestSupply), providing the
reservation codes (ns_rescodes) and the warehouse address (whInfo).

WAREHOUSE workflow

Again we have a detailed workflow (Figure 29).

The WAREHOUSE first receives a request from the SHOP to check the availability of some items
(s_items) and reserve them (reserveAvail). If some items are out-of-stock, the WAREHOUSE
contacts the SUPPLIERS in order to check for availability and to reserve them (findSuppliers),
receiving back the set of reserved items (s_resitems), the corresponding reservation codes
(s_rescodes) and the answers on availability (s_answers).

TheWAREHOUSE elaborates a collective answer on availability and sends it to the SHOP
(collectAnswers). Then it waits for one of the following things to happen: either the SHOP
decides to cancel the order, or to proceed.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 66

reserveAvail

findSuppliers

collectAnswers

unReserve

requestSupply

requestShipping

assemble

s_items

s_avail_items

s_nonavail_items

s_nonavail_items

s_rescodes

s_answers

s_answers

-

provideShipCostitems

custInfo

shipCost

ns_products

s_products

parcel

OR

s_rescodes

s_rescodes

custInfo

items

custInfo

parcel

s_rescodes

SHOP
asks whether the

stockable items in an
order are available,
and if they are it asks

to reserve them

SUPPLIER(S)
checks whether the

out-of-stock items are
available, and if it is
so, it reserves them

SUPPLIER(S)
cancel the reservations
with the input codes

s_rescodes

items

custInfo

SHOP
collect payment and, if

payment is ok,
proceed with order; if
payment is not ok stop

everything.

SHOP
collect the answers

and decides whether to
proceed with the order

or not

-

SUPPLIER(S)
provide stockable
reserved items

s_rescodes

whInfo

SUPPLIER(S)
provide non stockable

items reserved by the
shop

CUST
receives the parcel

In the first case the WAREHOUSE has to cancel its own reservations, and, in case some
SUPPLIERS were contacted, it must also cancel the reservations with the suppliers (unreserved).

In the second case, the WAREHOUSE is asked by the SHOP to compute the shipment cost.

Then the SHOP tells the WAREHOUSE to proceed with the order. In case of out-of-stock items,
the WAREHOUSE asks the SUPPLIERS to send the reserved items (requestSupply), by
providing the reservation codes (s_rescodes) and its address (whInfo).

At this point the WAREHOUSE must assemble the package. In order to do this, it must wait both
for the (unperishable) items it reserved directly from the SUPPLIERS, and for the (perishable)
items that were reserved by the SHOP.

Once the parcel is ready, the WAREHOUSE asks a shipper (requestShipping) to send it to the
user.

Figure 29: WAREHOUSE workflow

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 67

SUPPLIER workflow

Like the CUSTomer workflow, the SUPPLIER workflow (Figure 30) is abstract since each
supplier may have a different internal workflow.

Of course, it is the same workflow independently from the Web Service that contacts the
SUPPLIER. For this reason, the Web Service that buys the goods is generically called BUYER,
while the receiver of the products is generically called RECEIVER. It is clear that in our context
the BUYER can be either the SHOP or the WAREHOUSE, while the RECEIVER is always the
WAREHOUSE.

The SUPPLIER is first asked by the user to verify the availability of some items and reserve them
(verify&reserve). The SUPPLIER sends back the set of reserved items (resitems), the
corresponding reservation codes (rescodes) and the answers on availability.

Then the BUYER can either cancel the reservation (unReserve) or ask the SUPPLIER to send the
items (supply) to the address (sendAddress) of the RECEIVER.

3.1.2 Exceptions

CUSTomer exceptions

• WrongBillException. CUST checks the bill and realizes that there is something wrong
(missing and/or unwanted items) (just before replyPay activity)

Figure 30: SUPPLIER workflow

unReserve

verify&reserve

supply

items

rescodes

answers

products

OR

BUYER
asks whether some
items are available; if
they are, they have to

be reserved

rescodes

resitems

rescodes

rescodes

resitems

rescodes

sendAddress

BUYER
can decide whether to
confirm or cancel the

order.

BUYER
can decide whether to
confirm or cancel the

order.

RECEIVER
receives the ordered
products (notice that
the receiver may or
may not coincide with

the buyer)

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 68

• TimeOutException. CUST is waiting for some feedback from the shop (either an
unavailability notification, or a request for payment) but none of the two takes place (just
before replyPay activity).

• WrongParcelException. CUST receives a parcel with missing and/or unwanted items
(upon receive).

• TimeOutException. CUST never receives the parcel (just before receive).

SHOP exceptions

• WrongAnswerException. For some items the answer from WAREHOUSE/SUPPLIER is
missing, or the answer is about a different item than asked for (upon allAvail).

• TimeOutException. The SHOP never receives an answer on item availability either from
the WAREHOUSE or from the SUPPLIERs. (just before allAvail).

• HighShipCostException. The shipping cost sent from the WAREHOUSE is higher than an
expected threshold

• TimeOutException. The SHOP never receives an answer on the ship cost from the
WAREHOUSE (just before computeCost).

• TimeOutException. The SHOP never receives an answer from the CUSTomer on whether
he/she wants to pay or not (just before Paid).

WAREHOUSE exceptions

• TimeOutException. Some answers on item availability never arrive from the SUPPLIERs.
(just before collectAnswers).

• WrongAnswerException. For some items the answer from the SUPPLIERs is missing, or
the answer is about a different item than asked for (upon collectAnswers).

• TimeOutException. The WAREHOUSE never receives from the SHOP an answer on
whether to cancel the reservation or to proceed computing the ship cost (after
collectAnswers).

• TimeOutException. After providing the ship cost, the WAREHOUSE never receives an
answer from the SHOP on whether to cancel or to proceed with the order (after
provideShipCost).

• WrongSupplyException. Some items that arrive from the suppliers are wrong (upon
assemble).

• TimeOutException. Some items never arrive from the SUPPLIERs (upon assemble).

SUPPLIER exceptions

• WrongResCodeException. The reservation code is not recognized by SUPPLIER (either
upon unreserved or upon supply).

• TimeOutException. The buyer (SHOP or WAREHOUSE) never tells SUPPLIER whether
to cancel the order or proceed with it (after verify&reserve).

3.1.3 Preliminary model of the process

Design of the BPEL process that models simplified food shopping test sample was done within the
Parasoft BPEL Maestro IDE tool.

The project, which models the aspects of food shopping test bed, is organized as following:

• customer.wsdl – WSDL definition of Customer Web Service. This service wraps human
activities of Customer actor;

• warehouse.wsdl – WSDL definition of Warehouse Web Service functionality;

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 69

• supplier.wsdl – WSDL definition of Supplier Web Service. Applies to a set of Web
Services, each of them releases the functionality of Supplier actor, defined within the
process definition;

• shop.wsdl – WSDL definition of Shop Web Service functionality;

• FastFoodShopping.bpel – BPEL model of the process;

• deployment.wsdd – common deployment data of the project.

The full source code of the project can be found in Appendix A of this Deliverable. In this chapter
we will focus on the main aspects of BPEL model, which are essential for this application
scenario.

Messages, which are exchanged among the partners within the process are defined with definitions
of services in their namespaces. For example, orderMsg from
“http://wsdiamond.com/wsdl/foodshopexample/customer” namespace defines the format of Order,
that system receives from Customer and starts the whole process.

PartnerLinkType supplierLT defines, that the role “supplier” is defined on the operations from
portType “supplierPT”. There are 3 operations in this portType:

• supply : to supply items to warehouse

• veryfyAndReserve: to verify and reserve requested items, return result has type answers,
so it containts answers and reservation codes for items;

• unreserve: to unreserved items, that previously were reserved for some warehouse.

Figure 31: Definition of Supplier service

As defined within the process description, in one workflow participate exactly one customer, one
shop, one warehouse and a priory unknown amount of suppliers. For the supplier identification,
message supplierInfoMsg contains the endpoint reference of the supplier instance service. So, for
identifying the instance of supplier service we use WS-Addressing type “wsa:EndpointReference”.
It is used in the part “supplierEndpointReference” of message “supplierInfoMsg”. WS-Addressing
types are supported by BPEL1.1 specification.

Within the BPEL processes model, this identification mechanism will be used to make the correct
correlation during the conversation between warehouse and supplier services.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 70

Figure 32: Definition of Shop Service

Within the Shop Services definition the operations of shop are provided. This definition has
references to supplier, customer and warehouse namespaces for defining types of messages, that
are used within the messages’ parts and input/output variables of operations from shop PortType.
Shop service by himself, provides definition of 3 new messageTypes:

• totalcost: total cost of order, that will be show to customer, contains one integer value;

• splitedOrder: contain two parts: set of s_items and ns_items, as they are defined within
process description;

• shopInfoMsg: shop address, name, and ID.

PortType shopPT contains functions:

• computeTotalCost: computes total cost of assembly for customer;

• checkAvail: check availability of items for customer;

• selectWH: selects the warehouse, that is near to customer;

• splitOrder: splits order to s_items and ns_items.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 71

Figure 33: Definition of Customer Service

Customer Web Service wraps the human activities of customer. This service starts the processes
and gets the final result, and message format of this actor is essential for all the participants of the
whole process. That’s why it contains not only customer-specific messages and operations (from
portType “customerPT”), but also some data that relates on the overall process of food shopping.

These are types “parcelMsg”,”itemsMsg”,”status” and operations “requestorder” and
“paidrequest”:

• “requestorder” instantiates the overall process

• “paidrequest” is needed to provide conversation with customer.

Such operations usually appear in “request” statements of the BPEL code. They model the peer-to-
peer conversation between process by itself and one of the actors. Such operations are exactly
actor specific (“requestorder” is performed exactly by customer), but may not be invoked from
this service.

That’s why they are defined within other portType - ServicePT, which later within the BPEL
process will be associated with the “myrole” property of partnerLinkType. It means, that
“requestorder” and “paidrequest” are associated with BPEL engine by itself, and he will invoke
them from customer service. BPEL engine acts in this case as some kind of “super actor” among
all other actors in their collaboration.

Description of the Customer Service is shown on the Figure 33.

The Warehouse Service description contains main data types (messages), that are exchanged with
warehouse and operations, which may be invoked from Warehouse.

• assemble: assembling items in one parcel, to be delivered to customer;

• shipcost: computes cost of shipping goods;

• unreserve: un-reserves the items in warehouse, that were previously reserved;

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 72

• reserveAvail: reserves items, that are available at warehouse and responds with message,
that contains information which items are available at warehouse, and which have to be
shipped.

Messages within Warehouse definition define main data formats, needed to communicate with
warehouse:

• toSupply: which items to supply from supplier with warehouse identification;

• shipcost: cost of goods’ shipment;

• availItems: sets of available and non-available items at warehouse;

• whInfoMsg: information about Warehouse. Needed for selecting the nearest to customer
warehouse.

The only reference to customer namespace is needed for working with “customer:itemsMsg“
message type.

The definition is shown on the Figure 34

Figure 34: Definition of Warehouse Service

Overall process definition contain parts of defining partner links, import of namespaces from
associated web-services, definition of process variables, correlation sets, and a definition of a
workflow by itself.

PartnerLinks define which partner roles are associated with which portTypes from services. The
non-trivial definition concerns the customer role, where “myrole” for the overall process is defined
(see description above).

<partnerLinks>

 <partnerLink myRole="service" name="customer"

 partnerLinkType="customer:customerServiceLT" partnerRole="customer"/>

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 73

 <partnerLink name="shop" partnerLinkType="shop:shopLT"

partnerRole="shop"/>

 <partnerLink name="supplier"

 partnerLinkType="supplier:supplierLT" partnerRole="supplier"/>

 <partnerLink name="warehouse"

 partnerLinkType="warehouse:warehousePLT" partnerRole="warehouse"/>

 </partnerLinks>

The overall diagram of the process is shown on the Figure 35 - Figure 38.

Variables part of the process definition contains description of all the variables, that process use to
send to invocating operations of services and to store data after performing this actions. Among
them we can find as common variables, related to process description, such as

 <variable messageType="customer:itemsMsg" name="s_avail_items"/>

 <variable messageType="customer:itemsMsg" name="s_nonavail_items"/>

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 74

Figure 35: BPEL process model /1

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 75

Figure 36: BPEL process model /2

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 76

Figure 37: BPEL process model /3

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 77

Figure 38: BPEL process model /4

and the temporal variables, that are needed only to organize the process, such as

 <variable messageType="customer:status" name="tosupply_nonavail_status"/>

 <variable messageType="customer:status" name="tosupply_ns_status"/>

The process contains two correlation sets. Correlation sets are needed to identify the instances of
services when the process is started (instantiated). First of them contains the data, related to users
order, this correlation is needed exactly on the start after “receive” of the OrderMsg from
customer.

<correlationSets>

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 78

 <correlationSet name="thisSet" properties="customer:orderID"/>

 <correlationSet name="supplCS" properties="supplier:suppID"/>

 </correlationSets>

The second one is used to identify the supplier, that participates in transaction with warehouse of
shop. Process description defines, that many suppliers may participate in one session of processing
customers order. As were said above, this collaboration is defined using the WS-Addressing
statements.

The overall process contains all the invocations of services operations, receiving data in
synchronic mode, assigning values to different variables and checking their values on the “switch”
blocks.

Activities “invoke computeTotalCost”,”assign totalCost -> bill”,”invoke sendbill” and “receive

paidrequest” are grouped to one scope. On this scope defined faultHandler “nopayment”, which
invokes when no payment from customer is received. In this case, items, that were reserved at
warehouse and at suppliers are to be un-reserved. This is defined in faultHandler action, by
specifying sequence of actions for un-reserving items and terminating the whole process.

3.1.4 Diagnosis process

3.1.4.1 Case Studies

In this section we highlight some failure situations within the process. In the following section we
will describe a sample diagnostic process for each of these situations.

We will study three situations that are started by an exception:

A. When computing the bill, the SHOP realizes that the ship cost sent by the WAREHOUSE
is higher than the expected threshold (HighShipCostException of the SHOP).

B. When receiving the bill, the CUSTomer realizes that some ordered item is wrong
(WrongBillException of the CUSTomer).

C. When assembling the package, the WAREHOUSE realizes that it received a wrong item
from one of the SUPPLIERs (WrongSupplyException of the WAREHOUSE).

3.1.4.2 Diagnosis

From the point of view of diagnosis, exceptions are symptoms of something going wrong. There
can be several possible causes for an exception; diagnosis must discard those that cannot have
happened (due to further observations), possibly reducing the possibilities to the one that took
place.

A. There can be two causes for a HighShipCostException in the shop: either the SHOP
selected the wrong warehouse (thus choosing one that is far from the customer address), or
the warehouse itself made a mistake in computing the ship cost. Diagnostic reasoning can
find these two possible causes with backward reasoning, but without adding any
observable data or test action it is not possible to discriminate between the two.

B. A WrongBillException is caused by someone reserving the wrong item, either the
WAREHOUSE or one of the SUPPLIERs. By following backwards the path of the wrong
item data, it is possible to discover who reserved that particular item and correctly
diagnose the problem.

C. Let us look at the possible causes for a WrongSupplyException. Apparently there are
three possibilities: (i) the SUPPLIER reserved the wrong item from the beginning; (ii) the
SUPPLIER reserved the correct item but then made a mistake in updating its internal order
DB, writing the wrong item code; (iii) the SUPPLIER did everything correct but sent the

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 79

wrong parcel to the WAREHOUSE. However, possibility (i) can be discarded by
observing that it would have produced an error in the bill, while no WrongBillException
was raised.
Thus only possibilities (ii) and (iii) remain as candidates. The SUPPLIER could discover
the source of the error by comparing the reservation codes it sent to the SHOP with those
it wrote down in its DB: if they are the same then (iii) holds; otherwise (ii) holds. It is
worth noting that this further check must be described somewhere in the model, if we want
it to be available during the diagnostic process.

3.1.5 Repair stage

3.1.5.1 Possible cases

A. If the WAREHOUSE computed a wrong ship cost, then the only possible repair is to
correct the problem at the source and then compute it again. If on the other hand the SHOP
selected the wrong warehouse, changing warehouse at this point could be too time-
consuming. Thus the best solution is that (i) the SHOP corrects the problem for future
conversations; (ii) for the current conversation, the SHOP keeps the wrong warehouse but
lowers the ship cost for the customer (the shop itself will pay the difference).

B. In the case of wrong item reservation the only possibility is to repeat the reservation for
the wrong item. A new bill (or negative answer, if the correct item wasn’t available) is
then computed and sent to customer.

C. If there was just a parcel mismatch (case (iii)) then it suffices to ask the SUPPLIER to
send the correct parcel, possibly sending back the wrong one. Shipment costs to and from
must be covered by the SUPPLIER who made the mistake. If on the other hand the
SUPPLIER wrote the wrong data in its DB, it will have to correct the problem that caused
this to happen, and besides sending the correct parcel it will also have to update its stock
DB, that registered a wrong transaction.

3.1.5.2 Detailed analysis

In our approach faults may occur at three levels: Infrastructure and Middleware (due to failures in
the underlying hardware, network, and system infrastructure); Web service level (due to failures in
service invocation and orchestration); Web application level (malfunctions in the execution of
Web applications due to data mismatches or coordination or choreography failures).
Repair actions are designed according to these three levels and originate different recovery
strategies, according to the system components affected by the fault. For example, at the Web
application level, the main goal is to provide: (i) services which respect the user requirements in
terms of both functionalities and QoS, (ii) business continuity, and (iii) fault masking.
At the Web service level the main goal is to manage the service choreography correctly and to
guarantee service continuity and QoS requirements by substituting corrupted services with
compatible ones available in the network. Faults are considered as events and repair actions are
triggered according to the Event Condition Action (ECA) paradigm. For example, a connection
time out event at the middleware layer could be due by a fault or due to an overload of the
provisioning server. Then in order to identify the fault the conditions which are evaluated are: (1)
the network is available, (2) the provisioning server is available, (3) the server CPU usage rate is
high. According to which of the above conditions are verified, different repair actions will be
undertaken such as service substitution (in the first two cases) or resource re-allocation (in the last
case).

In Table 3 we list possible draft categories of recovery actions. Once a fault has been diagnosed,
our approach assumes that Web services deployed within our architecture are able to perform
recovery actions, restore the correct state, and remove the causes that led to the failure. For each
diagnosed fault, one or more recovery actions are executed. Two types of recovery actions are

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 80

identified: reactive and proactive recovery actions. Reactive actions are performed along with the
execution of Web services and try/allow the recovery of running services. Proactive actions are
mostly based on data mining techniques and can mainly be executed in an off-line mode. Proactive
actions are complex and require the support of an environment able to execute services, to detect
runtime faults, and to perform recovery actions with no damage to the running instances of the
monitored Web services. A long term approach to self-healing is adopted, where recovery actions
have the goal of improving Web Services and Web applications in order to avoid future failures.
These actions can be oriented to provide a one-shot improvement action or to modify the service
provisioning process for a permanent data and process improvement

In Table 3 the level, fault types and some examples thereof are reported. A Web Service execution
fault is raised during invocation if a service is not responding, or due to a wrong security access
authorization of the end user, or a parameter is missing in the input SOAP message. Notice that
this kind of faults may occur even if the infrastructure properly works, so it can not be included
into the infrastructure faults class. A mismatch in the structure of messages to invoke a service
may be due, for instance, to an update in the published service interfaces which are not yet
considered inside the invoking applications. In our framework, a Web service execution fault may
occur when, upon substitution of a faulty Web service (e.g., an unreachable one) with a
functionally equivalent one, no substitute is available. A service coordination fault is typically due
to a violation of the order of invocation of service operations or messages (e.g., a book payment is
received before the corresponding book reservation). Web Service coordination faults may occur
when some of the Web Services in a composed service are unavailable. Another case occurs when
a message is received that does not match the choreography protocol. Application level faults are
related to the execution of a Web application based on Web Services. Most of the faults at this
level can be captured by mechanisms at the infrastructure and middleware level (basically a
timeout).

Examples of Application Coordination faults are a session fault, a phase time fault (e.g., the
ordered item has been paid, but the confirmation of payment is received after an internal time out),
a resource booking fault (e.g., not the whole resource pool necessary to complete the service has
been reserved), or inter-process faults (e.g., service data have not been received at the correct
time). Examples of Actor faults are the case the customer is not connected when a synchronous
communication is needed, or an authorization fault. QoS violation faults are related to local and
global constraints specified by the user or by the application designer.

For example, the user can require that the delivery time of the ordered item be lower than a given
threshold or that the total price of the ordered item is lower than a given amount. Another category
of faults is bound to the process design, that is, to the way the application workflow has been
developed. For example, an Unavailable goods fault should be treated by exception handlers
specifically included in the process workflow. In some cases, the handlers are already specified in
the process able to manage the fault. In other cases, such handlers have not been designed, and
hence the application could experience a deadlock or a total crash. Being the system self-healing,
we expect the fault log to gather information useful to design the necessary handler. We assume
that a fault event can be raised, and that no repair actions are explicitly executed, beyond a notify
action. Generic application dependent faults are therefore not going to be considered. Internal Data
faults include data quality faults related to data manipulated during the execution of a specific
service. Examples are the wrong ID or name of an ordered good, or mismatched customer
data. Since these faults specifically regard data internal to a service, they are evidenced as possibly
bounded to specific filters and options to be then treated be recovery actions apart.
It is important to evaluate the quality of information flow along a specific service since failures
can be caused by incorrect or missing information. The most important data quality dimensions are
accuracy, completeness, consistency, and timeliness. These dimensions are objective dimensions
and, therefore, are suitable for a quantitative evaluation and constitute a minimal set that provides
sufficient information to evaluate the data quality level [R96].

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 81

In Table 3 we list possible draft categories of recovery actions. Once a fault has been diagnosed,
our approach assumes that Web services deployed within our architecture are able to perform
recovery actions, restore the correct state, and remove the causes that led to the failure. For each
diagnosed fault, one or more recovery actions are executed. Two types of recovery actions are
identified: reactive and proactive recovery actions. Reactive actions are performed along with the
execution of Web services and try/allow the recovery of running services. Proactive actions are
mostly based on data mining techniques and can mainly be executed in an off-line mode. Proactive
actions are complex and require the support of an environment able to execute services, to detect
runtime faults, and to perform recovery actions with no damage to the running instances of the
monitored Web services. A long term approach to self-healing is adopted, where recovery actions
have the goal of improving Web Services and Web applications in order to avoid future failures.
These actions can be oriented to provide a one-shot improvement action or to modify the service
provisioning process for a permanent data and process improvement.

Table 3: Levels of faults occurrence, type of fault, and examples

For instance, a variety of techniques for data improvement are proposed in the literature. The most
straightforward solution suggests the adoption of one-shot data-oriented inspection and re-work
techniques, such as data bashing or data cleaning [EN99]. These techniques focus on data values
and can solve problems related to data accuracy and data consistency quality dimensions. A
limitation of these techniques is that they do not prevent future errors. They are considered
appropriate only when data are not modified frequently. On the other hand, a more frequent use of
data bashing and data cleaning algorithms involves high costs that can be difficult to justify.
To overcome these issues, several experts recommend for permanent improvement the use of
process–oriented methods ([EN99], [R96], [SPP05], [SWZ00], [WAN98]). These methods allow
the identification of the causes of data errors and their permanent elimination through a change in
data access and update activities. These methods are appropriate when data are frequently created
and modified. Organizations can also adopt mixed strategies in which they can decide to adopt a
data-oriented technique or a process-oriented technique depending on data and process types.
Recovery actions can be also classified in service-oriented and data quality recovery actions.
While the former deals with invocation, orchestration and choreography aspects of Web services,
the latter pertains mainly to the management of data quality faults. For each of the fault types
defined in the previous sections, several candidate recovery actions may be proposed, depending
on the fault type and whether a reactive or proactive approach is taken. Such recovery actions are
implemented by the modules that will be introduced in Section 5 (namely, a Reallocation module,
a Substitution module, a Wrapper generator module, and a Quality module). In this way, whenever

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 82

the diagnosis step identifies a fault, the recovery action selector invokes the related repairing
modules.

In our reference example, let us consider some examples of faults and repair actions. Let us
assume a customer selects a food ware from the on-line site, and that his request includes the
phases of food checking for availability (service activated by the customer), food selection from a
warehouse (service activated by the shop service), book shipping (service executed by the shipper
service), and payment (service by an external payment service). Let us suppose that the Shipper,
Warehouse, and Supplier belong to a trust circle, that is, that no security faults can occur in the
messages exchanged among these three services. Faults that may arise in the trust circle are a
resource booking fault, due to mismatch of resource reservation to execute the application. An
internal data fault may occur when the Shop sends order data to the Warehouse (e.g., a wrong ID).
Another fault, of type Unavailable goods may occur during the execution of the Warehouse
service, needing to store a log that asks to postpone the goods search process until a new event
(Good in Stock) arises to signal that the Warehouse has been refilled. If we view the whole
application as a workflow composed of three phases: Selection-and-Booking, Payment, and
Delivery, a fault of type phase time out occurs if one phase exceeds the foreseen time schedule; a
session fault occurs if a connection is lost among the phases, and the collected data are lost.
Finally, consider that food reservation, payment, and shipping are regarded as services that have
been orchestrated and attached to the customer context through e.g., the customer's mobile device
or browser. If the shipping service arises a fault, e.g., a missed delivery due to a delayed delivery
time, we regard this fault as a QoS violation in terms of delivery service time fault. As a
consequence, the repair action can be a money refund service; this means a modification of the
part of the order that was affected by the fault. At the Application level, this fault is notified by the
client side controller invoked directly by the customer browser or device, which may undertake the
following repair actions: 1) check the sequence of services which are affected by the fault; 2)
reschedule or substitute the involved services (here, the payment service); 3) log the application
level fault into the fault log; 4) notify the customer with the new schedule. For rescheduling, the
system has to send a new payment form, and hence modify the payment service data. If, the
payment requires for example to update the customer profile, the new profile is needed with the
notification sent to the customer, with new preferences, options, or constraints for further orders.
Such new profile may trigger updates to the customer security profile, in order to update the
security logs contents.
Regarding data quality faults, a low accuracy value can characterize the shop catalogues, if there
are some typos in it. This could imply the mismatch between the user request and the shop
information and thus a book could be never retrieved. Another example of low accuracy can be
described looking at the first phase where the users have to insert their own address for the book
delivery. It could happen that the users gives wrong data and the parcel could never be shipped. In
particular, a parcel delivery might fail if there is some internal inconsistency in the address written
in the request, e.g., the zip code does not correspond to the right city. Inconsistency problems
could be correct using data bashing techniques. A food search might fail also it is not completely
described in the catalogues and thus requirements might be unfulfilled. This case regards poor data
quality due to low value of the completeness dimension.
An important aspect that has to be considered in this example is the presence of many actors, each
with its own database. Since actors are involved in the same business, databases could overlap and
thus be affected by data misalignments. There could be database misalignments between bookshop
and publisher and consequently the shop has out of date catalogues. In some cases this fault might
imply the mismatch of users' requirements. In fact, it could happen that a producer does not
communicate to the shop price variations. In this case, bookshop, along the user requirements and
the available information contained in its own databases, might select that shop but the new prices
do not satisfy the request. Users would receive a bill higher than the requested one. The error is
due to the low values of timeliness associated with data owned by the shop. Misalignments
between shop and other actors’ databases can also cause completeness problem. The actors need

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 83

therefore to analyze their communication processes and adopt efficient synchronization
mechanisms by choosing the most suitable time interval to perform the periodic realignment
among databases.
In general, in the Repair Model we make the hypotheses that all needed information is available
from the diagnosis model, namely: 1) which function was wrong; 2) which type of exception
message was arisen. We also consider that a knowledge base of fault-repair patterns is available:
containing patterns of two types: Domain Independent (Examples are: “delivery”, “missing db
item”) and Domain Dependent (Examples of domains are: “University”,”Municipality”). Such
patterns are then instantiated on the running cases, e.g., “delivery of perishable” for foodshop or
“missing student information” for University domain.

The repair strategies should provide the system and the user to put in place have several
alternatives. For example, considering the Delivery service, a rule, expressed as a simple triple
format, can be:

 <time_fault; delay_of_service (ok) � second_item_free>

whose meaning is that if a time fault occurred, bringing over a delay in the Delivery service but, in
spite of the fault, the service was successfully completed (delay_of_service(ok)), then the
customer will receive an item for free. For the WorkFlow this implies that a cost variable will be
constrained for future executions of the WokFlow (var cost=0).

As another example, consider the variation of the previous fault, namely:

<time_fault; delay_of_service(not_ok) � (money_back) & (restart_WF)>

Here, the service could not be successfully completed (delay_of_service(not_ok)). The variables of
the WorkFlow are not affected, but rather an activity has to added to the re-execution of the
WorkFlow.

Sample faults at the application level are given below:

WRONG PRICE

 e.g., the customer orders an item for 10$ and gets 20€ at payment time

The Diagnosis step will determine which component is wrong. Detection can be done using data

guards at some points in the WorkFlow. Alternatively, it is necessary to put additional
observations like:

1) Tracing back to determine the wrong component

2) Optimization of positioning data guards to anticipate moment of symptom detection

The Diagnosis on WRONG PRICE determines the possible wrong components and actions, such
as:

Wrong computation by SHOP

Wrong ship cost by WAREHOUSE

Wrong data in catalogue by SHOP/WAREHOUSE (low data quality)

Wrong formulation of problem by CUSTOMER

Wrong communication (dialog) e.g. 20$ or 20€

Considering as a final example the fault: INCORRECT ASSEMBLE OF PARCEL, we have the
following schema:

Diagnosis: before assemble of parcel action

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 84

Possible wrong components:

Wrong synchronization by SUPPLIER (e.g., goods are reserved but not
available)

Wrong parts by SUPPLIER

Wrong reservation by SUPPLIER

Missing parts by SUPPLIER

Wrong parcel composition by WAREHOUSE

Repair action:

 on line : supply new goods

 off line : when delivery of both perishable and not perishable, make 2 parcels

3.1.6 Comparison

Cooperative review test case = CR;

Travel services test case = TS

Food shop test case = FS

The TS and the FS are quite similar with respect to a number of features, while the CR seems to
focus on slightly different aspects. In this section we try to underline some points that could help
in comparing the different test cases.

TS and FS

The FS and the TS model a scenario in which a customer accesses an on-line service in order to
buy a complex product (food in the first case, flights and hotel accommodations in the second
one). In both cases the customer expresses a set of requirements and the service tries to “build” a
“product” that fulfils such requirements. The “product” is composed by different items, with
different characteristics (perishable and unperishable items vs. flights and hotels), and for each
item the system must check for availability and then reserve/buy it.

In both cases some sequences of activities must be treated as transactions, since they require to be
“undone” as a whole if there is a failure. This aspect is very similar in both scenarios, although,
currently, it is not explicitly described in the FS (but it can be easily added).

A difference is that in the TS there are no activities requiring human intervention, while in the FS
at least the assembly of the parcel and its shipping must be performed by humans. A workflow that
includes (possible) human activities seems to be more general, since: (a) it is closer to real cases
(in many real business scenarios some operations are still performed by humans: think for example
of a bank that handles everything electronically; it still has to physically send a credit card to its
account holders and, for security reasons, the credit card must be activated on-line only upon
reception of both the credit card and its PIN code sent in separate envelopes); (b) from a modelling
point of view, human activities can be wrapped within a Web Service interface, such behaving in a
homogeneous way with respect to the other Web Services involved.

The possible exceptions in TS and in FS are similar. For example, an alarm can be raised by the
customer, in TS, to signal that the flight plan does not meet her requirements because there is an
additional or a missing step in the itinerary; similarly, in the FS, the customer can raise an
exception when, while checking the bill, she realizes that an item is missing, or it is wrong.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 85

Also the examples of causes for exceptions seem to be quite similar in the TS and FS: mismatches
between reservation ID numbers, database misalignments, and so on.

As a consequence of the similarity of the overall structure of the cooperating workflows and of the
possible exceptions, diagnoses and recovery actions are very close in the two scenarios.

CR and FS

The CR focuses on QoS aspects, which are not explicitly considered in the FS (and in the TS). In
this scenario the user provides a set of QoS requirements and the system tries to fulfil them.
Moreover, QoS parameters are monitored during the execution of the workflow and detected
mismatches raise exceptions.

Within the CR, exceptions related to QoS violations can be due to a violation of a QoS contract
(possibly previously negotiated between provider and consumer) or due to a misinterpretation of
some data (e.g. european vs american format for dates). The QoS contract can include generic
parameters (such as availability, security, response time, …), which can be modelled in any
scenario, and application-specific parameters, which are different in different domains, but that can
probably be classified in quite general categories (see Chapter 3.2.3).

The CR does not include activities performed by humans and does not consider exceptions other
than QoS violations. Moreover, it is not clear if and how it could be extended in order to manage
transactions.

The FS, currently, does not include QoS parameter, but they can be added, since they definitely
make sense in a real e-commerce scenario. It seems plausible, in fact, to imagine that an online
shop aims at offering a service that fulfils a QoS agreement (probably based on a contract
negotiated with the customer); moreover, the online shop can negotiate QoS levels with
warehouses and with suppliers. The introduction of QoS monitoring would then enable the system
to check QoS violations and to raise the corresponding exceptions.

An interesting aspect faced within the CR is the discovery phase, which make sense in an open
environment. The FS was initially conceived as running in a closed scenario, where all the supplier
were known a-priori, but it can be “rephrased” to take into account the discovery phase, if we
imagine that the warehouses, before contacting a supplier, can “look for it” querying a public
registry.

3.2 Test Case: cooperative review

3.2.1 Workflow

This example illustrates the functioning of a common collaborative activity addressing the
problem of “review process”. This problem has several instantiations in different activity areas. In
industrial activities such as engineering of complex and embedded systems, the “design review”
activity is known to be as one of the most complex activities in aerospace industry (see the IST-
DSE project). The “cooperative review” application scenario we study in the context of the
DIAMOND project aims to support such activities. Most of the defined services, parameters,
actors and processes are generic and may be applied to different domain-specific review processes.
In order to facilitate the understanding and the collaboration within our project, we choose to
instantiate the review process by the well-known scenario of the review process in scientific
publishing activities. Namely, we consider the specific case of the scientific conferences looking
for describing the automatic functioning of their different steps within a service-oriented approach.

 This description takes into account the various steps concerning successively:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 86

1. Search by the authors of conferences answering specific criteria (e.g., scientific topics,
reputation of the conference, submission and publications deadlines, publishing house,
etc…).

2. Search by the conference chair of reviewers answering specific selection criteria (e.g.,
research subject, expertise, institution, and so forth).

3. The submission process allowing the authors to deposit their papers.
The reviewing process, which involves the assignment of papers to the reviewers, the recovery of
review reports, and the final decision concerning whether to accept or refuse submissions.

Table 4 : QoS parameters associated with conferences and reviewers.

Parameters Classification Conference Reviewer

Topics topic1, topic2, topic3 x

Research subject subject1,subject2,subject3 x

Paper’s length short, long, unlimited x

Submission deadline soon, on-time, late x

Reputation weak, average, strong x x

Acceptation degree low, average, high x

Publisher’s quality low, average, high x

Acceptation notification date soon, on-time, late x

Conference’s date soon, on-time, late x

Conference’s place site1, site2, site3, … x

Production level low, average, high x

Table 4 shows the different QoS parameters identified as being necessary to consider during the
various steps of the “search process” required by the whole of the system’s activities.

3.2.2 Architecture and Workflow

The actors

Several actors collaborate in order to accomplish the various management tasks of the cooperative
reviewing process. The different types of actors are presented as follows:

The Conference Chair represents the principal actor in charge of organization of the conference.
His activities proceed throughout the lifecycle of the system, from conference planning until the
publication of proceedings. In practice, it is possible that this responsibility is shared between
several people.

The Track Chair has in charge to manage a particular conference’s session, whenever the
conference is composed of several topics.

The Author represents each potential contributor to the different topics of the conference.

The Reviewer is an expert in one or more of the domains defined by the different topics of the
conference, and he is skilled to produce an objective report on papers assigned to him.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 87

General Architecture

As depicted in Figure 39 the description of the “Cooperative Reviewing System (CRS)” is made
following a service-oriented approach. Namely, it is composed by Web services, orchestration
elements, Web service registries (allowing discovering of Web services), WS clients, and QoS
management elements.

Figure 39: General architecture of the cooperative reviewing system.

The various components of the architecture and their functions are introduced into the following
sections.

Activities Description

In this section we introduce the activities regarding the cooperative reviewing process. This
description considers the components of each activity, their category (i.e. service, producer,
consumer, registry, repository), the communication relationships between these components, as
well as their multiplicity (i.e. 1:1, 1:*, *:1, *:*).

Activity 1. Conference Search

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 88

This activity describes the process where the authors seek “Calls for papers” being close to their
research subject.

According to Figure 40, interested authors looking for conferences use an interface provided with
producer/consumer processes in order to contact the AuthorSideWSProvider service. This service
will start, in turn, an orchestration process which allows firstly, the CooperativeReviewing Web
Service discovery; and secondly QoS management. In return, the author will obtain a list of
conferences meeting his requirements and their related web services.

Figure 40: Looking for conferences.

The role of each component participating in this activity is detailed as follows:

• For Author side:

AuthorProd:

It represents an “information producing entity” that handles the user’s request and
forwards it to his associated AuthorSideWSProvider service to be processed.

AuthorSideWSProvider:

This is a Web service that has in charge to starts the search of “CooperativeReviewing

Web services” that map as much as possible QoS requirements specified by the author’s
request.

AuthorCons:

It represents an “information consuming entity” that the AuthorSideWSProvider service
has to contact, in order to forward the complete information related to all the conferences
fulfilling his requirements. The list of these conferences results from the conversation
involving the AuthorSideWSProvider and the CooperativeReviewing Web services.

• For Conference Chair side:

ConferenceInfoProvider:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 89

It is a process inside the CooperativeReviewing Web services deployed on the sites of the
conferences; it is asked with respect to any kind of information relating to a conference.

UUDI registry:

This process manages registries allowing, in this case, discovery of CooperativeReviewing Web

services.

Orchestration:

This process controls the global conversation among Web services involved on this activity.

QoS Metering:

This process allows measuring of QoS parameters among Web services conversations.

 QoS Evaluation:

It must validate the obtained results with regard to QoS parameters, and sort the list of conferences
before returning it to the implied author.

Figure 41 outlines the sequence diagram related to this activity. An author (across the AuthorProd
process) sends a request message for conference search (confSearch) with QoS parameters
satisfying his requirements. The AuthorSideWSProvider service receives this request and starts an
orchestration process. The orchestration process queries the registry in order to discover
CooperativeReviewing Web services. While each CooperativeReviewing service is solicited for
conference information, after its answer (across the ConfInfoProvider process) QoS parameters are
measured and evaluated. Finally, the conference list (confList) accomplishing with the QoS
contract is delivered to the concerned author.

Figure 41: Sequence diagram for conference search activity.

Activity 2. Reviewers Search

This activity addresses the process of reviewers search and selection. Potential reviewers are
selected by taking in account their qualification and expertise domain and contacted in order to
manifest their interest to participate in the evaluation of submitted papers.

As presented in Figure 42, the CooperativeReviewing service, across its ReviewingMgr process,
starts an orchestration process in order to find reviewers interested by the conference. This request
contains the conference information and QoS requirements. The ReviewerSideWSProvider service

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 90

is contacted in order to invite its related reviewers. Each reviewer expressing its interest is stored
into the right repository.

Reviewers

Repository

Cooperative Reviewing

Web Service

ReviewingMgr

Orchestration

UDDI

Registry

QoS Metering

QoS Evaluation

1 : 1

1 : 1

1 : 1
1 : 1

ReviewerSide

WSProvider

ReviewerSide

ReviewerProd

ReviewerCons

1 : 1

* : 1

* : 1

* : 1

* : 1

Figure 42: Looking for reviewers.

The role of each participant in this activity is described in what follows:

• For Track Chair side:

ReviewingMgr:

It has in charge starting the reviewers search activity according to the conference
requirements.

Reviewers Repository:

It stores the data of reviewers accepting the invitation for participation.

• For Reviewer side:

ReviewerSideWSProvider:

It is contacted by the orchestration process so that it contacts and gets the response of its
related reviewers.

ReviewerProd:

It represents the interface available to the reviewer to send its decision to the
ReviewerSideWSProvider service.

ReviewerCons:

It constitutes the mechanism of notification available to the reviewer to interact with the
ReviewerSideWSProvider service.

Orchestration:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 91

This process makes it possible to control conversations among Web services involved on this
activity. It contacts the ReviewerSideWSProvider services (across the QoS metering process,
which catches the involved request) in order to collect the response of reviewers after invitation to
participate in the review activity. It returns to the ReviewingMgr process the list and information
related to reviewers accepting the invitation of the conference.

UDDI Registry:

This process manages registries allowing, in this case, discovery of ReviewingSideWSProvider

Web services.

QoSMetering:

This process allows measuring of QoS parameters among Web services conversations.

QoSEvaluation:

It must validate the obtained results with regard to QoS parameters, and sort the list of reviewers
before returning it to the implied ReviewingMgr process.

The sequence diagram related to this activity is depicted by Figure 43. The ReviewingMgr service
sends a request (searchReviewers) with the QoS parameters characterizing the conference. This
request launches the Orchestration process. The orchestration process queries the registry in order
to discover ReviewerSideWSProvider services. Each ReviewerSideWSProvider service asks the
reviewers that it manages about participation approval (requestParticipation) in the conference.
The interested reviewers send a message of confirmation (sendDecision(OK,reviewerid)) to the
ReviewerSideWSProvider service, which produces in turn a message (sendConfirmation) to the
QoSMetering process. QoS parameters are measured and evaluated. Finally, the reviewer list
(reviewersList) accomplishing with the QoS contract is delivered to the concerned ReviewingMgr
process.

Figure 43: Sequence diagram for reviewers search activity.

Activity 3. Author Inscription

This activity considers the inscription of authors in order to submit papers to the conferences.
Notice that figure describing this activity is intentionally omitted. Indeed, this one is much similar
to that describing paper submission activity (activity 4).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 92

The sequence diagram of Figure 44 is describing the interactions among the components
intervening in this activity. An author asks for inscription in a conference (across the AuthorProd
process). The AuthorSideWSProvider service transmits this request towards the Orchestration
process. The QoSMetering process catches this request and interacts with the SubmissionMgr
process in order to authorize the inscription. QoS parameters are measured and evaluated in order
to return an “acknowledge message” to the concerned author (across the AuthorCons process).

Figure 44: Sequence diagram for author inscription activity.

Activity 4. Paper Submission

This activity considers the paper submission activity by authors interested in conferences.

According to Figure 45, an author wishing to submit a paper must contact the
AuthorSideWSProvider service. This service launches an orchestration process in order to establish
a conversation with the CooperativeReviewing Web service. The SubmissionMgr service receives
and authorizes this request and stores the author and paper data.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 93

Figure 45: Paper submission

The roles of the participants related to this activity are described as follows:

• For Author side:

AuthorProd:

It represents the interface the author uses to contact the AuthorSideWSProvider service.

AuthorCons:

It constitutes the mechanism of notification available to the author to interact with the
AuthorSideWSProvider service (i.e., submission acknowledge).

AuthorSideWSProvider:

It is the service allowing the author to start an orchestration process in order to submit
papers.

• For Track Chair side:

SubmissionMgr:

This process receives submitted papers from authors and stores them.

PapersRepository:

It makes it possible to store the papers submitted by authors.

AuthorsRepository:

It makes it possible to store data of authors submitting papers.

Orchestration:

This process makes it possible to control conversations among Web services involved on this
activity.

QoSMetering:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 94

This process allows measuring of QoS parameters among Web services conversations.

QoSEvaluation:

It must validate the obtained results with regard to QoS parameters.

The sequence diagram involving this activity is showed in Figure 46. An Author submits a paper
(across the AuthorProd process) for reviewing. The AuthorSideWSProvider service transmits the
paper towards the Orchestration process. The QoSMetering process catches this submission and
interacts with the SubmissionMgr process in order to deliver the paper. QoS parameters are
measured and evaluated in order to return an “acknowledge message” to the concerned Author
(across the AuthorCons process).

Figure 46: Sequence diagram for paper submission activity.

Activity 5. Paper Assignment

This activity considers the paper assignment by the Track Chairs to the reviewers.

According to Figure 47, each Track Chair (across the ReviewingMgr process) decides to assign a
paper to some reviewers in order to get an objective report about its quality. To be so, the
CooperativeReviewing Web service starts an orchestration process in order to deliver the paper to
the qualified reviewers.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 95

ReviewerSide

WSProvider

ReviewerSide

ReviewerProd

ReviewerCons

* : 1

* : 1

* : 1

* : 1

Cooperative Reviewing

Web Service

ReviewingMgr

Reviewers

Repository

Papers

Repository

1 : 1

1 : 1

OrchestrationQoS Metering

QoS Evaluation

1 : 1

1 : 1
1 : 1

Figure 47: Paper assignment

The roles of the participants related to this activity are described as follows:

• For Track Chair side:

ReviewingMgr:

It carries out the assignment of the papers to the available reviewers.

PapersRepository:

It makes it possible to store the papers submitted by pre-inscribed authors.

ReviewersRepository:

It makes it possible to store the data of reviewers participating in the conference.

• For Reviewer side:

ReviewerSideWSProvider:

It establishes a conversation with the CooperativeReviewing Web service, across the
orchestration and QoS-related processes, in order to send assigned paper to the concerned
reviewers.

ReviewerProd:

It represents the interface available to the reviewer in order to communicate possible
events related to this activity.

ReviewerCons:

It corresponds to notification mechanism allowing the reviewer to access its assigned
papers.

Orchestration:

This process makes it possible to control conversations among Web services involved on this
activity.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 96

QoSMetering:

This process allows measuring of QoS parameters among Web services conversations.

QoSEvaluation:

It must validate the obtained results with regard to QoS parameters.

The sequence diagram involving this activity is depicted in Figure 48. A Track Chair (across the
ReviewingMgr process) assigns a paper for reviewing and sends it to the selected reviewers. It is
made in an orchestrated way (across the Orchestration process). The QoSMetering process catches
this assignment and interacts with the ReviewerSideWSProvider service in order to deliver the
paper to the assigned reviewer (across the ReviewerCons process). QoS parameters are measured
and evaluated in order to return an “acknowledge message” to the ReviewerMgr process.

Figure 48: Sequence diagram for paper assignment activity.

Activity 6. Report Transmission

This activity considers the transmission of the papers review reports by the reviewers to the
system.

According to Figure 49, in order to send the review reports, reviewers contact the
CooperativeReviewing service through the ReviewerSideWSProvider service and the orchestration
process involving this activity.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 97

Cooperative Reviewing

Web Service

ReviewingMgr

Orchestration QoS Metering

QoS Evaluation

1 : 1

1 : 1
1 : 1

ReviewerSide

WSProvider

ReviewerSide

ReviewerProd

ReviewerCons

1 : 1

* : 1

* : 1

* : 1

* : 1

ReviewedPapers

Repository

Figure 49: Getting reviewers’ reports

The roles of the participants related to this activity are described as follows:

• For Reviewer side:

ReviewerProd:

It represents the interface of the reviewer to address review reports.

ReviewerCons:

It corresponds to notification mechanism used by the reviewer

ReviewerSideWSProvider:

It represents the orchestration access point of the reviewer allowing to forward review
reports to the system.

• For Track Chair side:

ReviewingMgr:

It is contacted by the orchestration process (across the QoS metering process, which
catches the involved message) in order to forward review reports sent by reviewers.

ReviewedPapersRepository:

The repository used to store reviewers’ reports.

Orchestration:

This process makes it possible to control conversations among Web services involved on this
activity.

QoSMetering:

This process allows measuring of QoS parameters among Web services conversations.

QoSEvaluation:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 98

It must validate the obtained results with regard to QoS parameters.

The sequence diagram involving this activity is showed in Figure 50. A reviewer sends a
reviewing report for each paper (across the ReviewerProd process). The ReviewerSideWSProvider

service transmits this report towards the Orchestration process. The QoSMetering process catches
this submission and interacts with the ReviewingMgr process in order to store this report. QoS
parameters are measured and evaluated in order to return an “acknowledge message” to the
concerned Reviewer (across the ReviewerCons process).

Figure 50: Sequence diagram for report transmission activity.

Activity 7. Author Notification.

This activity (Figure 51) addresses paper notification (acceptance of paper or its refusal). The
decision is made by the Conference chair based on reviewing reports received from reviewers.
This decision is transmitted to the author via the AuthorSideWSProvider service.

Figure 51: Getting approval decision

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 99

The components of this activity are described in what follows:

• For Author side:

AuthorProd:

It represents the interface available to the reviewer to communicate possible events related
to this activity.

AuthorCons:

It corresponds to notification mechanism used by the author.

AuthorSideWSProvider:

Here this service constitutes the orchestrated access point of the authors making it possible
to correctly transmit the notifications to them.

• For Conference Chair side:

ApprovalMgr:

It is a process of the CooperativeReviewing service that is in charge of transmitting the
acceptance or refusal of papers.

ReviewedPapersRepository:

Repository where are stored the reports sent by the reviewers. The final decision of the
conference Chair will be based on the combination of all the reviews related to a given
paper.

AuthorsRepository:

Repository where are stored authors’ data.

Orchestration:

This process makes it possible to control conversations among Web services involved on this
activity.

QoSMetering:

This process allows measuring of QoS parameters among Web services conversations.

QoSEvaluation:

It must validate the obtained results with regard to QoS parameters.

The sequence diagram involving this activity is depicted in Figure 52. For each paper, the
Conference Chair (across the ApprovalMgr process) sends decision of acceptance or refusal (and
reviewing reports validating it) towards the Orchestration process, in order to notify the concerned
author. The QoSMetering process catches this message and interacts with the
AuthorSideWSProvider service in order to deliver this decision (to the author across the
AuthorCons process). QoS parameters are measured and evaluated in order to return an
“acknowledge message” to the ApprovalMgr process.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 100

Figure 52: Sequence diagram for author notification activity.

Activity 8. Final paper submission

This activity (Figure 53) addresses final paper submission. In fact, this one is quite similar to paper
submission activity, with the PublishingMgr process as element of distinction.

Figure 53: Getting final papers

• For Author side:

AuthorProd:

It represents the interface of the author to send final papers.

AuthorCons:

It corresponds to notification mechanism used by the author.

AuthorSideWSProvider:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 101

Here this service constitutes the orchestrated access point of the authors making it possible
to correctly transmit the final papers.

• For Conference Chair side:

PublishingMgr:

It is a process of the CooperativeReviewing service that is in charge of receiving and
storing the final papers.

FinalPapersRepository:

The repository used to store author’s final papers.

Orchestration:

This process makes it possible to control conversations among Web services involved on this
activity.

QoSMetering:

This process allows measuring of QoS parameters among Web services conversations.

QoSEvaluation:

It must validate the obtained results with regard to QoS parameters.

The sequence diagram involving this activity is depicted in Figure 54. An Author submits a final
paper (across the AuthorProd process) for publishing in conference proceedings. The
AuthorSideWSProvider service transmits this final paper towards the Orchestration process. The
QoSMetering process catches this submission and interacts with the PublishingMgr process in
order to deliver the final paper. QoS parameters are measured and evaluated in order to return an
“acknowledge message” to the concerned author (across the AuthorCons process).

Figure 54: Sequence diagram for final paper submission activity.

Figure 55 presents the activity diagram of the conference management and cooperative review
system. The first two parallel tasks are related to the search tasks (conference and reviewers). The
conference and authors search tasks both lead to the inscription of the authors in a conference.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 102

Then, the authors can submit their papers which will be attributed only after recruiting the
reviewers (synchronization point). We have after, the different tasks of evaluation and author
notification. If this notification implies the acceptance of paper, the authors must achieve the task
of final paper submission.

ConferenceSearch ReviewerSearch

ConferenceCollect

Inscription

ReviewerCollect

PaperSubmission

PaperAssignment

ReviewingProcess

ApprovalDecision

FinalPaperSubmission

accept reject

Figure 55: General activity diagram

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 103

3.2.3 Exceptions

Figure 56 presents a classification of exception categories. This classification considers three
major exception classes: 1) QoS mismatches related to a non respect of the QoS contract between
the QoS provider and the QoS requester, 2) semantical mismatches related to a signification
misunderstanding of methods or parameters between the requester and the provider (i.e. date
1/2/2006 understood by the provider as 1st February and understood by the requester as 2nd
January). The remaining non studied exceptions on mismatches are classified as 3) functional
mismatches related to a faulty execution of a required service due for example to a wrong
implementation but that still respect the QoS contract.

Figure 56: Classification of Considered Mismatches

The QoS contract (that can be obtained for example after a negotiation step) corresponds to the
level of the QoS that a service provider accepts to deliver and that its requester accepts to receive.
QoS parameters considered for this QAC are classified (see Figure 57) into the following
categories: 1) generic QoS parameters such as availability, security, response time and throughput
parameters, and 2) Application-specific QoS parameters that can be decomposed to 2.1) argument
related mismatches corresponding to the correctness of (or the combination of) parameter values
and domains that are exchanged between the requester and the provider, and 2.2) conversational-
related parameters corresponding to the correct protocol supposed to mange the interaction
between the provider and the requester. Conversational mismatches considers 2.2.1) time-related
QoS violation of the applicative level and 2.2.2) mismatches related to the correct order of
operation execution.

Functional Mismatch:
Related to parameters
that are not QoS
parameters

QoS Mismatches Semantical Mismatch:
Related to the semantic
of methods and inputs

Mismatch categories

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 104

Figure 57 QoS parameter classification

3.2.3.1 Cooperative review QoS-related mismatches

In this section we present the mismatches related to the cooperative review application. We
assume for the detection part, that this task is made by the Metering and Evaluation components of
the orchestrator side. Thus, we suppose that all QoS metering, QoS evaluation and orchestration
components can’t be faulty and that the observable faults are those that can be detected by the QoS
evaluation component. In the sequel, we present all mismatches but only the observable ones
(written in bolt characters) will be considered for diagnosis and repair actions.

a. SEARCH STEP

a.1 Event search
a.1.1 Reception of an event whose deadline is not acceptable: Argument-related

mismatch or sematical mismatch
a.1.1.1. Probable Origins :

a.1.1.1.1. date semantic misunderstanding, ConfInfoProvider failure, or
communication delay between the ConfInfoProvider and the orchestrator.

a.1.1.2. Detection :
a.1.1.2.1. by the user.
a.1.1.2.2. by the AuthorSide service
a.1.1.2.3. by the evaluation component

a.1.2 Reception of an event whose topics are not valid : Argument-related mismatch or
sematical mismatch

a.1.2.1. Probable Origins :
a.1.2.1.1. QoS metering, QoS evaluating, or ConfInfoProvider failure or topics

semantic misunderstanding.
a.1.2.2. Detection :

a.1.2.2.1. by the user
a.1.2.2.2. by AuthorSide service
a.1.2.2.3. by the evaluation component

b. EXECUTION

QoS parameters

Generic QoS:
Availability.
Security.
Response Time.
Throughput.

Application-specific QoS

Time Related QoS:
Related to applicative
time constraints.

Conversation Related QoS:
Related to conversational
protocol constraints.

Argument Related QoS
Related to argument
domain input and validity

Order Related QoS:
Related to applicative
time constraints.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 105

b.1 Inscription & submission :
b.1.1 Non reception of the ack (within a given time defined by the Quality of service

Agreement Contract (QAC)) the after author inscription (by the user from the
SubmissionMgr): Time-related mismatch

b.1.1.1. Probable Origins :
b.1.1.1.1. connection loss (between the user and the AuthorSide service, or

between AuthorSide service and the orchestrator, or between the
orchestrator and the SubmissionMgr)

b.1.1.1.2. AuthorSide crash
b.1.1.1.3. SubmissionMgr crash

b.1.1.2. Detection :
b.1.1.2.1. only by the user (in case of AuthorSide crash or connection loss

between the user and the AuthorSide service)
b.1.1.2.2. by the AuthorSide service (if connection loss between the AuthorSide

service and the orchestrator)
b.1.1.2.3. by the evaluation component (in case of SubmissionMgr crash or

connection loss between the orchestrator and the SubmissionMgr)

b.1.2 Non reception of the ack (before the deadline defined by the QAC) after paper
submission (by the user from the SubmissionMgr) : time-related mismatch

b.1.2.1. Probable Origins :
b.1.2.1.1. connection loss (between the user and the AuthorSide service, or

between AuthorSide service and the orchestrator, or between the
orchestrator and the SubmissionMgr)

b.1.2.1.2. AuthorSide crash
b.1.2.1.3. SubmissionMgr crash

b.1.2.2. Detection :
b.1.2.2.1. by the user (if AuthorSide crash or connection loss between the user

and the AuthorSide service)
b.1.2.2.2. by the AuthorSide service (if connection loss between the AuthorSide

service and the orchestrator)
b.1.2.2.3. by the evaluation component (if SubmissionMgr crash or

connection loss between the orchestrator and the SubmissionMgr)

b.1.3 Login problem after an inscription (to a user) Functional mismatch
b.1.3.1. Probable Origins :

b.1.3.1.1. connexion loss (between the user and the AuthorSide service, between
the AuthorSide service and the orchestrator, between the orchestrator and
the SubmissionMgr)

b.1.3.1.2. failure or crash of SubmissionMgr
b.1.3.1.3. failure or crash of the AuthorSide service

b.1.3.2. Detection :
b.1.3.2.1. by the user (if connexion loss between the user and the AuthorSide

service or AuthorSide service failure or crash)
b.1.3.2.2. by the AuthorSide service (if connexion loss between the AuthorSide

service and the orchestrator)
b.1.3.2.3. by the evaluation component (in case of connexion loss between the

orchestrator and the SubmissionMgr or in case of SubmissionMgr

failure or crash)

b.1.4 Non reception (before the deadline defined by the QAC) of a submission by the

SubmissionMgr after user’s inscription: Time-related mismatch
b.1.4.1. Probable Origins:

b.1.4.1.1. the user never send it

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 106

b.1.4.1.2. connexion loss (between the user and the AuthorSide service, between
the AuthorSide service and the orchestrator, between the orchestrator and
the SubmissionMgr)

b.1.4.1.3. failure or crash of the AuthorSide service
b.1.4.2. Detection

b.1.4.2.1. by the user (if connexion loss between the user and the AuthorSide
service or AuthorSide service failure or crash)

b.1.4.2.2. by the AuthorSide service (if connexion loss between the AuthorSide
service and the orchestrator)

b.1.4.2.3. by the SubmissionMgr (in all cases)
b.1.4.2.4. by the evaluation component (in all cases)

b.2 Reviewer Assignment

b.2.1 Non Assignment of a paper: functional mismatch
b.2.1.1. Probable Origins :

b.2.1.1.1. connexion loss (between the ReviewerMgr and the orchestrator,
between the orchestrator and reviewerSide service, or between the
reviwerSide service and the reviewer)

b.2.1.1.2. failure or crash of the reviewerMgr
b.2.1.1.3. failure or crash of the reviwerSide service

b.2.1.2. Detection :
b.2.1.2.1. by the reviewerMgr (all cases except reviewerMgr crash or failure)
b.2.1.2.2. by the author (all cases)
b.2.1.2.3. by the evaluation component (if connexion loss between the

orchestrator and the reviewerSide service or if reviwerSide service

crash or failure)
b.2.2 Assignment to non qualified reviewer (topics and skills non concordant)

argument-related mismatch
b.2.2.1. Probable Origins :

b.2.2.1.1. failure of the ReviewerMgr
b.2.2.2. Detection :

b.2.2.2.1. by the reviewer
b.2.2.2.2. by the evaluation component

b.2.3 Assignment of a paper to one of its authors (or of the same institution) parameter-

related mismatch
b.2.3.1. Probable Origins :

b.2.3.1.1. failure of the ReviewerMgr
b.2.3.2. detection :

b.2.3.2.1. by the reviewer
b.2.3.2.2. by the evaluation component

b.3 Review Process:
b.3.1 Paper (supposed to be sent by the ReviewerMgr to the reviewer) reception missing

the deadline: Time-related mismatch
b.3.1.1. Probable Origins :

b.3.1.1.1. propagation of b.2.1
b.3.1.1.2. connexion loss (between the ReviewerMgr and the orchestrator,

between the orchestrator and the ReviewerSide service, or between the
ReviewerSide service and the reviewer)

b.3.1.1.3. failure or crash of the ReviewerMgr
b.3.1.1.4. failure or crash of the ReviewerSide service

b.3.1.2. Detection:
b.3.1.2.1. by the reviewer (all cases)
b.3.1.2.2. by the ReviewerMgr (if connection loss between the ReviewerMgr

and the orchestrator)

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 107

b.3.1.2.3. by the evaluation component (if reviewerSide service crash or

failure or connection loss between the orchestrator and the

reviewerSide service)
b.3.2 Report (supposed to be sent by the reviewer to the ReviewerMgr) reception

missing the deadline : Time-related mismatch
b.3.2.1. Probable Origins :

b.3.2.1.1. report not sent by the reviewer
b.3.2.1.2. connection loss (between the reviewer and the reviewerSide service,

between the reviewerSide service and the orchestrator, or between the
orchestrator and the ReviewerMgr)

b.3.2.1.3. failure or crash of the reviewerSide service
b.3.2.2. detection :

b.3.2.2.1. by the reviewerMgr (all cases)
b.3.2.2.2. by the evaluation component (all cases)

b.3.3 Report not related to the paper (paperId and report are not consistent): argument-
related mismatch

b.3.3.1. Probable Origins :
b.3.3.1.1. the reviewer (confusing two assigned paper ids)

b.3.3.2. detection :
b.3.3.2.1. by the ReviewerMgr (if it is implemented to do so)
b.3.3.2.2. by the author

b.4 Decision and notification :

b.4.1 decision (made by the SubmissionMgr and supposed to be sent to the Author)
missing the deadline time-related mismatch

b.4.1.1. Probable Origins
b.4.1.1.1. propagation of fault 2.2.1
b.4.1.1.2. connection loss (between the SubmissionMgr and the orchestrator,

between the orchestrator and the AuthorSide service, or between the
AuthorSide service and the Author)

b.4.1.1.3. chairman did not take it
b.4.1.2. Detection :

b.4.1.2.1. by the author
b.4.1.2.2. by the evaluation component

b.5 Final Paper :

b.5.1 Final paper reception (supposed to be sent by the author to the ApprovalMgr)
missing the deadline Time-related mismatch

b.5.1.1. Probable Origins :
b.5.1.1.1. the author did not send it
b.5.1.1.2. connexion loss (between the Author and the AuthorSide service,

between the AuthorSide service and the orchestrator, or between the
orchestrator and the ApprovalMgr

b.5.1.1.3. crash or failure of the AuthorSide service
b.5.1.2. detection :

b.5.1.2.1. by the ApprovalMgr
b.5.1.2.2. by the chairman
b.5.1.2.3. by the evaluation component

Figure 59 gives, following the presented mismatches decomposition, a classification of the
previously described mismatches of the cooperative review system.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 108

Figure 58 :QAC contract parameters

Functional Mismatch:

Mismatches not

related to QoS

parameters: e.g.

b.1.3,b.2.1

QoS Mismatch

Generic QoS:

Availability.

Security.

Response Time.

Throughput.

Application-specific QoS

Time Related QoS:

Related to applicative

time constraints. e.g. :

b.1.1,b.1.2,b.1.4,b.3.1,

b.3.2,b.4.1,b.5.1

Conversation Related QoS:

Related to conversational

protocol constraints.

Argument Related QoS

Related to parameter

domain input and validity

e.g.

:a.1.1,a.1.2,b.2.2,b.3.3

Semantical Mismatch:

Related to the semantic of

methods and inputs: e.g.

a.1.1,a.1.2

Mismatch categories

Order Related QoS:

Related to applicative

time constraints.

Figure 59 : Cooperative review Mismatches classification

Provider

Author Side
Web Service

Consumer

Provider

Conference Side
Web Service

Consumer

Provider

Reviewer Side
Web Service

Consumer

QoS
requester

QoS
requester

QoS
requester

QoS
requester

QoS
Provider

QoS
Provider

QoS
Provider

QoS
Provider

Conference deadline: a.1.1
Conference Topic: a.1.2
Notification Deadline: b.4.1
Reviews Number: b.2.1
Reviewers Expertise: b.2.2
Ack inscription deadline:b.1.1
Ack submission deadline:b.1.2

Submission Deadline: b.1.4
Final paper Deadline: b.5.1

Reviewer Skills
Report Deadline: b.3.2
Argument Validity: b.3.3

Paper Reception: b.3.1
Argument Validity: b.2.3

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 109

3.2.4 Diagnosis process

The proposed architecture, illustrated in Figure 60, distinguishes three architectural levels:
“Orchestration and QoS Monitoring Module”, “Diagnosis and Recovery Module”, and
“Reconfiguration and Repair Module”.

• The first architectural level is the “Orchestration and QoS Monitoring Module”
(O&QoSM). Each pair of web service requester and web service provider is associated
with a pair of QoS evaluation and QoS metering components. The monitoring components
may be implemented on the provider-side or on the requester-side, or distributed on both
sides. These components may store QoS information in journals for off-line diagnosis.

• The second architectural level deals with processing QoS mismatches for fault diagnosis
and with decision related to Recovery. It is named the “Diagnosis and Recovery module”
(D&RM). Different architectural and algorithmic choices may be done for implementing
this module. In the first case, a unique diagnoser will centralize collecting QoS
mismatches from all the QoS evaluators for different WS requesters and different WS
providers. Other choices are possible: a diagnoser may be associated for a unique WS
provider, or for a group of WS providers related to the same application, or having the
same role in a given application, etc… Hierarchical distribution may also be considered.

• The third architectural level deals with performing the repair and reconfiguration actions
with decision related to recovery. It is named the “Reconfiguration & Repair Module”
(R&RM). This part needs an additional work to provide appropriate abstractions for
reasoning about the different choices for implanting this module. LAAS-CNRS will work
on this part.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 110

Figure 60 : General architecture for diagnosis and reparation

The diagnosis process relies on the detection of QoS mismatches. The QoS evaluation and
metering processes analyze the conversations between web services, and fire observable events
when mismatches are detected. From the diagnosis point of view, these processes behave like
logical probes, filtering the network activity into a pertinent sequence of events. In some cases this
sequence of events may need to be compared with other sequences recovered by other QoS related
processes in distant sites in order to establish proper diagnosis.

Orchestration and QoS Monitoring

QoS
evaluation

Diagnoser

Orchestration
process

WS

Provider

QoS
metering

WS
Requester

Recovery
action

selector

Structural
reconfiguration

module
Behavioral

reconfiguration
module

Substitution /
Replication …

managers

Service &
component &

binding dynamic
creation/removal

module

Attribute tuning module,
QoS contract revision

“Target Architectural elements”

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 111

The Diagnosis and Recovery architectural elements are included in the “Diagnosis and Recovery
module”. This module is compound of the “Diagnoser” component which is in charge of
collecting and analyzing QoS mismatch events transmitted by the QoS evaluation component. It
executes an algorithm that allows it to decide if there was a “fault” behind the observed QoS
mismatch(es) and to identify the origin of this possible “fault”. The diagnoser may react by telling
the evaluator that there is no fault and that the response is acceptable and must be transmitted to
the requester. If the diagnoser estimates that there is a fault, it contacts the recovery action selector
(RAS).

Figure 61 : Proposed architecture

The methods and algorithms used to perform diagnosis depend on the information available in
each implementation site. Nevertheless, the approach described in [Ardissono, Console & al.] may
be of interest whatever the implementation imposes, since it offers the possibility to establish QoS
parameters dependencies between several conversations involving different web services. For
example, the mismatch due to a delay for the paper reception by the reviewer may be due to a non-
assignment of this paper to any reviewer. Hence the variable “date of paper transfer” is elaborated
by the ReviewerMgr in function of the date of this paper’s submission. An incorrect value for the
former can result of an incorrect value of the latter, or of an incorrect computing.

In some cases, the repair action will involve QoS contract modifications, like for example, a
deadline report. A QoS mismatch may also result of an inconsistent or out of date QoS contract, it
is then important that the O&QoSM keeps track of past reconfigurations for the diagnosis process.

The diagnosis process will not aim at the same precision in internal or external perspectives. In the
first case, it is necessary to establish exactly which fault occurred (discriminate), whereas in the
second case, knowing in which web service it occurred suffices (isolate). When an inscribed user
does not send a paper before submission deadline and the responsibility is clearly affected to the
AuthorSide service, discriminating the user not sending, failure, and crash cases only in internal
perspective.

According to the information provided by the diagnoser, the RAS may take two kinds of decisions:

Diagnoser

Orchestration and QoS Monitoring WS
Requester

WS
Provider

Reconfiguration & Repair Module

Recovery
action

selector

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 112

• In the first case (for example the fault is not critical or is evaluated as transitory), the RAS
tells the QoS evaluator to throw an exception that will be caught by the orchestrator. The
orchestrator reacts by retrying the invocation.

• In the second case (the fault is critical),
o the RAS, first, contacts the R&R module for reconfiguration of architecture &

behavior,
o then it sends to the orchestrator a sequence of “recovery actions” (new requests for

example) to process the request that has failed. The orchestrator executes these
actions and collects and sends the resulting responses to the end service requester
(ESC).

It may be possible that repair succeeds and will be helpful for future requests but past requests
cannot be compensated. In this case, it throws an exception towards the orchestrator. The
orchestrator forwards it the ESC. These scenarios are described as sequence diagram in Figure 62.

Figure 62 : Sequence Diagram for diagnosis and repair

3.2.5 Repair stage

There are two kinds of repair actions generated by the D&R module:

• Structural reconfiguration actions (SRAs) which consist in :
o substituting, replicating, wrapping, adding, or removing services and components,

on the provider-side, and/or
o binding, unbinding or rebinding components and services to each others.

• Behavioral reconfiguration actions (BRAs) may be achieved by :
o tuning attributed of components, QoS parameters of services while this is possible,
o when tuning is not possible, a QoS contract may be revised (acceptable

degradation will be defined). This leads to modification of the evaluator
parameters.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 113

The repair actions are performed on the “Target Architectural elements”. The SRAs affect mainly
the provider-side only for creation/removal actions. BRAs affect the provider-side as well as the
orchestrator module, and the D&R module.

 Figure 63 : Diagnosis and Recovery module

3.2.6 Evaluation and conclusions

Two different design options are possible.

In the first case, we can devise the whole system so that the orchestrator and the WS requesters are
aware of the diagnosis and repair/recovery intermediates. They even may be involved in the
diagnosis and repair/recovery processes. The QoS evaluator and metering components may be
implemented at the applicative level as part of the orchestration process or the requester and
provider sides.

o The advantages :
� repair, recovery processes may be simply designed

o The disadvantages of this kind of design solution are:
� loss of modularity. Changing/Updating of QoS managing components will also

lead to modifications in the orchestration process

Diagnosis and Recovery Module

Structural
reconfiguration

module
Behavioral

reconfiguration
module

Substitution /
Replication …

managers

Service &
component &

binding dynamic
creation/removal

module

Attribute tuning module,
QoS contract revision

“Target Architectural elements”

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 114

In the second case, we can devise the system so that the orchestrator and the WS requesters are
totally unaware of the diagnosis and repair/recovery intermediates. The QoS evaluator and
metering components may be implemented as interceptors at the SOAP level.

o The advantages of this kind of design solution are :
� genericity: the workflow of the orchestrator is not affected by handling QoS,

Diagnosis, repair and recovery
o The disadvantages :

� repair, recovery processes may be more complex

Elaborating architectural abstractions is useful and may be driven by two requirements at the
design and the diagnosis level:

� Optimise the diagnosis process and minimise the reconfiguration statement at the
level of repair processes. This would allow reasoning on reconfiguration actions at
a high level of abstraction.

� Optimise the design process and maximise genericity for the reuse of architectural
elements.

General Discussion

The following notations are used in the sequel:

FS: Foodshop example,

CR: Cooperative Review example,

TS: Travel Services example.

The three examples seem to be of equivalent interest. They cover different kinds of application
domains. They were developed addressing different but complementary functional characteristics,
namely cooperation [CR], coordination [TS] and orchestration [FS].

Their functional descriptions consider different but complementary specification details (internal
behaviours [FS, TS] vs. external interaction [CR]), specification levels (abstract [FS] vs.
operational [CR], design-time [CR] vs. run-time or deployment [TS],) and specification points of
view (business process described by complex workflow diagrams involving human and software
actors [FS,TS] vs. cooperation process described by complex interaction sequences between
software components [CR]).

The non-functional descriptions also consider different but complementary specification details for
symptom characterisation (transactional properties [TS] vs. ad-hoc properties [FS] vs. QoS
contracts [CR]), specification levels of diagnosis and repair (operational management architecture
for reconfiguration based on dynamic adaptability [CR], mechanisms for global state consistency
management based on transactions [TS], process-specific corrective actions [FS]).

Detailed Comparison

• The examples are specific instances of more general activity templates that cover two
kinds of application domains:

o The “supplier/consumer chain” [FS,TS]. This domain of activity is a good
application domain in general. It is considered by several projects and

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 115

publications. It becomes a more challenging activity domain with the cooperative
characteristics between the actors. Recent research efforts go in this direction.

o The “cooperative design review” [CR]. This kind of activity belongs to the more
general “Engineering process”. The “review step” is an intermediate step between
the “design step” and the “production step”. It has been considered in different
projects such as IST-DSE for aerospace industry. It is also addressed in different
research works, namely for system engineering, and software engineering.

• Different complementary functional characteristics are addressed by the present
descriptions (namely for monitoring and Diagnosis / repair):

o coordination-oriented, transaction-guided, rollback-based repair : [TS]
o cooperation-oriented, contract-guided, reconfiguration-based repair : [CR]
o orchestration-oriented, scenario-guided, ad-hoc repair: [FS]

• Different complementary specification points of view and detail levels are addressed by
descriptions:

o “Business process” point of view focusing on internal behaviour (workflow) of
system components [FS, TS] / “Cooperation process” point of view [CR]
focusing on describing interaction between system components

o For [CR]:
� an operational description of architecture (modules, components and

connections)
� behaviour (sequence and activity diagrams. Workflow description for

internal behaviours was not provided) distinguishing design-time
elements and run-time elements

o For [FS]:
� Abstract description of architecture is provided.
� presentation and reasoning address the behavioral (BPEL) sequences

o For [TS]:
� High level deployment architecture is provided.
� The description gave the activity diagrams with extended UML notations,

more expressive than BPEL.
o Exceptions and faults:

� For [CR]:

• Specification includes a concrete classification for “faults” by
identifying QoS categories, mismatches leading to exceptions,
and different alternatives of handling/reacting

• For each category, an example where detection may be done was
defined. Cases where only human users can detect, were
discarded in order to respect the self-healing property

� For [TS, FS]:

• Described exceptions belong to “business point of view”: For
[TS], they are of kind: “no available flight”, or “no available
hotel”, etc… For [FS], they are of kind: “parcel items are
wrong”,… For several of the specified exceptions, the detection is
made by the “end user”.

o Diagnosis and Repair:
� For [FS,TS], description addressed business-level compensation: actions

are not seemless, always of kind: “re-ask another transportation means”
[TS], “repeat the reservation for the wrong item” [FS], “ask the
SUPPLIER to send the correct parcel” [FS]

� For [CR], focus was put on operational repair architecture for generic
repair actions by dynamic reconfiguration.

o Complexity of interaction schemas:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 116

� [CR] specification scenarios show explicitly the complexity of
interactions:

• The activity involves different “business-level steps” for each
actor:

o For authors: service lookup, registration, first submission,
final submission.

o For Conf Service: reviewer lookup, assignment of
reviews (bidding) and sending the papers to reviewers,
notifying authors, etc…

o For reviewer: accepting invitation, sending reports,

• For a unique “business-level step”, there is different asynchronous
(“one way”) and synchronous interactions (“request/response”) in
different directions between different pairs of the global WS
actors

� [TS] and [FS] specification scenarios do not show the complexity of
interactions:

• The specified cooperation scenarios are composed of “single”
independent interaction schemas of kind “request and wait”, one
operation by actor:

o From the consumer point of view: I ask for booking [TS],
or for food [FS], I wait the response, (a unique blocking
type of interaction from the client point of view).

o From the provider point of view: contact the “hotel” and
the “transport company” for [TS] (or food supplier for
[FS]) and commit or recover.

Synthesis

It should be possible to cover the different identified issues by each example, but this would
need additional effort for involved partners.

• for [FS] and [TS] : adding cooperation and describe more complex interactions:
o Consider asynchronous steps to implement distributed decisions between actors:

� Different loops of requests:

• User asks for booking/buying,

• the system proposes different solutions,

• the user confirms/cancels -definitely/or not, immediately/or later
with/or without delay- a given choice or asks for modification,
gets back new offers, etc…

o Qos:
� Identify QoS parameters,
� define agreement contracts considering generic, conversation-related and

argument-related QoS).
o Reconfiguration:

� Refine the structural description and identify scenarios involving repair
actions based on dynamic architecture adaptability: substitution,
wrapping, etc…),

o Service discovery step description and analysis (looking and selecting suppliers,
sub-contractors, booking services).

• for [CR]:
o behavioral description:

� Provide the workflow describing the internal behaviours of actors,

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 117

� consider user-level decisions, interactions, exceptions and activity-
specific corrective actions:

• Consider content and semantic-related errors:
o inconsistent content of a review report,
o Confusion in interpretation of terms in selecting

reviewers based on skill key-words: assigning a paper
related to software architecture to urban architect, etc…)

• transactional behavior:
o managing complementary lists for acceptance and

publishing,
o re-assignment of reviews …

o business-level repair actions:
� Replace the reviewer,
� re-send the paper,
� re-assign papers, etc…

3.3 Test Case: travel services

The example is about a a multi-step travel organizer. The scenario involves four kinds of web
services: (i) a customer, (ii) a travel agent service, (iii) an airplane online ticket seller service and
(iv) a hotel booking portal(see Figure 64).

Figure 64 :The architecture of the travel agent Example

The service begins with a customer request. The request has the following semantic : The
customer wants to visit several successive locations; with each location but the first, he associates
an arrival deadline and an earliest departure time. There is no time constraints for the first
departure point. Obviously, for a location, the arrival deadline must be before the departure time.
The travel agent which receives this request has to organize the customer travel planning by
buying the tickets and by booking the hotels if the arrival and the departure times -for a given
location- occur on different days. An instantiation for this example could be, for a professor, the
planning of his successive communications in different conferences all around Europe, in a quite
tight period of time. An example of request in this context could be:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 118

{(location=Paris,date=10/11/05,{}),\\

(location=Turin, date=10/11/05, deadline=12:30),\\

(location=Turin, date=11/11/2005, departure=16:00),\\

(location=Amsterdam,date=12/11/2005, deadline=13:00)\}\\

The rest of the report is organized as follows. In section ... we list, for each service, the set of
atomicactivities. In section 3.3.1. we introduce the used notation. After that we design the
individual behaviors of each service (the WSDL interface and the BPEL process description). In
section 3.3.2 we list the possible faults and we try to trace some corresponding scenarios. The
section 3.3.3, We propose a classification the repairing and reconfiguration tasks types according
to their nature and their design needs, each of them is illustrated by a scenario from the travel
agent example.

3.3.1 Workflow

3.3.1.1 The actors Interface descriptions

In the WSDL specification, a service is described by a set of operations. An operation is described
by an “input” message and/or an “output” message and an optional “fault” message. According
to the WSDL semantics, we present, For each service, the set of atomic operations. For simplicity
purposes, we use the following BNF notation, instead of XML:

grammer WSDLoperation::= <operationName> ''['' ("?" <message_name>[,"!"

<message_name>])| ("!"<message_name>[,"?" <message_name>]) ["Exp : "

message_name>] "]"

?: input message\\

!: output message\\

Exp: Exception message \\

example divide[?oprand, !result, Exp: byZeroException]

The Figure 65 represents a graphical representation of a WSDL operation. use also a graphical

representation of a wsdl opération

Figure 65 : Graphical representation of a WSDL operation

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 119

3.3.1.1.1 The customer

The customer Agent service is the portal of the whole service. It offers a set of accessible
operation to human user (see Figure 66).

Figure 66 : Cutomer WSDL interface

GetItineraries[!UserItinerary, ?listofFlightPlan]

 The customer formulates its request by specifying the list of locations and the dates windows.
This message is sent to the Travel agent Web services. The travel agent web service sends back a
set of possible flight plans satisfying the customer requirements. An empty list means that the user
itinerary constraints cannot be satisfied.

ChooseItenerary[!IteneraryID, ?listofHotels, Exp: ?problemOfBooking]

After receiving the list of itineraries, the user can, according to the specified criteria, choose the
most appropriate. After receiving the user selected itinerary, the travel agent web service composes
and sends to the user a set of possible solutions for the hotels according to the geographical and
time constraints for the transport solution. An exception can be raised by the travel agent if a
problem occurs while booking the Flight composing the choosen Flight Plan.

NoValideItenary[!novalidItenaries]

Here we introduce a possible checkpoint by offering to the user the possibility to raise an alarm if
the solutions offered by the previous operation do not respect her/his constraints.

chooseHotelSolution[!HotelsID, ?Cofirmation, Exp: ?problemOfBooking]

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 120

After receiving the list of hotel solutions, the user can - according to her/his criteria - choose the
suited one. The travel agent either sends a confirmation message containing an ID and a password
for the Flight tickets and the Hotel book or raises an exception if the hotel reservation failed.

NoValidHotels[!novalidItenaries]

As for the itinerary operations, we introduce a possible checkpoint by offering the user the
possibility to raise an alarm if the solutions provided do not correspond to the transport plan.

3.3.1.2 The travel agent

Here we present the atomic operations which compose the travel agent services. We presents only
the operations exposed by the service to the customer service partner (Figure 67).

Figure 67 : Travel agent WSDL interface

3.3.1.2.1 From the customer point view

PlanTransport[?setOfStep,!setOfFlightPlan]

 This operation is visible for the customer. It receives the specification of the itinerary (steps and
time constraints) and returns a set of flight plan propositions (possibly empty).

NoValidSolution[?noValidesolution_Mess]

 This operation can be invoked by the customer if the proposed Flight Plans or hotel plan do not
correspond to the time and locations constraints.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 121

PlanAccomodationForAFlightPlan[?FlightPlanID, !setOfHotelPlan, Exp: ?Bookingproblem]

it receives the user choice (itinerary) and - according to the flight plan – the service, using the hotel
service, tries to compose a set of hotel solutions. Before composing a hotel solution the Travel
agent tries to book the list of Flight. Tow case are possible, either its succeeds then its aggregates
the result of the hotel portal services, the agent send a list of hotel solutions, or it fails then an
exception is raised.

ConfirmItenerarySolution[?HotelPlanID, !confirmationMessage, Exp: ?Bookingproblem]

It receives the hotel solution chosen by the user. The travel agent tries to book the list of Hotels.
Tow cases are possible: (i) either its succeeds then it sends to the user a confirmation message
containing its personnel information about the Flights and the Hotel booking (ii) or it fails then an
exception is raised.

3.3.1.3 The airplane ticket service and the hotel service

Figure 68 : Hotel/Flight WSDL interfaces

These services have similar set of operations. The “*” represents here "flights" and "hotels". See
Figure 68.

get*List[?step, !listof*]

operation offring the possibility of consulting airline ticket and the hotel available offers.

book*[?*ID, !confirm*bookID, Exp: *bookingExcep]

It allows to the travel service for booking the customer choices. The operation can raise an
exception if the product is not available any more or has a wrong ID etc. Booking problem
exception is a class of exceptions which can occur within these operations (see section

Exceptions).

Unbook*[?unbook*]

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 122

it offers the possibility to unbook a flight or hotel. This operation is useful for the case of customer
cancellation or if no hotel solution was found.

3.3.1.4 The actors process descrptions

In this section we present the behaviors of each actor. We describe there processes using a specific
codification of the BPEL4WS using UML activities diagram constractor. The Figure 69

summarises the way that we translate BPEL4WS artefacts using activities diagram constructors.

Figure 69 : Notation UML vs BPEL constructors

3.3.1.4.1 Customer process

The customer begins its interaction by sending the itinerary description to the travel agent. Then it
receives a list of transport solutions (flights, companies, dates and times, costs, etc.). If the list is
empty, the interaction ends; otherwise, the customer gives the control to the user. The user can
choose a transport solution or detect a wrong plan according to her/his constraints. In the latter
case the interaction ends. Here we can imagine that the "noValidFlightPlan" Message is a possible
alarm.

When choosing a Flight plan, the user receives either a list of hotel solutions or a message
indicating that one (or more) of the flights composing the plan can not be booked (no more
available seats) or if a problem occurs within the IDs, etc (see Exceptions section). The interaction
ends. Similarly, when receiving the hotel list, the user can choose a solution or raise an alarm
when the hotel solutions do not correspond to the flight plan (additional or missing day in a hotel,
a step without a hotel solution, etc.). If the list is empty or the customer raises an alarm the
interaction ends otherwise the customer receives a message either confirming the booking or

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 123

indicating that a problem occurred within the booking action. The Figure 70 represents the
customer behaviour activities.

3.3.1.4.2 The travel agent process description

The service is instantiated when it receives an itinerary request from the customer. The service
decomposes the description into a set of flights and asks the airline ticket service for the flights
list. For each location and a date constraints (get flight from Paris to Turin for date1 when the time
of arrival is less than t1). When it receives the list, the travel agent tries to compose a set of
solutions according to the internal criteria (cost for example, minimum of stopover). The list of
itinerary solution is returned to the customer for choice. The customer can have one of the three
behaviours:

� (i) ends the interaction (when the list is empty), the travel agent ends too.

� (ii) raises an alarm, the travel agent can here introduce a diagnostic process and ends the
interaction. We can also imagine the possibility of reconfiguration once the fault is localized,
etc.

� (iii) sends an itinerary ID. The travel agent tries to book the list of flights composing the
itinerary solution. Two cases are possible :

� At least one flight cannot be booked, a message is sent to the customer service to
inform it that a problem has occurred while booking. The cause of the booking failure
can be a wrong data or the unavailability of places. In the first case a diagnosis process
can rectify the fault while in the second case a reconfiguration solution can be used.

� When the booking action succeeds, the travel agent asks the hotel service for each
night the itinerary contains. According to the flight plan solution a set of possible hotels
is sent to the customer for choice. The customer response can be analogous to the flight
plan choice process (empty list, choose one, or send no valid solutions).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 124

Figure 70 : The Customers BPEL process

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 125

If the customer chooses a solution, the travel agent tries to make the booking. If the booking
succeeds, a confirmation message is then sent to the customer otherwise the travel agent
"unbooks" the flights list and sends to the customer a message informing that an error occurred
while booking the hotel. The Figure 71 represents the travel agent process behaviour.

3.3.1.4.3 The hotel and airline process description

The hotel and airline services are quite similar. They are composed of three independent
operations. The first allows for consulting the databases to answer to a request (list of flight or list
of hotels). The second offers an operation of booking a flight or a hotel place using the product ID.
This operation can raise an exception if a problem occurs. The third one is an "unbook" operation.
In this version we present the services behaviour as a simple web service but we can imagine a
complex interaction process e.g (i) get the offers (ii) wait for a booking operation and (iii) if it is
not booked in a period of time the product is released and we can suppose that if a booked one is
not unbooked within an other period (a day for example) then the service persist it.

3.3.2 Exceptions

First of all, we emphasise some points: (i) the example involves only Web services: there is no
human intervention. (ii) The final output is not a physical action (independent from the service
execution), but a confirmation message, an on line diagnosis is thus possible. (iii) The customer in
our service is solicited more than once so it is involved in the interaction and it can be a source of
faults.

During the description of the services and their behaviours, we pointed out a set of specific
messages which can be considered as possible alarms. Four types of message are considered here:

� No valid Flight plan : message raised by customer to signal that the flight plan does not meet
its requirements.

• No valid Hotel solution : It is raised by the customer to signal that the Hotel solution does not
correspond to the chosen flight plan.

• Flight booking exception : This type of message corresponds to a set of fault types, it is first
raised by the airline services and sent to the travel agent. This message occurs while the travel
agent tries to book a flight which does not exist or it is not flagged by that instance. The same
type of exception is raised by the travel agent to the customer.

• Hotel booking exception : It is raised by the Hotel service and sent to the travel agent. This
message occurs while the travel agent tries to book a Hotel which does not exist and or it is not
Flagged by that instance. As the previous one this exception leads to the propagation of an
exception to the customer.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 126

Figure 71 : The travel agent process behavior

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 127

3.3.2.1 No valid Hotel and Flight plans

The interaction is about itineraries which are complex structures that obey to a certain logic. The
different steps must be a sequence of different towns. The time windows must be totally ordered
and non overlapping etc. While the travel agent constructs a flight plan using basic information
from the airline service, some faults may occur. So, let we consider that the customer, after
receiving the list of flight plans, it detects that the plans are note valid. At that point of the
interaction, only three parts are involved: the customer itself, the travel agent and the airline ticket
seller service. Here are possible classes of data faults which can be raised at that point.

Missing or additional steps in the itinerary

The cause of such faults can be multiple and each of the three involved services can start a local
analysis of log files in order to have an idea about its implication. Here are the possible causes of
faults by involved actor:

• The customer can be the faulty if it expresses wrongly its itineraries message.

• The travel agent can be faulty in two possible cases:

• While decomposing the itinerary : The travel agent try to extract from the Customer
request a set of steps [departure town , arrival town, departure date window, arrival
date Window] for each step it tries to extract independently all the possible flights for
each step. It composes, for each step, a request and invokes the Airline service. At the
end of this process, the travel agent has, for each step, a set of possible solutions. A
set of faults may then occur: (i) it can express a wrong date window. (ii) it can miss one
(or several) step(s). (iii) it can mix data of two steps.

• While composing the solution : from the list of solutions, the travel agent tries to
sequence a Flight plan.During the composition, some faults can happen: (i) it can
choose two solutions with very closed or overlapped dates. (ii) it can compose a plan
with two solutions of one step. The fault which can happen here could be the result
either of a bad algorithm or of a consequence of a propagation of the previous faults. In
the second case, the fault must be identified as a result of previous faults i.e. the context
of the fault has to be correctly established.

• The Airline service can be faulty if it has a data base problem: it returns for given steps request
a wrong list of solution by changing the town or flight outside the requested date windows.

Missing or additional nights in the hotel solution

The hotel solution construction is based on the user Flight plan chosen by the user and the hotel
offered by the hotel Portal to construct solution. The diagnosis of this fault lead in addition to the
diagnosis of the travel agent actions (constructing the list of nights, merging the results to
construct a proposition etc.) and the Hotel portal service response, the diagnosis of the flights plan
construction which mean that all the interaction and all the services are involved during the
diagnosis process. The possible causes of a wrong Hotel solution are:

• Bad Flight plan the fault may occurs during the construction of the flight plan and the it
doesn't be detected before. In that case, all the services are involved and the lists of possible
faults listed befor are considered.

• The travel agent the set of Hotel requests are constructed by the travel agent according the
flight plan. As the flight plan the travel agent can make errors while constructing the list of
hotel requests. its can make error while aggregating the results of the hotel portal service.

• The hotel portal data base fault the hotel service could execute wrongly the request of the
travel agent. we can imagine that it returns a wrong hotel in a wrong place or booking one
additional night or a wrong date window.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 128

3.3.2.2 Hotel And Flight booking Exception

These exceptions are raised respectively by the Airline and the hotel services. Booking Exception
can correspond to a class of faults. Here are the set of such exceptions and the possible causes.

Data base error

This instance of exception are not diagnosable since it is caused by a crash of the data base.

No such Flight or Hotel ID

The data sent from the travel agent to book a flight do not correspond to an entry of the services'
data bases. The causes of this fault can take source either in the travel agent which deteriorates the
Identifier or in the Airline and hotel services which changed the data base entry despite of the flag
puted for this entry during the consultation process.

3.3.2.3 Behavioral faults

This Kind of faults is detected by a non valid exchange message sequence. First of all, we must
distinguish two types of behaviour faults (i) behavioural faults which result from a bad protocol
engineering (ii) behavioural faults which can be resulted from a fault and thus can be interpreted as
alarms. Here, we don't take into account engineering problems. We suppose that the overall
choreography schema is correctly designed (e.g no deadlock problems), so we consider only
behavioural faults resulting from data faults.

The behavioural faults considered here are the result of a set of monitoring properties according to
business logics. The properties express some rules of the services process evolution according to

the handled data values.

For a given sequence δ of possible events (δ =e1,...,e_n) and a set of predicates ψ(υ) (where ψ is a
set of predicates and υ is a set of variables : events, messages or local data), the services must
behave as ρ.

We use this notation for this type of rules the notation is influenced by the CTL logic wen we
expresse a classe of a set of sounf sequences and states according to a set of executed actions:

[δ]: ψ(υ) → ρ

Within our travel agent service we can imagine this rule for example :

let δ1=!itinerariesMessage,!ListOfstep,?listOFlightStep,!ListOfFlightplan

δ1: EmptySet(ListOfFlightplan) → 0 \/ δ1: EmptySet(ListOfFlightplan) → τ*

which means that after sending the list of possible flight plans to the customer, if this list is empty
then the only possible behavior of the travels agent is the termination.

We distinguish two subtypes of behavior faults; (i) local behavioral faults and global behavioral
faults. The former is the result of a non valid sequences of messages according to a set of local
business rules while in the second type each local sequence is valid (projection) but the
composition (interaction schema) is not valid according to a set of cooperation rules.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 129

3.3.3 Diagnosis and Repair stage

Face to the listed faults and while most of them are detected during the execution of the
interaction, the diagnosis process can be done on-line and thus we can imagine for each type of
fault a set of reconfiguration or repairing scenarios. According to the fault type we can distinguish
three types of repairing actions.

3.3.3.1 Compensation actions to reach the services purpose

This type of repairing action concerns the situation then the service must find other service or a set
of services to repair a fault. In our example this corresponds to the situation when no valid flight
message is caused by a missing step in the flight plan. To repair this fault the travel agent can re-
ask the airline service for a flight to the missing step. If no flight is possible we can imagine that
the travel agent, if it is possible, proposes a train transport solution for this step.

3.3.3.2 Compensation actions for a proper termination

 This kind of repairing is about the situation when the service purpose can not be reached and the
interaction terminates negatively. For some consistency consideration (transactions for examples,
data coherence, etc.) the service must coordinates some actions in order to terminate properly by
undoing some performed actions. In our service we can imagine that the final confirmation
message may contain some faults (propagation of one the cited faults (missing step for example)
and that there is no airline or train solution (the pre-cited type of configuration). In this case, the
service must undo all the booking tickets and hotels.

3.3.3.3 Repairing by re-executing a part of the interaction.

Some faults (for example data transmission faults) can be repaired by coordinating a re-execution
of a specific part of the interaction. After detecting the source of the fault, using the coordination
schema and equivalence relation over services states, a possible repairing can be a re-instantiation
of the corresponding behaviours parts in each involved service. The instantiation and the execution
can be made by the supervisors of each service. At the end, they pass the control to their services
instances.

Note here that the three types of repairing need different types of services capabilities. The first
type supposes that the service implements planing capabilities while the second type imposes that
the service knows the main operation and the way to undo them. The last type of reconfiguration is
the most simple as it is possible to implement an algorithms in the supervisors in order to
synthesise the extended behaviours and thus without any change in the services implementation.

3.3.4 Comparison

The travel agent example is about planning a travel. The plan is constructed by first decomposing
the user request and then composing the solution from different data sources. It is true that the
food shop example can be viewed also as a plan construction since processing a command is
processing all the requested products. But the travel agent example presents a set of specific
additional features that can be interesting. We present here its main advantages.

Complexity of the diagnosis scenarios

In the travel agent example two plans are constructed: the transport plan and the accommodation
plan. In the whole process until the transport plan construction, the travel agent presents the same
complexity as the diagnosis scenarios in the food shop example (one has just to replace step by
product). However within the travel agent example, the transport plan – which is a source of faults
as mentioned in the document – is used to construct the accommodation plan. So we have here a
causal relation between two sub-processes of the whole process. This allows more complicated

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 130

diagnosis scenarios as faults in the transport plan can be propagated to the accommodation plan
construction. For example, if a fault (symptom) is detected in the accommodation plan then the
diagnosis scenario can be either a local fault in the hotel plan construction or the result from a
propagation of fault in the transport plan solution. In the latter case the reasoning is deeper than the
reasoning needed for a transport plan fault (and by the same way the faults detected in the food
shop example). Notice also that this causality between activities, viewed necessarily here as
transactions, is present even in absence of faults: undo actions at the level of transport plan have to
be undertaken in case of an impossibility to fulfil a step in the subsequent accommodation plan.

Another important feature dealing with the propagation is the learning aspect. In fact, as transport
faults can affect the accommodation plan solution, it could be very interesting to characterise the
fault by observing the manifestation of the faults causalities at the level of the process, e.g. a
missing step in the flight plan leads obviously to at least one missing step in a hotel plan.

Flexibility: centralised, decentralised and distributed versions

The present version is more suitable for centralised or decentralised diagnosis approach. In fact,
the travel agent Web service centralises the whole process and from this point is similar to the
food shop. In the future we project to design a more distributed version, by dividing the travel
agent into two complex Web services: transport manager and accommodation manager. The
transport manager will try to find all the transport plans and the accommodation manager will do
so for hotels in parallel. They will then interact which each other and the customer in order to
build a travel solution. This version will distribute the travel agent and will make possible
distributed diagnosis and repair. It gives rise also to more interesting fault scenarios involving
interaction between transport and accommodation manager (some have already been identified).

Diversified repair actions

The example is about a spatial-temporal planning and so requires more reasoning about semantic
knowledge. This makes the repair activities more attractive and more interesting. Within the food
shop example the repair activities (by substitution for example) involve Web services that are very
similar to the original Web services (check for another Warehouse Web service for example).
However in the travel agent the repair activities – to deal with a missing step for example – will be
taking a train or renting a car, or it can be a multi-step solution such as train plus car, etc. The
reasoning about the distances and the time constraints will influence the repair activities.

Quality of service and degraded modes

The final product of the process can be evaluated with multi-criteria (number of steps fulfilled in
the global plan, category of flights or hotels, cost, time of transport, etc.), not just black or white,
and we can assume that the service can give only a partial solution (hotel missing at a step, hotel
category lower than requested, dates of a step not exactly coinciding with the requested ones, etc.)
for the travel plan and that the user can accept it. This can be viewed as QoS metrics. All the usual
QoS, dealing for example with the response time, can be added as metrics measurements too.

User interaction for on-line vs. off-line diagnosis

The human user can use the customer agent operations (novalidFlightplan and novalidHotelplan)
to raise exceptions and this at two occasions: after the transport plan and after the accommodation
plan. The fact that the human user, which is involved in different critical steps of the whole
process (three times), can detect faults can be viewed as an interesting source of symptoms in fault
detection. In the food shop example the human user, after having sent his/her command, can react
only when he/she receives physically the products (or the bill) that means after the process ends. In
our example the final product of the process is a message containing the plan details information,
so until the end of the process faults may happen and on-line diagnosis with user information is
still possible. Of course, as in food shop example, the user can also (or only) detect faults after the

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 131

end of the process, for example when he tries to get his ticket and the flight is not reserved or is
cancelled, etc., which can be used for offline diagnosis.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 132

4 General Requirements for the proposed solution

4.1 Requirements for Web Service composition and execution for self-

healing environments

The provided WS Diamond Description language should enable to express:

- General Service aspects, regarding service behaviour, compensability, negotiability,
quality of service, and so on.

- Semantic annotation of services, operations and parameters referring to Web Service
ontology.

4.1.1 General Service aspects

In order to state the requirements for service description, we consider that a Web Service is
modelled as a software component which implements a set of operations and possibly returns
structured data as a result of an operation invocation. A composite service is specified as a high-
level business process (e.g., in BPEL language) in which the composed Web Service is specified at
an abstract level. We refer to abstract Web services as a task ti, while Web Services selected to be
executed are called concrete Web Services. To support adaptive concretization, semantic

annotations to the BPEL process may be defined to specify either intrinsic characteristics of the
process, or requirements by the user of the composite service. As language requirements, it should
be possible to describe both abstract services (see Figure 72) and their materialization as concrete
services or as flexible (that is, adaptable to the run-time requirements) WS-Diamond services.
WSDL extensions are needed in order to address abstract service as well as their instantiations.

In Figure 73, we consider that services have a functional and non functional description and that
they are associated with providers, users (through a delivery channel). A service can be in the
status of “required”; supposing a concrete service has been found on the WS-Diamond network
with best matching characteristics, such concrete service has a public view (published) and a
private view (internal and manageable).

Accordingly, the WSDL extensions are required to describe the public view on the service process
including constraints on parameters, constraints on possible ordering and mandatory order of
operations, and faults. To describe the private view of process, language constructs must be
available to express the quality and local and global constraints, as well as private faults and
compensations actions (derived from BPEL and workflow literature).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 133

Figure 72 :Abstract and instantiated services

Figure 73 : Schema of services environment

In order to define the Service Management Interface (see Section 5, General Architecture of one
WS-Diamond node), the Description Language should provide the ability to perform actions to
manage the service, such as to activate the service, enquiry about its status, modify its parameters,
and so on. Referring to the example in Figure 74, showing a Travel-Service with its operations, a

Abstract
service

Flexible WS-D service
Concrete
service

Composed
(Process)

Simple

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 134

Management Interface provides operations such as State-request/control, Negotiation (to be able to
contract values of parameters e.g., for QoS), or to mange events through a publish&subscribe
mechanism. The QoS characteristics can be described according to a WS-Policy notation, while
the Service behaviour is specified as a workflow of steps.

Figure 74 : A Travel-Service example, its Management Interface, process flow, and annotation for
Quality

In particular, a Negotiation phase should be allowed for the services and their composition. To
such aim, the language must allow the description of negotiation parameters and protocols.
Reference to negotiation handler modules should also be possible. Participation to the auctions is
delegated to negotiation handlers in order to separate business (functional) logic from negotiation
logic. Moreover agents may be reused by describing them as web services (see Figure 75).
Negotiation capabilities extensions are needed. For Negotiator implementation, a WS-
Coordination for negotiation Process should be specifiable.

A Negotiator has two roles: Broker of messages among participants and Controller of protocol
compliance.

Receive

find-travel

Receive

book-travel

Travel-Service

book-travel

find-travel

pay-travel

Receive

pay-travel

behavior

Management
interface

Negotiation intf.

QoS

Events (pub&sub)

State-request/control

QoS characteristics

(WS-policy)

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 135

Figure 75 : Negotiation Handlers

For Composed services, an internal view has to be defined composed services (orchestrated in a
process).

The Service request language constructs should allow expressing User preferences (context
dependent) as shown in the following fragment:

<User name = "XXX">

 <avTimeWeight value = "1">

 </avTimeWeight>

 <priceWeight value ="0">

 </priceWeight>

 <reputationWeight value = "0">

 </reputationWeight>

 <availabilityWeight value = "0">

 </availabilityWeight>

 <dataQualityWeight value = "0">

 </dataQualityWeight>

 <restarTime value = "0.5">

 </restarTime>

 <avTimeConstraint value = "2000">

 </avTimeConstraint>

 <priceConstraint value ="15">

 </priceConstraint>

 <reputationConstraint value = "0.0005">

 </reputationConstraint>

 <availabilityConstraint value = "0.00000001"> </availabilityConstraint>

 <dataQualityConstraint value = "0.01">

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 136

 </dataQualityConstraint>

 <degDurationConstraint value = "20000000">

 </degDurationConstraint>

 </User>

Other management issues regard the Context State, Contracting, Monitoring, and Certification. In
particular, for contract specification (in WSLA language, or WS-Agreement), the following
capabilities should be supported:

• Describe service elements touched by the contract (portTypes, operations,…)

• Report guarantees, recovery actions, penalties,…

• Identify and monitoring third parties.

Related open problems are the aspect of contract parameter and service QoS specification, QoS
ontologies, Service composition, the relation between internal and external QoS, contract
enactment/enforcement frameworks, to provide a description of the module interfaces (manager
service, event notification format,…). Instead rules for recovery actions and mechanisms for their
enforcement should not be provided, since they are left to domain specific applications

Contract violation is itself a fault; moreover, recovery actions should be included in contract
specification, while composition specification should be considered the nominal behaviour of the
system to be monitored (diagnosis). In classical approach, the contract manager enforces the
recovery actions execution. In the WS-Diamond approach, self-healing web services do not need a
centralized service manager.

4.1.2 Semantic annotations

The following semantic annotations to the BPEL specification need be defined:

• probability of execution of conditional branches: for every switch s, the probability of
execution {ps

1, p
s
2, …, ps

NBs} of conditional branches is specified (sumi=1
NBs

 p
s
i=1, NB

s
indicates the number of disjoint branch conditions of s)

• loop constraints: the expected maximum number of iteration NI
l is defined for every loop

l; the probability distribution {pl
0, p

l
1, …, pl

NIl} of the loop number of iterations (sumi=0
NIl

pl
i=1) is specified (pl

0 indicates the probability that the loop is not executed, p1
l indicates

the probability that the loop is executed once, and so on)

• global and local constraints on quality dimensions: global constraints specify
requirements at process level, while local constraints define quality of Web services to be
invoked for a given task in the process. We assume that quality constraints may be
defined on a set of N pre-defined quality dimensions qn. Furthermore, local constraints can
limit the set of Service Provider which can support the execution of an abstract service.

• Web service dependency constraints: impose that a given set of operations in the process is
executed by the same Web service. This type of constraint allows considering both
stateless and stateful Web services in composite services

• user preferences: a set of normalized weights {w1, w2, …, wN}, sumn=1
N
 wn=1, indicating

the end user preferences with respect to the set of quality dimensions

The probability of execution of conditional branches and the distribution of loops number of
iterations can be evaluated from past executions by inspecting system logs or can be specified
by the composite service designer. We assume that for every loop l an upper bound NI

l for the
loop number of iterations is determined. Otherwise, if an upper bound does not exist, the

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 137

process cannot be optimized since infinite resources might be needed for its execution and
global constraints cannot be guaranteed.

Local constraints can be specified for every task by the composed service designer. The end-
user can specify local constraints but only on the public view of the composite service.

Web service dependency constraints are specified by the composite service designer. User
references may be either specified explicitly by the user requesting the service, or can be
implicit in the user profile and therefore the same for all service requests, or not specified at
all. In the last case, all quality dimensions are considered at the same level of preference
giving each dimension a weight 1/N.

Figure 76 shows a virtual travel agency example. To introduce switch and loop probability
distribution they have to be labelled by introducing the BPEL <name> standard attribute.In this
example, a local constraint is introduced on the carRental invocation price and local constraint
limits the set of Service Provider for the flightReservation task. Finally, a global constraints
guarantees that the price of the overall process is lower than 1000 and a global constraint entails
that the price of the reservations of the hotel and the flight is lower than 200.

In the example in Figure 77, constraints for multiple channels are reported. Different global
constraints, local constraints, and user preferences can be associated with different channels in the
user profile. Furthermore, the example introduces Web service dependencies constraints which
entail that the set of task t1, t2, and t3 will be executed by the same concrete service as task t4 and
the task invoked in the while loop.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 138

Figure 76 : A Virtual Travel Agency Example

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 139

Figure 77 : A Multi-Channel Constrained Example

4.2 Requirements for model-based Diagnosis and repair of

Cooperative Web Services

This set of requirements is related to the work package 4 whose goal is to be able to develop a
surveillance platform decicated to web services in order to guarantee that the global behaviour
satisfies the requirements, i.e that the services are available and reliable and that a given Quality of
Service (QoS) is fulfilled. It includes:

- detecting abnormal situations that compromise the quality of service (QoS),

- diagnosing the primary causes of those deficiencies, which can be identified as a faulty
component, a bad communication between two services, an unsuitable configuration of the
network ...

- doing recovery in the best possible way, by reacting instantaneously and adapting the planned
interactions, or by deciding to replacing a faulty component, modifying communication
parameters or reconfiguring the network.

In order to do so, model-based techniques will be used. The challenge is to apply recent results and
techniques developed for monitoring, diagnosing and reconfiguring complex physical systems to
web services networks.

4.2.1 Current trends in model-based diagnosis and repair.

Research on model-based diagnosis developed since the mid 70's and led to several new
methodologies, solutions and applications, mainly applied to static systems. Those systems, with a

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 140

unique non-changing state, supposed instantaneous observations, fault effects visible in the
diagnosis window and no evolution of the system in this window. Associated methods resulted in
timeless descriptions of the systems.

Diagnosis progressively stopped being considered as a subsidiary activity, performed off-line. The
current trend of research, starting from the 90', concerns complex systems and aims at integrating
monitoring, on-line diagnosis and repair in dynamic systems. The idea is to detect, as soon as
possible, every discrepancy between the real behavior of the system and the expected one, and to
react as soon as possible by selecting the repair action to perform, in order to get the expected
system behavior. It allows to alternate diagnosis and repair phases. Taking into account repair
actions often leads to a planning problem [FG92], [SUW93], [NEB93]. A more recent trend is to
focus on reconfigurable systems whose structure can evolve, for instance after a reconfiguration
repair decision.

In order to model such complex and dynamical systems, it has been proposed to represent them as
discrete-event systems that can be formalized by transition systems. Many formalisms have been
proposed such as automata, Petri nets and Markov model, process algebra ... More recently,
decentralized and distributed diagnosis approaches [PEM02], [LAZ03], [PR02] needed for large
systems, have been developed. In this case, diagnosis is performed both in a decentralized way (at
subcomponent level) and on the overall system (e.g. making decentralized diagnosers cooperate).
Still more recently, an extension from distributed systems to multi-agent ones has been explored
[ROB02] and a model-based approach was applied to on-line monitoring and diagnosis of multi-
agent systems [MIC04].

As said before, our challenge in this project is to apply these techniques recently developed for
monitoring, diagnosing and reconfiguring complex physical systems to web services networks.

4.2.2 Model-based diagnosis and repair faced to Web Services

For a long time, diagnosis was only applied to physical systems for which system components and
artifact parts were homologous. Progressively, the focus moved from traditional application fields
to new fields such as economical systems, software, communication networks. Particularly
significant with respect to this project is the application to software diagnosis in which the same
basic technologies have been successfully applied to debug and component-based software.

To exploit the existing techniques to web services networks is a challenging task due to their main
characteristics:

1. They are composite networks, and the global quality depends on the individual quality of each
service but also of the quality of their interactions. We have thus to take into account individual
behavior models for each web service, but the communication models.

2. They are reconfigurable systems, and thus components themselves, their connections, and even
communication protocols may change during the process.

3. They are complex distributed systems. Decentralized/distributed diagnosis approaches appear to
be well-suited to this kind of networks which are not so far away from reconfigurable
telecommunication networks, but a flexible architecture has to be designed so that diagnosis/repair
tasks can be locally and globally handled.

4.2.3 Requirements

The logical organization of the diagnosis and repair task is as follows :

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 141

Figure 78 : The logical organization of the diagnosis and repair task

The first step in WP4 will be to characterize the diagnosis and repair problem and for this, it is
necessary to identify the symptoms which will trigger the diagnosis task (QoS metering and
symptom elaboration), to establish a catalog of all the faults and QoS infractions, and to identify
the set of possible repair and reconfiguration actions.

QoS-metering

The main objective of the diagnostic task is to maintain the best level of QoS in the web service
network. It means that the required QoS has to be well specified in a "quality contract" (SLA:
Service Level Agreement), in order to detect any discrepancy between the current quality and what
was expected. This quality contract usually deals with notions indirectly linked with the service
itself and not necessarily perceptible by the end user: consider, for instance, quality of service at
application, transport or network levels. Then, evaluating the overall QoS (SLM: Service Level
Management) will consist in evaluating operators such as packet loss, bandwidth (in streaming or
burst modes), latency (transport delay) or jitter (latency variations), but also operators defined for a
single web service.

QoS parameters can be classified into the following categories: the generic QoS parameters such
as availability, security, response time, etc.; the application-specific QoS parameters as the input-
output mismatches between the requester and the provider or a conversational mismatch as a time
delay violation.

As a matter of fact, each service is designed for a precise function on which one can rely in order
to describe locally the quality constraints that have to be respected so as to offer an optimal
service. A question which has to be debated is the language which will be used to describe such a
quality contract and its link with semantic annotations.

Symptoms/alarms elaboration

As mentioned above, each web service must be provided with a quality contract expressed in the
shape of constraints. Violating one of those constraints will result in triggering an alarm. The
alarms will be redirected to the diagnoser and/or to a database in order to be treated as effectively
as possible. So we will have to elaborate high-level alarms (or symptoms) which can be processed
by the diagnoser.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 142

These alarms can be classified according to their corresponding occurrence level. We can
distinguish infrastructure and middleware alarms due to failures in the underlying infrastructure
(hardware, network); web service alarms due to failures in service invocation and orchestration
(they are mainly application-specific alarms) and web application alarms due to data mismatches,
actor faults, coordination or choreography failures.

A large part of these alarms are directly related to the QoS-metering task as they can be expressed
as quality contract violations.

Symptoms related to the Food Shop case could be, for instance, the fact that:

(a) the CUSTomer realizes that some ordered item is wrong,

(b) when assembling the package, the WAREHOUSE realizes that it received a

 wrong item from one of the SUPPLIERs,

(c) when computing the bill, the SHOP realizes that the ship cost sent by the

 WAREHOUSE is higher than the expected threshold.

A question concerning the alarms is the transmission language and method to use. In fact, BPEL
already allows to "transport" exceptions, and a solution could be to enrich the BPEL exception
language in order to make it able of treating part of the alarms. Another would be to define an ad-
hoc transmission language adapted to this diagnostic mechanism.

Faults types

We will have to consider two kinds of failures: the individual web service related failures, and the
choreography related failures.

The diagnoser task is to identify failures from a set of symptoms and to find the primary causes
responsible of these symptoms. To facilitate this identification, we can classify these failures as
physical faults (connection loss, network cut, ...), programming faults (bad communication
protocols, ...), human or i/o faults (bad conversions, syntactical mismatch, data cut down, ...). This
failures classification is directly related to the alarms classification as the latter ones can be seen as
observable manifestations of the former ones.

Considering once again the Food Shop example, it is possible to determine the failures that
fathered the symptoms in the previous section:

(a) the WAREHOUSE or one of its SUPPLIERs reserved the wrong item,

(b) the SUPPLIER reserved the correct item but made a mistake updating its

 internal order database, or the SUPPLIER did everything correct but sent

 the wrong parcel to the WAREHOUSE,

(c) the SHOP selected the wrong WAREHOUSE, or the WAREHOUSE itself made a

 mistake in computing the ship cost.

Model and algorithms

The model-based approaches relies on comparing expectations and observations. They rely on a
model which represents in a less or more abstracted way the system behaviour. It can be restricted
to the normal expected behaviour or includes the faulty behaviour. The model design will be one
of the important task in the following. We first have to decide the kind of model we plan to use
(level of abstraction, formalism), to build it and to think about a way of giving means to assist its
acquisition. We will have to distinguish the component model and the conversational model
describing the information exchange between the components. These models are directly related to
the description languages used to describe the web services themselves and their communication

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 143

protocols. For instance, this diagnosis model is clearly related to the behavioural description at the
component level for which dedicated languages exist (as BPEL). In the same way, the
conversation model is certainly related to the orchestration and choreography languages.
However, diagnosis specific information has probably to be added to allow a precise diagnostic
task.

Algorithms will be then specified according to the characterisation of diagnosis, the chosen
architecture, and the model development. The general architecture has first to be decided (see
Chapter 5 for a discussion on this point).

Repair and reconfiguration actions

The definition of repair and reconfiguration actions requires a representation language which
allows the definition of requirements for composite Web services. These requirements specify if
an instantiation of the overall process of interacting Web services is regarded as correct and
complete. Such process requirements have to express functional as well as quality of service
requirements including time constraints. Note, that these process requirements may depend on the
participating actors (e.g. customers or shops may formulate different requirements).

Beside process requirements a description of possible changes of the overall process must exist.
These changes may comprise exchange of services, re-invoking of services, messages to services
(e.g. a request for compensation), structural changes of workflows etc.

The repair and reconfiguration process has to operate on the current state of the composite Web
service process as well as on the planed future process steps. Consequently, appropriate
representations methods for processes and their states are required.

Changes of processes may be associated with costs. Hence, there must be the possibility of
assigning costs to changes and the ability to rank competing reconfigurations and repairs of
processes. In addition to costs we may require the specification of additional attributes which are
associated to Web services and their composition (e.g. the degree of trust in a Web service).

The diagnosis process usually outputs a set of possible diagnoses which explain faulty behaviour.
In order to compute the “best next” repair and reconfiguration actions, the likelihoods of these
diagnoses have to be computed.

Regarding the architecture, we currently do not impose any requirements. Consequently, both
centralized and de-centralized approaches for repair and reconfiguration may be explored.

Finally, all the above mentioned descriptions must be easy to formulate since they have to replace
explicit exception handling. In addition, repair and reconfiguration has to be performed online
which implies satisfying running time behaviour.

4.2.3.1 Requirements for Enrichment of (Semantic) Web Service Description Languages

With respect to the different types of faults as listed in table 1, different levels of fault detection
make different extensions to existing web service and semantic web service description standards
necessary.

• Internal data faults: We have to distinguish between semantic mismatches and other data faults.
To detect semantic mismatches, the web service description needs to be annotated with
semantic datatypes. It must be possible to compare the semantic datatype of the data exchanged
at runtime with the semantic datatype as in the service description. For fault detection at this
level, it is not necessary to have a description of the workflow or interaction model. Existing
semantic web service languages like WSDL-S or OWL-S are suitable for this task and need not
be enhanced further. Other data faults include the violation of implicit constraints. The
description of parameters is often underspecified. For example, if we specify that a certain

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 144

numerical value is meant to be a book price, the fact that the number must be positive is often
omitted. In order to detect data faults efficiently, it is therefore necessary to make these
constraints explicit. We propose to use (semi-) automated learning techniques to address this
problem.

• Application coordination faults: To detect application coordination faults, it is necessary to have
a description of the workflow and the interaction model. While existing languages suitable for
describing workflows such as BPEL4WS or OWL-S are sufficient, it is desirable, with respect
to diagnosis, to extend the workflow description with hierarchical information. OWL-S
provides with the SimpleProcess construct a way how to encapsulate more complex workflows
into a black box. Such a construct similar to the definition of subroutines should be introduced
in the process language used in DIAMOND to allow for hierarchical decomposition.

• Actor faults: With respect to the requirements of the description language an actor faults are
equivalent to application coordination faults.

• Quality of Service violation fault: To correctly detect quality of service violation faults it is
required that the description language contains definitions of quality of service for both a single
service as well as a complex workflow. Some WS-* standards as well as WSOL address the
issue of quality of service. Semantic Web Service Languages also provide slots for quality of
service information, this is the subject of extensive research (e.g. Cardoso 2002). The
description languages used in DIAMOND must support quality of service annotations.

4.2.3.2 Underspecified Descriptions

As opposed to the (usually automated) generation of WSDL descriptions, any additional formal
description of a web service and a workflow process means extra work for the software engineer
or programmer without a direct feedback. This has two implications for DIAMOND: First, good
tool support for the creation of any additional metadata is needed. This issue is partially addressed
by the development of semi-automated tools for the acquisition of markup. The second implication
is that – also when created with these semi-automated tools – this additional metadata will
sometimes be incomplete. It is therefore a requirement that the diagnosis algorithms must be able
to deal with possibly underspecified descriptions. As described above, to diagnose different classes
of faults, different metadata is needed. Depending on the metadata actually present it is required
that the diagnosis algorithm at least provides a fall-back solution (on a different level), if the
metadata is underspecified.

[/VU – 2 Feb.]

4.3 Requirements for design for diagnosability and repairability

Diagnosability and repairability analysis is part of the design stage and is based on models of the
system. Diagnosability analysis provides information about the classes of faulty behavior of the
system that can be diagnosed, which is a mandatory step in self-healing system design.
Repairability analysis aims at classifying the fault situations from which the system can recover.
Both properties can be evaluated at design time and may be involved in the software validation
criteria.

4.3.1 Models for diagnosability and repairability

Diagnosability properties for Web services are related to diagnosability properties on discrete-
event systems. Their analysis is based on a structural and behavioral model of the system which is

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 145

usually represented as a set of event-driven and interacting components and which includes an
observable model (what is observable or not). In the following, we present a set of classical
formalisms for discrete event systems that are used in the literature before introducing several
notions of diagnosability and reparability.

4.3.1.1 Formalism for discrete-event systems

The most classical formalisms for discrete event systems are Petri nets and automata. Both of them
involve the notions of states and transitions. By associating events to transitions, labeled transition
systems or labeled Petri nets are built. Process algebra is also useful to model discrete event
systems and has been used for diagnosability checking.

Figure 79 : Petri net, automaton, and process algebra models of a simple system

When modeling distributed and/or very complex systems, considering the system as a set of
communicating components is necessary; in this case, each component is modeled separately. In
the case of Petri nets, communication is modeled by common places or transitions between several
components. The global model of the whole system is obtained by merging the different nets over
the shared places and transitions. In the case of automata, communication is modeled by common
(communication) events. The global model is obtained by applying synchronous product to all the
system’s components. In process algebra, communications are modeled by synchronized
processes. The component oriented approach is clearly preferred when modeling web services. A
design framework should allow specifying the workflow for only one web service, independently
from other web services.

We distinguish two types of models.

• Transition-based models: the behavior of the system is represented by a set of event
sequences (automata, process algebra). Among these events, some are observable, some
are faulty. This type of model is commonly used to model permanent faults (once a faulty
event has occurred, the system cannot recover from the fault) but is also used to model
intermittent faults (in that case, two events are required at least, one when the fault starts
and the other when the fault ends).

• State-based models: Another approach consists in considering faults and observations as
part of the state (variable states). Transitions are usually labeled with actions or commands
that change the state of the system.

From such models, and with respect to the faults and the observability of the system, it is possible
to express diagnosability in a formal way, and implement methods to analyze it.

P = L.P

L = ((A.B+C)||D).E

Process algebra Labeled Petri Net

A B

C

D

E

Labeled automaton

E

C

C

A

A

B

B

D D D

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 146

4.3.1.2 Notions of diagnosability

The notion of diagnosability gathers a set of properties that define the diagnosis quality that could
be expected from a monitor of the system. Depending on the knowledge and the class of the
monitored system, several diagnosability levels can be investigated.

• Detectability: if the system verifies detectability properties, then the observable behavior
is sufficient enough to detect a faulty behavior of the system. In other words, the monitor
is able to detect if the system is faulty or not with a finite number of observations.

• Isolability: this property means that not only the monitor is able to detect whether a system
is faulty or not but also it can locate the component where the fault has occurred in a finite
time. If the system contains only one component, isolability is equivalent to detectability.

• Identifiability: a fault of a given type is identifiable if the monitor is able to decide after a
finite set of observations that a fault of this type has necessarily happened or not. The
system is said to be identifiable if every anticipated fault is identifiable.

In the case of a single fault type per component, identifiability is equivalent to isolability. In the
case of one single fault type for the whole system, identifiability, isolability and detectability are
equivalent. Therefore, the property that is generally considered in the literature is diagnosability,
and is brought back to identifiability, isolability or detectability given the set of fault types that is
anticipated.

The different faults that may occur in the system are generally gathered in a set of fault types. The
goal of diagnosis is to assess the type of the fault that occurred. This allows the designer to
consider some faults that do not need to be discriminated (i.e. considered as different in diagnosis).
Two faults are said to be discriminable when their belonging to different fault types keeps the
system diagnosable.

Besides the different diagnosability levels, two different definitions are used: strong and weak
diagnosability. Strong diagnosability is a theoretical definition describing the concept, but
experience has led designers to consider a more tolerant definition, weak diagnosability, which is
more relevant from a practical point of view.

• Strong diagnosability: a system is strongly diagnosable when any fault occurrence is
necessarily followed by observables allowing the monitor to detect/isolate/identify the
fault.

• Weak diagnosability: a system is weakly diagnosable when, after any fault occurrence, it
is possible to make the system generate observables allowing the monitor to
detect/isolate/identify the fault.

4.3.1.3 Notions of reparability

To our knowledge, very few works have been published about repairability in discrete event
systems. This subsection presents interesting approaches as a basis for the study of reconfiguration
and repair capabilities in Web Services.

Different approaches [FG92],[CRR91],[GRC04] have been explored to model configurations and
reconfigurations. The reparability notion is generally related to safety: a repair action may not be
safe to perform in any state of the system.

Repairability relies on the possibility to perform some repair actions after the occurrence of a fault.
A system may not be reparable after a fault occurrence for several reasons:

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 147

• No repair action can be provided to get the system back to work

• The system is in a state in which no repair actions can be performed safely, and cannot
evolve to a state allowing repair actions.

Basically, it is possible to distinguish two kinds of repair actions.

• Functional repairs consist in changing input parameter values for some components

• Structural repairs consist in modifying the interconnections between the system
components.

In the context of web services, repair actions may consist in:

• Substituting the faulty component with one or several equivalent one(s);

• Offering reduced services (degraded mode) (and adding new observables?);

• Debug the logical part of the system or repair the underlying physical service;

Some repair actions may be followed by changes in some of the system’s parameter values, e.g.
the type of service, or the quality of service.

Diagnosability levels and repair types are strongly correlated. The decidability of repair actions
relies on the diagnosability level, and conversely: a low diagnosability level may limit the
possibility to implement some types of repairs. Relationships between repair type and
diagnosability are illustrated in Table 5.

Table 5 : Correspondences between diagnosability levels and repair actions

Repair type Diagnosability level

Degraded mode Detectability

Component substitution Isolability

Revision Identifiability

A web service entering degraded mode should always be detected, both by the provider and the
consumers, as dependent services may suffer from the service degradation. Moreover, when a
component only ensures fault detectability, the best repair that could be performed is trying to
keep offering the service even with some degradation.

In order to replace a faulty component with one or more equivalent ones, it is necessary to
determine which component to replace; this repair action thus requires isolability. On the other
hand, when some faults in a component are not discriminable but the component is isolatable, the
best repair action that can be decided is to replace the faulty component.

Finally, in order to perform an efficient revision, it is necessary to have the best information about
the fault. This is what corresponds to identifiability for the diagnosis module.

Internal and external perspectives:

In an external perspective (the monitor does not own the web service(s)), revision is not allowed
for confidentiality reasons. The diagnosis ideal goal consists in isolating the fault in the external
web service. This allows substituting the faulty web service by another one, or relying on its
degraded service if it offers one.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 148

In an internal perspective (the monitor owns the web service(s)), the designer aims at complying
with the security policy, and the ideal diagnosis goal is to achieve the finest identifiability.

4.3.2 Architecture of the supervision system, impacts on diagnosability and

repairability

Web Services are distributed systems and several supervision architectures for diagnosis/repair
may be deployed.

• Centralized supervision: a unique entity is in charge of computing a global diagnosis from
the observations and deciding repair actions on the system. In a centralized architecture,
the flow of observations is global and the set of faults to diagnose is the set of faults of the
system. In this context, the analysis of diagnosability and reparability is global.

• Supervision with a coordinated monitoring system: several entities known as local
diagnosers are in charge of diagnosing one or several components. These local diagnosers
communicate with a supervising entity that is in charge of performing any diagnosis that
local diagnosers may not achieve. There may be several diagnosis levels. The advantage of
this architecture is to provide a ‘divide and conquer’ paradigm (decentralized
computations) by maximizing the local diagnosis computations and minimizing the
coordination. In order to achieve an optimal architecture, the diagnosability analysis must
be performed on subsystems in order to guarantee that some faults can be fully diagnosed
locally (a fault is said to be locally diagnosable or decentrally diagnosable) or with a
minimal coordination. Given this analysis, it is possible to help in the decision of the
placement of the local diagnosers. Local diagnosability is usually a more restrictive
property that requires a better observability of the system (a fault may be globally
diagnosable but not locally diagnosable). Reparability analysis follows the same schema
as diagnosability.

• Distributed supervision: as in the previous architecture, local diagnosers/supervisors
diagnose the system’s components, but in the distributed architecture, there is no
supervising entity. Local diagnosers may communicate between them to reinforce the
diagnosis accuracy. From a diagnosability point of view, the analysis is almost the same as
in the coordinated monitoring architecture. The difference is just a matter of
implementation of the communications between the diagnosers (exchange of messages
between diagnosers instead of exchange of messages with a coordinator). As far as the
reparability is concerned, the supervision is performed locally in coordination with the
other supervisors. In this architecture, an analysis of what can be repair locally or not must
be performed.

From the composition point of view, locally diagnosable web services are safer to invoke, as they
should facilitate the isolation of faults on external web services and allow safe dynamic web
service substitutions.

4.3.3 On-line versus off-line supervision activities for Web Services

The context in which diagnosis and repairs are performed may result in different constraints for
diagnosability and repairability. The most important aspect of the context is whether they are run
on-line or off-line.

On line: the supervision activity is performed on-line; in this case, the supervision system
observes an information flow and must decide repair actions on the fly.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 149

• Diagnosability for on-line diagnosis depends on observables acquired and processed on-
line.

• Repairability for on-line repair relies on the types of faulty situations that can be
recovered on-line, i.e. on the subset of actions that can be applied at run time. Repair is
then performed without interruption of the service provision.

Off line: the supervision activity is performed off-line; in this case, the supervision system reads
observations in a log or journal and decides repair actions with very loose time constraints.

• Diagnosability for off-line diagnosis on observables that can be recorded from the system,
i.e. from historical/logged data.

• Repairability for off-line repair relies on the types of faulty situations that can be
recovered off-line, i.e. on the subset of actions that can be applied off-line. Repair involves
a service provision interruption.

Mix approaches may also be considered: it is possible to achieve different levels of diagnosability
for on-line and off-line diagnosis by storing a part of the observations in a log file, and considered
the other subset at run time. Diagnosability and repairability are mutually dependent as shown in
Table 6.

Table 6 : Consistent situations for diagnosability and repairability

 Consistent situations

Detectability On line On line On line Off line

Isolability / Discriminability On line On line Off line Off line

Repairability On line Off line Off line Off line

4.3.4 Design requirements

This section describes our early approach of the design stage for self-healing web services,
according to the various notions we presented in the previous sections. It explains how taking
diagnosability and repairability into account may involve specific steps in the design procedure.

4.3.4.1 Design procedure

The main input for the designer when analyzing diagnosability and repairability is the safety
policy the system needs to comply with. The designer, when considering these properties, is
brought to answer several questions:

• What is the criticity of each service?

• Which faults must be considered?

• What is the impact of each fault on the services provisioning?

• Which repair actions must be offered after each fault?

• How fast must each fault be diagnosed?

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 150

Answering these questions should lead the designer to choose the supervision architecture, and an
on-line/off-line/mix approach. The design procedure may follow the two following scenarios.

• Safety policy → repairability requirements → diagnosability requirements: in this
scenario, the designer considers the web service safety policy (response time, availability,
exactitude …) and deduces the repair actions that must be available in order to comply
with the policy. This availability involves some minimum diagnosability levels for the
different components.

• Diagnosability levels → repairability constraints → safety constraints: in this scenario,
the designer is faced to diagnosability limits, which make some repair actions impossible
to perform. Some alternatives in this case may be adapting the safety policy to match the
reachable specification, or use additional means to ensure safety (duplicate servers, change
software platform…).

4.3.4.2 Design framework

Diagnosability and repairability require the use of specific tools, which can be provided by a
design framework. This section lists some requirements about the framework for self-healing
systems design.

Diagnosability analysis relies on an operation called projection on observables, which computes,
from the system’s model, the model of its observable behavior. A diagnosability oriented design
framework should allow the designer to specify projected models. This can simply be done by
allowing the designer to define some relations between models, as one model being the observable
projection of the other one.

A repair aware framework should allow the designer to describe model transformations, or to
relate different models, as one model being the result of a repair action performed on the other
model. It should also allow the designer to specify constraints on these transformations, such as
state based preconditions and post conditions. This information could be given as input of a model
checking entity which would evaluate repairability.

4.4 Requirements for semi-automatic acquisition of semantic markup

for Web services

The Semantic Web Services vision of automatic discovery, composition and invocation of web
services requires that each service is annotated with semantic metadata. Emerging standards such
as OWL-S, WSMO or WSDL-S address this topic. However, in order to facilitate for automatic
diagnosis, these annotations are not enough to detect all fault types. First, we have to distinguish
between:

• Faults that can be detected without semantic annotations

• Faults that can be detected with semantic annotations

• Faults that cannot be detected with annotations using existing standards and require extended
annotations

Furthermore, we also have to distinguish between:

� Annotations that describe the functional properties of a single service

� Annotations that describe the non-functional properties of a single service

� Annotations that describe a composition of services

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 151

To learn annotations, we have to distinguish between three sources of information:

- Static information such as existing descriptions in WSDL

- Information that is gathered while a single service is being executed

- Information that is gathered while a composition of services is being executed

Furthermore, we have to distinguish between supervised learning that requires training data that is
annotated by humans or unsupervised learning, also known as clustering, that does not require a
human in the loop and arranges the data in meaningful groups based on a proximity measure. For
the purpose of annotation it is clear that clustering performs less accurate than supervised methods.

Previous work has addressed how to learn abstract functional properties (a) from static information
(i.) in both supervised and unsupervised setups, and messages that are exchanged while one
service is being executed (ii.).

4.4.1 Gathering functional properties from static information

While gathering functional properties from static information can be seen as a special form of
schema matching, web service annotation as a special problem has also already been discussed in
literature.

The ASSAM tool addresses the problem of annotating web services with semantic information
from ontology by assigning classes or properties in an ontology to operations and parts in a web
service. ASSAM treats web service annotation as text classification. Text samples are drawn from
identifiers and comments in the WSDL file and a machine learning algorithm is trained to classify
these texts. Furthermore, ASSAM uses structural information from the web service to improve
classification accuracy.

We propose to develop ASSAM further with respect to the requirements in DIAMOND.

4.4.2 Gathering functional properties from executing a single service

While ASSAM gathers functional properties from the (static) description of a service only, it
ignores a valuable source of information, namely the concrete data that is passed between services.

The OATS algorithm makes use of this information. It uses string matching to aggregate the
output of several web services that have been invoked with the same input. While it is assumed
that mappings for the input parameters of the services exist (this includes conversion between
different formats or even semantic transformations such as unit conversions), the output values are
matched in order to identify equal output parameters.

For the detection of data faults (see above) it is also a requirement that we make implicit
constraints on the data explicit. Knowing the semantic datatype of a parameter is necessary, but
not sufficient. Learning constraints on the data is a requirement for DIAMOND. We propose to
enhance OATS or to devise a new algorithm with similar intuitions with respect to the
requirements imposed by DIAMOND.

4.4.3 Gathering data from executing a composition of services

Both ASSAM and OATS address the problem of generating metadata to facilitate for matching on
the level of (semantic) datatypes, all aspects regarding workflow are ignored. While such semantic
markup is necessary and also sufficient to detect certain classes of faults (see above), metadata on
both workflow but also quality of service aspects is very important in DIAMOND. Therefore, we
propose to explore new ways how to acquire metadata while a composition of services is being
executed. To facilitate for algorithms to harvest data that is being exchanged, it is required that the
messages sent are being logged to be processed offline. An online processing of sent messages is
deemed both unnecessary and unrealistic for two reasons: First, it is unclear how the messages

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 152

could be processed in such a way that metadata could be derived that is of immediate use for the
execution of the service. Only in this case, however, is an online-processing useful. If the metadata
that is being acquired should be used in a later invocation of the service (composition), there is no
need to process messages directly when they are sent. Second, the sent messages will – depending
on the desired level of metadata – have to be annotated. We propose three levels that require
different amounts of annotations:

• Learn Quality of Service constraints: We propose to learn quality of service annotations from
message logs. To accomplish this, the logs will have to be annotated with a flag that signs
whether the invocation was successful and within acceptable limits with respect to the desired
service level or whether the quality of service fell short of expectations. The quality of service
constraints can then be directly learned from the annotated logs.

• Learn abnormality: We propose to learn a classifier that can detect whether an invocation of a
web service is abnormal or not. For this task, we have to distinguish between two cases: First, if
the logs of invocations that serve as training data contain only positive examples (i.e. where the
invocation was successful), an additional requirement for the learning algorithm is that it must
be able to learn a classifier from positive examples only. (Muggleton 1996, Bostrom 1998)
Second, if the logs contain both positive and negative example (i.e. where the invocation
failed), the logs have to be annotated at least with a flag. It is desirable for the classifier that its
internal model can be exported in the form of rules that can be embedded in the web service
description.

• Learn cause directly: It might also be possible to learn classifier that can predict the cause of a
fault directly. For this level of fault detection it is required that the message logs are not only
annotated with a binary ”correct/fault”-flag but also with the root cause. Learning on this level
is considerably harder than just learning abnormalities or quality of service constraints. We
regard this as future work.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 153

5 Preliminary architecture

The architectural aspects are illustrated in the following with respect to the following dimensions:

- cooperation among distributed nodes

- a proposal for an architecture to link diagnosis and repair actions

- centralized and distributed diagnosis architectures

Cooperation among distributed nodes

As shown in the following Figure 80, we envision a global self-healing system in which WS-
Diamond nodes can cooperate with non WS-Diamond node. In addition, each WS-Diamond node
in the distributed architecture might provide only a subset of the modules developed in the project.

Figure 80 : WS-Diamond environment

We assume that a WS-Diamond node may provide self-healing web services or only an
infrastructural support to the self-healing system.

The main modules of a complete WS-Diamond node are:

- a management interface for web services

- a process orchestration engine for enacting composed services

- a repair action selector

- a diagnosis infrastructure

- a fault detection infrastructure (the development of which will be out of the scope of the
project)

The following Figure 81 illustrates how the different modules cooperate inside a node.

WS

WS

BPEL
orchestration

engine

Repair action

selector

Diagnosis
infrastructure network

Non WS-Diamond node

WS

Non WS-Diamond node

WS

BPEL

orchestration
engine

Diagnosis
infrastructure

WS

Repair action
selector

Diagnosis

infrastructure

WS

BPEL

orchestration
engine

Repair action
selector

WS-DIAMOND -

enabled node

Mgmt intf

Mgmt intf

Mgmt intf

Mgmt intf

Diagnosis

infrastructureFailure detection

Failure detection

Failure detection
Failure detection

Failure detection

WS

WS

BPEL
orchestration

engine

Repair action

selector

Diagnosis
infrastructure network

Non WS-Diamond node

WS

Non WS-Diamond node

WS

BPEL

orchestration
engine

Diagnosis
infrastructure

WS

Repair action
selector

Diagnosis

infrastructure

WS

BPEL

orchestration
engine

Repair action
selector

WS-DIAMOND -

enabled node

Mgmt intf

Mgmt intf

Mgmt intf

Mgmt intf

Diagnosis

infrastructureFailure detection

Failure detection

Failure detection
Failure detection

Failure detection

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 154

The diagnoser will be notifies of fault events through messages or events generated by the
hardware/software infrastructure (including the self-healing system itself). The diagnoser identifies
which fault occurred and needs to be recovered. All fault events are stored in a fault log. The
Recovery action selector performs a choice among a set of possible recovery actions associated to
each type of fault as indicated in a fault registry. The selection triggers a recovery action request to
a recovery module associated to the required action.

Figure 81 : Cooperation of modules.

A list of such modules (not all-inclusive) is provided in the Figure 81: substitution to replace
services during the orchestration of a composed service, wrapper generation to change parameters
to solve incompatibility problems during invocation, quality module to perform data quality
checks and improvements (e.g. correct typos or incorrect codings), reallocation module to change
allocation of resources to services.

5.1 Diagnosis architectures

Defining a diagnosis architecture raises a set of important questions:

• What is the nature of a diagnoser?

• What is its relation with the Web service (coupled or decoupled design)?

• What is its relation with partner diagnosers?

• Is it a service offered by the execution environment?

• Is it implicitly or explicitly handled during the service design?

The architecture of the whole environment will depend on the answers to these questions.

In our architecture we separate the Web service definition and the diagnoser definition. In order to
let the Web services useful for both diagnosis and non diagnosis scenarios we consider that the
published diagnosis functionalities are defined in separate Web services that we call Diagnosis
Web Services (DWS). Our architecture considers three types of Web services: Web services
without diagnosis/recovery service; Web services with diagnosis and/or recovery service; and Web
services offering only diagnosis/recovery service. See Figure 82 for the framework model.

In the following we make a proposition of an architecture. The architecture is detailed in different
levels of granularity. First of all we argue why a diagnoser must be itself a Web service and we

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 155

define it in this way as DWS. We present next the interaction between the DWSs and the Web
services in the case of a centralised, decentralised/supervised or distributed diagnosis and recovery
process. Then we discuss the advantages and drawbacks of each approach. The last section gives a
zoom on each Web service execution environment to emphasize the interaction between the
extended modules and the platform components.

5.1.1 The diagnoser is a Web service

Considering diagnoser as a Web service has several design and implementation advantages:

� Interoperability for possibly distributed diagnosis processes. Diagnoser cooperation can be
viewed and designed as choreography between a set of associated DWSs.

� Possibility of on-line cooperative diagnosis.

� Re-usability of Web services Standards for self-healing features description and
implementation. For example we can use WSDL standard to describe the diagnosis operation
offered by a DWS and BPEL to describe its behaviour or WSDL-S to annotate semantically its
goals.

The DWS may differ by the offered services. We define three kinds of services.

• Information service: This consists in a set of operations invoked by partner diagnoser in order
to get information about the service state and logged information for a given instance. This
operation answers a request about the log file content. For example a diagnoser can ask another
diagnoser for branching condition values, etc.

• Diagnosis service: Represents a set of operations dealing with diagnosis activities. The DWS
may perform diagnosis locally or in cooperation with other DWSs (see section below for diagnosis
architecture).

• Recovery service: DWSs can exchange (send and/or receive) information about the recovery
decision or possible recovery strategies and implement them.

According to the chosen diagnosis process architecture and the chosen and recovery process
architecture: centralised, decentralised/supervised or purely distributed, the DWS will need to
provide a combination of the three kinds of services.

Figure 82 : Self-healing Web services framework model

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 156

5.1.2 The diagnosis architecture

In evaluating diagnostic architectures, we will consider both decentralised/supervised architectures
and purely distributed architectures. In both cases, each Web Service that enters as partner in a
Web Service composition may be associated with a DWS. The composition of and the interaction
between the DWSs offered by each partner will depend on the chosen architecture. In the
following we detail the needed capabilities (information, diagnosis, and recoveries) and the
interaction schemas of the DWSs according to the diagnosis architecture. Here are the notations
used:

• Green arrows represent information interactions.
• Red arrows represent diagnosis interactions.
• Blue arrows represent recovery interactions.
• Green, red, and blue databases represent respectively that the DWS offers information,
diagnosis, and recovery capabilities.

5.2 Centralised diagnosis and recovery architecture

In centralised diagnosis/recovery approach we consider a distinguished partner which offers
diagnosis and recovery capabilities that we call DWS Coordinator (DWSC). The composite Web
service may be either a decentralised or a centralised workflow. In the first case we can imagine
that the DWSC is the DWS of the central Web service. In the second case it represents an
independent partner involved only in the diagnosis/recovery cooperation (the supervisor). The
DWS of each partner in the centralised approach offers only information capabilities. They are

Figure 83 : Centralised diagnosis and centralised recovery

used by the DWSC to get information about the associated WS states and messages value in order
to perform diagnosis and repairing activities. The repairing actions are decided by the DWSC,

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 157

which sends to each partner its role in the repairing task. Note that no diagnosis message is
exchanged between the DWSs and the DWSC (see Figure 83).

5.3 Decentralised/supervised diagnosis and centralised recovery

architecture

In the decentralised diagnosis approach the DWS of each partner may perform local diagnosis
activities and give information about its WS states. The DWS may be invoked locally by the WS
itself or by an internal detection mechanism. It can be used by the DWSC (the coordinator is still
present) in order to perform local diagnosis. The DWSC uses the local diagnosis results from each
DWS to decide about the diagnosis (e.g. by resolving local diagnosis conflicts and merging local
diagnoses). The supervisor can initiate itself a diagnosis for certain types of faults based on its own
fault detection mechanism (for example a fault which cannot be detected locally but needs a global
view). The repairing activities are centralised and performed by the DWSC once the fault
localised.

Figure 84 : Decentralised diagnosis and centralised recovery

It sends to each partner its role in the repairing tasks. Note that we can imagine in a decentralised
approach that there is no information messages (green arrows) exchange between the DWSC and
the DWSs (e.g. for security reasons). The Figure 84 represents this decentralised diagnosis
architecture. Note that the recovery task could be also decentralised (see next section), leading to a
decentralised diagnosis and decentralised recovery architecture.

5.4 Distributed diagnosis and decentralised recovery architecture

A distributed diagnosis approach supposes that each DWS holds local diagnosis capabilities and
diagnosis coordination capabilities. Each DWS can perform diagnosis activities in order to ask
another DWS a request or to answer the request of another DWS as well as for internal fault

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 158

detection. The DWS interacts with each other to decide about a common explanation for the fault.
The resulted fault causes are communicated to the DWSC in order to organise the repairing tasks,
in a centralised way as in Figure 84, or in a decentralised/supervised way as shown here. In this
latter case, the DWSC defines the repairing tasks by integrating the repairing information gathered
from each DWS and then it sends to each partner its role in the repairing tasks. The Figure 85

represents the interaction between the DWSs and the DWSC in the distributed diagnosis (and
decentralised/supervised recovery) approach.

Figure 85 : Distributed diagnosis and decentralised recovery

In the same way, nothing prevents a priori to consider also complete distribution of the recovery
process, i.e. a distributed diagnosis and distributed recovery architecture, so without any
supervisor, but this seems to be out of the scope of feasibility in the present technological state of
the art.

5.4.1.1 Discussion about the diagnosis architecture with regard to feasibility

Compromise between decentralised/supervised and distributed diagnosis architecture will have to
be carefully studied w.r.t. feasibility, in particular concerning amount and nature of diagnostic
information to be exchanged between DWSs..

It is worth pointing out that a purely distributed architecture does not necessarily lead to a looser
approach or to local diagnosers having more independence.

In this regard, a supervised architecture has rather some advantages:

• Some diagnoses, and even more some repair actions, can require the coordination of the
activities of different local diagnosers. This implies that a purely distributed approach would be
tightly coupled, since in order to reach an agreement local diagnosers need to exchange a great
amount of information following a complex interaction protocol; on the other side a supervised
architecture could guarantee a quite loose interaction (among local diagnosers), thanks to the
mediation of the diagnostic coordination service.
• Without any coordinator, local diagnosers need a quite large amount of extra knowledge, in
order to be able to handle (complex) interactions with the other local diagnosers; this would

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 159

impose an overload at definition time to all those organisations willing to expose Web services
with diagnostic capabilities, and would probably need them to forsake privacy requirements. In
other words, in order to reach an agreement on a diagnosis, in a purely distributed architecture,
local diagnosers would need to exchange more information than they would exchange with the
coordinator in a supervised architecture. This is due to the fact that the coordinator can obtain a
complete (though very abstract, without the internal private details) picture of what is going on,
which is missing in the purely distributed approach.
• In a purely distributed approach it is hard for local diagnosers to keep track of the correlation
between several different (but logically related) interactions taking place among them. In a
supervised architecture the logical relations between different invocations of a local diagnoser are
handled by the coordinator, and each invocation to a local diagnoser can be independent of the
others from the point of view of the local diagnoser state.

5.4.1.2 The platform architecture

Here we propose our vision of the architecture of a self-healing Web services environment. Some
assumptions are considered:

We consider that the diagnosis and repair tools will be defined for an existent execution
environment. Implementing diagnosis and repair activities is considered as advanced features of
Web services.

The architecture must offer a set of tools to handle diagnosis and repair design aspects. For
example, a by-default diagnoser and repair service.

 We do not make assumptions about the diagnosis algorithm or the characteristics – centralised,
decentralised/supervised, distributed – of the approach. The architecture is general.

 For that, we consider first a generic Web services process execution environment (see Figure 86)
and then we represent the different components of the diagnosis extension and the possible
interactions within the generic environment components.

5.4.1.3 A generic WSP execution environment

The generic architecture represents a set of possible components. This allows an abstract
description of the main execution steps of a WSP. Based on these steps we can sketch, from
control and data point of view, the diagnosis and repairing interventions.

• Compiler: verifies the User BPEL4WS specification.

• Deployer: transforms the User specification in an internal data format. This transformation
depends on the implementation of the BPEL4WS engine. It generates what we call Deployable
Web services process (DWSP) (see Figure 86).

• Communication manager: responsible of the relation between the Web service instances and
their partners (manages both input and output).

• Instance manager: handles the creation and the rooting mechanisms (correlation mechanisms
of BPEL4WS).

• State manager: execution engine. It implements the control semantics of BPEL4WS
constructors.

• Web services invoker: responsible for client management. It executes essentially the invoke
activities for the state manager.

• Data manager: maintains a database and stores different events and data of the WSP life
cycle. It represents the capacity of an environment to register different data at a different level
of granularity. For example, handling the log files and error archives or saving the process
states.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 160

Figure 86 : Generic Web services execution environment

5.4.1.4 The WS-Diamond architectural extension for self-healing Web services

WS-Diamond aims at realising an additional set of tools that can be plugged into existent Web
services execution environment and can provide self-healing features during the design, the
execution and the management of the Web service life cycle. The main features in the WS-
Diamond extension are fault detection, diagnosis capabilities, repairing capabilities. We do not
assume that within one partner all the features are used. We call WS-Diamond node the partner
infrastructure that provides WS-Diamond features as show on Figure 80.

We illustrate in next Figure the cooperation of the different modules inside a node and within the
execution environment main components (the color code green for information, red for diagnosis
and blue for repair is maintained).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 161

Figure 87 : Cooperation of the modules inside a node and with the execution environment

The diagnoser is notified of fault events through messages or events generated by the
hardware/software infrastructure (including the self-healing system itself). Using access to
messages and states logs and to a fault database (all fault events are stored in a fault log), the
diagnoser identifies which fault occurred and needs to be recovered. The recovery action selector
performs a choice among a set of possible recovery actions associated to each type of fault as
indicated in a recovery rules registry. The selection triggers a recovery action request to a recovery
module associated to the required action. A list of such modules (not all-inclusive) is provided in
the figure: substitution module to replace services during the orchestration of a composed service,
wrapper generator to change parameters to solve incompatibility problems during invocation,
quality module to perform data quality checks and improvements (e.g. correct typos or incorrect
coding), reallocation module to change allocation of resources to services. Note that the
substitution, wrapper and Qos modules can either perform direct recovery actions by executing the
recovery actions (e.g the substitution module invokes the new web service by using the Web
service invoker module) or indirectly by changing the Web Services Process instance state (e.g
the substitution can replace in the WSP instance an invoke activities by another one automatically
generated).

We describe in the following a sequence diagram illustrating the interaction between the WS-
Diamond extension modules and the generic architecture ones. Note that the sequence diagram is a
simple example and do not cover all the possible interactions presented in the previous paragraph.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 162

Figure 88 : Sequence diagram of modules interaction

• 1 , 1' or 1'' represent respectively an exception raised by a WSP, an error occurred in the
infrastructure (Inf) and a message coming from the Communication Manager (CM). All
these events are given to the Detection module (Detc).

• The detection module can request the fault Database (Fdb) (message 2) in order to get
more information about the fault event.

• Stored Fault events information (3)

• After identifying the fault event the Detection module (Dect) throw it to the diagnoser
module (Diag), 4.

• The diagnosis module can receive a diagnosis request coming from an other DWS of one
of the partners either for distributed or decentralized case (message 2'). The 2' message can
be an alternative case to all the previous ones.

• The diagnoser either gets access to the fault Database (e.g. case base diagnosis) (message
5), or requests information from other DWS of partners using the DWSP (associated to the
target service instance) (message 7). The 6 and 8 messages represent the response of the
two previous ones (5 and 7). This process can be repeated as necessary.

• The 9 and 10 messages represent the diagnoser output (the diagnosis) for the received fault
event. The 9 is a diagnosis message sent either to the supervisor DWS or to a DWS of one

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 163

of the partners. The 10 message is a possible explanation of the fault source sent to the
recovery module (Rec).

• The recovery module will use the diagnosis output (decision) in order to choose the most
suited repair actions. For that it can ask the recovery Database (Rdb) for recovery rules (11
and 12).

• The recovery module can be requested by supervisor and partner for doing some repair
actions (message 10').

• The recovery module activates one or more of the recovery modules (messages 13 and
14).

• The recovery module can send its repair decision to a supervisor or one of the partners
DWS. It uses the DWS (message 15).

• The selected recovery module can either change the Web service instance state or use the
invoker module (message 16 and 17).

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 164

6 Summary and outlook

This report summarized the work performed and the results achieved in the first part of the project
and corresponding to Milestone M1. In particular we reported on:

- Requirements for self-healing Web Services. We defined that requirements that are guiding
and will guide the work in the project workpackages

- Selection of test-beds. We defined the application scenarios that will be used as test-beds
during the design and testing of the surveillance platform

- Common working environment and standards. We reported on the choices we made as regards
these two aspects, moving from the state of the art and motivating the specific decision and
selections we made.

We also presented a preliminary diagnostic architecture that complement the definition of the
requirements and that is a concrete starting point for the work in the project.

Last but not leas we provided a glossary that summarizes and unifies the terminology adopted by
the Web Services and Diagnosis community, providing the basis for all the future project reporting
and documentation.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 165

7 Glossary of terms

Correct service: identifies a service implementing the designed system functions.

Failure: an event occuring when a discrepancy between the delivered service
and the correct is observable.

Error: part of the system state that arises as a consequence of a fault and may
cause a subsequent failure.

Fault: a malfunctioning in the service execution that can produce an erroneous
state and, as a consequence, a failure.

Fault-Error-Failure Chain: summarizes the relationships among a fault, an
error, and a failure. As shown in Figure 1, when a fault occurs it causes an error
which, in turn, is manifested as a failure. A fault can be either active or dormant.
In the former case the fault produces an error; in the latter case does not.

Exception: notification of failure to a diagnoser.

Error/Failure detection: activity related to the discovery of the error which
cause a failure. It represents the input of the diagnoser and state how the failure
occurs.

Fault identification: one of the results of diagnosis. It defines why the failure
occurs.

Recovery: process subsequent to the diagnosys aiming at providing a dependable
system. It could be either reactive or proactive and may include repair
actions. Reactive recovery (also called on-line recovery) aims at solve a fault after
the related exception is caught. Pro-active recovery aims at avoiding the fault.

Self-healing system: system able to automatically recover possible failures.

Failure modes: a characterization of the way a process fails. Refers to a rather complete
description, including the pre-conditions under which failure occurs, how the thing was being used,
proximate and ultimate/final causes (if known), and any subsidiary or resulting failures that result.

Observation: Set of system (or component) states at a given time.

Compensation: application-specific activities that attempt to reverse the effects of a previous
activity that was carried out as a part of a larger unit of work that is being abandoned.

Repair action: Any activity, such as tests, measurements, replacements, adjustments and repairs,
intended to restore or retain a functional unit in a specified state in which the unit can perform its
required functions.

Alarm: give warning of a problem or of a condition, often audibly and/or visually.

Elementary activity: A specific task, that provides a specialized capability, service or product
based on a requirements.

Complex activity: A grouping of tasks, that provides a specialized capability, service or product
based on a requirements.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 166

Task: any piece of work that is undertaken or attempted

Business process:A set of one or more linked procedures or activities, which collectively realize
a business objective or policy goal, normally within the context of an organizational structure
defining functional roles and relationships [WfM98].

A web service composition: is a process definition (workflow), which is composed of several
activities. These activities are related to the parts of a business process and depend on each
other. Each composition has a predefined start state, termination state and a process flow.

Composition (Composition Schema, Workflow):The automation of a business process, in
whole or part, during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules [WfM98].

The activities of composition will be actively controlled by web service composition management
service [ET]. WSCMS is a (re)active system for control of process flow among involved web
services or web service compositions according to a workflow specification (composition). It
supports with it its components both design (build time components) and their control and
execution (run time components) of web service compositions.

Web service composition management system (workflow management system):A system
that defines, creates and manages the execution of compositions through the use of software,
running on one or more composition engines that is able to interpret the composition definition,
interact with composition participants (web services) and, where required, invoke appropriate IT
tools and applications [WfM98].

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 167

Appendix A. FoodShop example BPEL code
<?xml version="1.0" encoding="UTF-8"?>

<process name="FastFoodShopingProject"

 targetNamespace="urn:FastFoodShopingProject" xml:ID="1"

 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 xmlns:customer="http://wsdiamond.com/wsdl/foodshopexample/customer"

 xmlns:shop="http://wsdiamond.com/wsdl/foodshopexample/shop"

 xmlns:supplier="http://wsdiamond.com/wsdl/foodshopexample/supplier"

 xmlns:tns="urn:FastFoodShopingProject"

 xmlns:warehouse="http://wsdiamond.com/wsdl/foodshopexample/warehouse"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="warehouse.wsdl"

namespace="http://wsdiamond.com/wsdl/foodshopexample/warehouse"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="supplier.wsdl"

namespace="http://wsdiamond.com/wsdl/foodshopexample/supplier"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="shop.wsdl"

namespace="http://wsdiamond.com/wsdl/foodshopexample/shop"/>

 <import importType="http://schemas.xmlsoap.org/wsdl/"

 location="customer.wsdl"

namespace="http://wsdiamond.com/wsdl/foodshopexample/customer"/>

 <partnerLinks>

 <partnerLink myRole="service" name="customer"

 partnerLinkType="customer:customerServiceLT"

partnerRole="customer"/>

 <partnerLink name="shop" partnerLinkType="shop:shopLT"

partnerRole="shop"/>

 <partnerLink name="supplier"

 partnerLinkType="supplier:supplierLT" partnerRole="supplier"/>

 <partnerLink name="warehouse"

 partnerLinkType="warehouse:warehousePLT" partnerRole="warehouse"/>

 </partnerLinks>

 <variables>

 <variable messageType="customer:orderMsg" name="Order"/>

 <variable messageType="customer:itemsMsg" name="s_items"/>

 <variable messageType="customer:itemsMsg" name="ns_items"/>

 <variable messageType="shop:splitedOrder" name="splitedOrder"/>

 <variable messageType="supplier:answers" name="s_answers_by_avail"/>

 <variable messageType="supplier:answers" name="ns_answers"/>

 <variable messageType="customer:itemsMsg" name="s_avail_items"/>

 <variable messageType="customer:itemsMsg" name="s_nonavail_items"/>

 <variable messageType="warehouse:availItems" name="availResult"/>

 <variable messageType="supplier:answers" name="s_answers_by_nonavail"/>

 <variable messageType="customer:itemsMsg"

name="total_avail_and_reserved"/>

 <variable messageType="warehouse:shipcost" name="shipcostWH"/>

 <variable messageType="shop:totalCost" name="totalCost"/>

 <variable messageType="customer:totalCost" name="bill"/>

 <variable messageType="customer:status" name="paidStatus"/>

 <variable messageType="customer:parcelMsg" name="parcel"/>

 <variable messageType="customer:parcelMsg" name="toAssemble"/>

 <variable messageType="warehouse:whInfoMsg" name="whInfo"/>

 <variable messageType="warehouse:toSupply" name="tosupply_ns"/>

 <variable messageType="warehouse:toSupply" name="tosupply_nonavail"/>

 <variable messageType="customer:status"

name="tosupply_nonavail_status"/>

 <variable messageType="customer:status" name="tosupply_ns_status"/>

 <variable messageType="customer:status" name="sent_status"/>

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 168

 </variables>

 <correlationSets>

 <correlationSet name="supplCS" properties="supplier:suppID"/>

 <correlationSet name="thisSet" properties="customer:orderID"/>

 </correlationSets>

 <sequence xml:ID="2">

 <receive createInstance="yes" name="sendOrder"

 operation="requestorder" partnerLink="customer"

 portType="customer:ServicePT" variable="Order" xml:ID="3">

 <correlations>

 <correlation set="thisSet"/>

 </correlations>

 </receive>

 <flow xml:ID="4">

 <invoke inputVariable="Order" operation="selectWH"

 outputVariable="whInfo" partnerLink="shop"

 portType="shop:shopPT" xml:ID="5"/>

 <sequence xml:ID="6">

 <invoke inputVariable="Order" operation="splitOrder"

 outputVariable="splitedOrder" partnerLink="shop"

 portType="shop:shopPT" xml:ID="7"/>

 <assign xml:ID="8">

 <copy>

 <from part="s_items" variable="splitedOrder"/>

 <to variable="s_items"/>

 </copy>

 </assign>

 <assign xml:ID="9">

 <copy>

 <from part="ns_items" variable="splitedOrder"/>

 <to variable="ns_items"/>

 </copy>

 </assign>

 </sequence>

 </flow>

 <flow xml:ID="10">

 <invoke inputVariable="ns_items"

 name="verifyAndReserve_ns_items"

 operation="verifyAndReserve" outputVariable="ns_answers"

 partnerLink="supplier" portType="supplier:supplierPT"

xml:ID="11"/>

 <sequence xml:ID="12">

 <invoke inputVariable="s_items"

 name="checkAvail_s_items" operation="checkAvail"

 outputVariable="s_answers_by_avail"

 partnerLink="shop" portType="shop:shopPT" xml:ID="13"/>

 <invoke inputVariable="s_items" operation="reserveAvail"

 outputVariable="availResult" partnerLink="warehouse"

 portType="warehouse:warehousePT" xml:ID="14"/>

 <assign xml:ID="15">

 <copy>

 <from part="avail_items" variable="availResult"/>

 <to variable="s_avail_items"/>

 </copy>

 <copy>

 <from part="nonavail_items" variable="availResult"/>

 <to variable="s_nonavail_items"/>

 </copy>

 </assign>

 <invoke inputVariable="s_nonavail_items"

 operation="verifyAndReserve"

 outputVariable="s_answers_by_nonavail"

 partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="16"/>

 </sequence>

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 169

 </flow>

 <assign xml:ID="17">

 <appendChild>

 <from variable="ns_items"/>

 <to variable="total_avail_and_reserved"/>

 </appendChild>

 <appendChild>

 <from part="resitems" variable="s_answers_by_avail"/>

 <to variable="total_avail_and_reserved"/>

 </appendChild>

 <appendChild>

 <from part="resitems" variable="s_answers_by_nonavail"/>

 <to variable="total_avail_and_reserved"/>

 </appendChild>

 </assign>

 <switch xml:ID="18">

 <case

condition="bpws:getVariableData('total_avail_and_reserved')=bpws:getVariableData

('Order','items')">

 <sequence xml:ID="19">

 <invoke inputVariable="total_avail_and_reserved"

 operation="shipcost" outputVariable="shipcostWH"

 partnerLink="warehouse"

 portType="warehouse:warehousePT" xml:ID="20"/>

 <scope xml:ID="21">

 <faultHandlers>

 <catch faultName="nopayment">

 <sequence xml:ID="22">

 <invoke

 inputVariable="s_avail_items"

 operation="unreserve"

 partnerLink="warehouse"

 portType="warehouse:warehousePT"

xml:ID="23"/>

 <invoke inputVariable="ns_items"

 operation="unreserve"

 partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="24"/>

 <invoke

 inputVariable="s_nonavail_items"

 operation="unreserve"

 partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="25"/>

 <terminate xml:ID="26"/>

 </sequence>

 </catch>

 </faultHandlers>

 <sequence xml:ID="27">

 <invoke inputVariable="shipcostWH"

 operation="computeTotalCost"

 outputVariable="totalCost"

 partnerLink="shop"

 portType="shop:shopPT" xml:ID="28"/>

 <assign xml:ID="29">

 <copy>

 <from part="amount" variable="totalCost"/>

 <to part="amount" variable="bill"/>

 </copy>

 </assign>

 <invoke inputVariable="bill"

 operation="sendBill"

 partnerLink="customer"

 portType="customer:customerPT" xml:ID="30"/>

 <receive operation="paidrequest"

 partnerLink="customer"

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 170

 portType="customer:ServicePT"

 variable="paidStatus" xml:ID="31">

 <correlations>

 <correlation set="thisSet"/>

 </correlations>

 </receive>

 </sequence>

 </scope>

 <switch xml:ID="32">

 <case

condition="bpws:getVariableData('paidStatus','status')=true">

 <sequence xml:ID="33">

 <assign xml:ID="34">

 <appendChild>

 <from variable="ns_items"/>

 <to part="ns_items" variable="toAssemble"/>

 </appendChild>

 <appendChild>

 <from part="resitems"

variable="s_answers_by_avail"/>

 <to part="s_avail_items"

variable="toAssemble"/>

 </appendChild>

 <appendChild>

 <from part="resitems"

variable="s_answers_by_nonavail"/>

 <to part="s_nonavail_items"

variable="toAssemble"/>

 </appendChild>

 <copy>

 <from variable="whInfo"/>

 <to part="whInfo" variable="tosupply_ns"/>

 </copy>

 <copy>

 <from variable="whInfo"/>

 <to part="whInfo"

variable="tosupply_nonavail"/>

 </copy>

 <copy>

 <from variable="ns_items"/>

 <to part="items" variable="tosupply_ns"/>

 </copy>

 <copy>

 <from part="resitems"

variable="s_answers_by_nonavail"/>

 <to part="items"

variable="tosupply_nonavail"/>

 </copy>

 </assign>

 <invoke

 inputVariable="tosupply_nonavail"

 operation="supply"

 outputVariable="tosupply_nonavail_status"

 partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="35"/>

 <invoke inputVariable="tosupply_ns"

 operation="supply"

 outputVariable="tosupply_ns_status"

 partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="36"/>

 <invoke inputVariable="toAssemble"

 operation="assemble"

 outputVariable="parcel"

 partnerLink="warehouse"

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 171

 portType="warehouse:warehousePT"

xml:ID="37"/>

 <invoke inputVariable="parcel"

 operation="sendParcel"

 outputVariable="sent_status"

 partnerLink="customer"

 portType="customer:customerPT" xml:ID="38"/>

 </sequence>

 </case>

 <otherwise>

 <terminate xml:ID="39"/>

 </otherwise>

 </switch>

 </sequence>

 </case>

 <otherwise>

 <sequence xml:ID="40">

 <invoke inputVariable="s_avail_items"

 operation="unreserve" partnerLink="warehouse"

 portType="warehouse:warehousePT" xml:ID="41"/>

 <invoke inputVariable="ns_items"

 operation="unreserve" partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="42"/>

 <invoke inputVariable="s_nonavail_items"

 operation="unreserve" partnerLink="supplier"

 portType="supplier:supplierPT" xml:ID="43"/>

 <terminate xml:ID="44"/>

 </sequence>

 </otherwise>

 </switch>

 </sequence>

</process>

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 172

References

[AAFJ+02] Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D.,
Pogliani, S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I. and Zimek, S.
(2002). Web Service Choreography Interface (WSCI) 1.0. W3C Note, August 2002.
Retrieved January, 2005, from http://www.w3.org/TR/wsci/

[AAZM04] Arpinar, B., Aleman-Meza, B., Zhang, R.and Maduko, A. (2004). Ontology-Driven

Web Services Composition Platform. Proceedings of the IEEE International Conference
on E-Commerce Technology, IEEE.

[ABW] Active BPEL official web-site: http://www.activebpel.org/index.html

[ACDG+03] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I. and Weerawarana,, S. (2003) Business

Process Execution Language for Web Services, Version 1.1, Specification. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[ACKM04] Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004). Web Services – Concepts,

Architectures and Applications. Springer-Verlag, Berlin Heidelberg.

[AES] Active Endpoints official web-site: http://www.active-
endpoints.com/products/activewebflow/awf_faqs.html#top

[AGS] ActiveGrid official web-site: http://www.activegrid.com/what/products.php

[AMS02] Aissi, S., Malu, P. and Srinivasan, K. (2002). E-business process modeling: the
next big step. IEEE Computer, Volume 35, Issue 5, pp 55 – 62.

[AK05] “Web Service Semantics – WSDL-S”, W3C Technical Note, Version 1.0., Akkiraju et al.,
April 2005

[AOS] Agila Projectofficial web-site: http://incubator.apache.org/projects/agila/

[APA] Apache Axis. http://ws.apache.org/axis/

[APA2] Apache Axis2. http://ws.apache.org/axis2/

[ABC03] Atkinson, B., T. Bellwood und M. Cahuzac et. al.: UDDI Version 3.0.1. Technical
report, OASIS, October 2003.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 173

[BAM05] Alistair Barros, Marlon Dumas, Phillipa Oakes: Standards for Web Service

Choreography and Orchestration: Status and Perspectives. In: BPM Workshops 2005,
Springer-Verlag 2005

[BAP03] Bausch, W., C. Pautasso und G. Alonso: Programmign for Dependability in a Service-

based Grid, In: 3rd International Symposium on Cluster Computing and the Grid, pp.
164-171, IEEE 2003

[BBG03] Baïna, K., Benali, K. and Godart, C. (2003). Dynamic interconnection of heterogeneous

workflow processes through services. In 11th International Conference on Cooperative
Information Systems (CoopIS'03), In Confederated International Conferences
(DOA/CoopIS/ODBASE’03), (LNCS) 2888, Catania, Sicily, Italy, November 3-7, 2003.
Springer-Verlag.

[BC01] Bieber, G. and Carpenter, J. (2001). Introduction to Service-Oriented Programming (Rev
2.1). Retrieved January, 2005, from
http://www.openwings.org/download/specs/ServiceOrientedIntroduction.pdf

[BCT04] Benatallah, B., Casati, F. and Toumani, F. (2004). Web service conversation modeling: a

cornerstone for e-business automation. IEEE Internet Computing, Volume 8, Issue 1, pp
46 – 54.

[BD05] Bianchini, D. and De Antonellis, V. (2005). Ontology-based Semantic Interoperability

Tools for Service Dynamic Discovery. In Proc. of the First Int. Conference on
Interoperability of Enterprise Software Applications (INTEROP-ESA'05), Geneva,
Switzerland, February, 23rd-25th 2005.

[BDPP05] Bianchini, D., De Antonellis, V., Pernici, B. and Plebani, P. (2005). Ontology-based

methodology for e-Service discovery. Information Systems, Elsevier Science, in press,
published on line.

[BEFG+04] Ballinger, K., Ehnebuske, D., Ferris, C., Godgin, M., Liu, C. K., Nottingham, M. and
Yendluri, P. (2004). Basic Profile Version 1.1. Web Services Interoperability
Organization (August 2004), http://ws-i.org/Profiles/BasicProfile-1.1.html.

[BOS] bexee Project official web-site: http://bexee.sourceforge.net

[BPEL4People] Kloppmann, M. et al. (2005). WS-BPEL Extension for People – BPEL4People, A
Joint White Paper by IBM and SAP.

[BPEL-SPE] Kloppmann, M. et al. (2005). WS-BPEL Extension for Sub-processes – BPEL-SPE,
A Joint White Paper by IBM and SAP.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 174

[BPMI02] BPMI.org (2002). BPML/BPEL4WS - A Convergence Path toward a Standard BPM

Stack. BPMI.org Position Paper. Retrieved January, 2005, from http://www.bpmi.org/

[BPMI05] BPMI.org. (2005). Business Process Management Initiative (n.d.). Retrieved January,
2005, from http://www.bpmi.org/

[BSD03] Benatallah, B., Sheng, Q.Z. and Dumas, M. (2003). The Self-Serv environment for Web

services composition. IEEE Internet Computing, Volume 7, Issue 1, pp 40 – 48.

[C03] Chinnici, R. (2003). Java API for XML-Based RPC (JAX-RPC) Specification 1.1. SUN
Microsystems (October 2003), http://java.sun.com/webservices/jaxrpc/

[C04] Chappell, D. (2004). Understanding BPM Servers. Chappell Associates. Retrieved
December, 2004, from http://www.microsoft.com/biztalk/techinfo/default.mspx

[CAM00] Cass, A., B. Lernerand, E. McCall, L. Osterwei, S. Sutton und A. Wise: A Process

Definition Language and Interpreter. In: In Proceedings of the International Conference
on Software Engineering (ICSE), Ireland, June 2000

[CAM01] Fabio Casati, Ming-Chien Shan: Dynamic and adaptive composition of e-services. Inf.
Syst. 26(3): pp. 143-163, 2001

[CBS04] Cardoso, J., Bostrom, R.P. and Sheth, A. (2004). Workflow Management Systems and

ERP Systems: Difference, Commonalities, and Applications. Information Technology
and Management 5, Kluwer Academic Publishers, pp 319 – 338.

[CCOS] CapeClear Project official web-site: http://www.capeclear.com

[CCMW01] Christensen, E., Curbera, F., Meredith, G. and Weerawarana.,S. (2001). Web Services

Description Language (WSDL) 1.1. W3C, Note 15, 2001. http://www.w3.org/TR/wsdl.

[CD98] Castano, S. and De Antonellis, V. (1998). A Framework for expressing Semantic
Relationships between Multiple Information Systems for Cooperation. Information
Systems, 19(4): 33-54.

[CDM04] Confalonieri, R., Domingue, J. and Motta, E. (2004). Orchestration of Semantic Web

Services in IRS-III. In proceedings of the First AKT Workshop on Semantic Web
Services (AKT-SWS04) KMi, The Open University, Milton Keynes, UK, December 8,
2004.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 175

[CH85] C. A. R. Hoare: Communicating Sequential Processes, Prentice Hall International Series
in Computer Science, 1985

[CIY00] Nihan Kesim Cicekli, Yakup Yildirim: Formalizing Workflows Using the Event
Calculus. DEXA 2000, pp. 222-231, Springer-Verlag 2000

[CMPP+04] Cappiello, C., Missier, P., Pernici, B., Plebani, P. and Batini, C. (2004). QoS in

Multichannel IS: the MAIS Approach. Proceedings of the International Workshop on
Web Quality (WQ'04) in conjunction with the ICWE 2004, Munich, Germany.

[COL] Collaxa: http://www.collaxa.com

[COS] Collaxa Project official web-site: http://www.nttman.net/archives/000969.html

[CRR91] J. Crow, J. Rushby. Model-based reconfiguration: Toward an integration with diagnosis,
Proc. 9th national Conference on Artificial Intelligence AAAI’91, Anaheim, CA, USA,
pp.836-841, 1991.

[CSS] Creative Science Systems BizZyme BPEL Java Server Official web-site:
http://www.creativescience.com/software/bpel.html

[DF97] Damiani, E., and Fugini, M.G. (1997) Fuzzy Identification of Distributed Components. In
Proceedings of the 5th Fuzzy Days International Conference, LNCS 1226, pp 550-552.

[DMPP03] De Antonellis, V., Melchiori, M., Pernici, B. and Plebani, P. (2003). A Methodology

for e-Service Substitutability in a Virtual District Environment. In Proceedings of the
Conference on Information Systems Engineering (CAiSE 2003), Velden, Austria.

[DP06] Daniel, F. and Pernici, B. (2006) special issue of International Journal of E-business
Research (IJEBR) on Web Services-Based E-Business Systems, Jan 2006

[DS05] Dustdar, S. and Schreiner, W. (2005). A Survey on Web Services Composition. Int. J. Web
and Grid Services, Vol. 1, No. 1, 2005.

[ERG96] Ekkart Rudolph, Peter Graubmann, Jens Grabowski: Tutorial on Message Sequence
Charts. In: Computer Networks and ISDN Systems, 1996, 28(12),1629-1641

[EN01] Eisenberg, B. and Nickull, D. (2001). ebXML Technical Architecture Specification v1.04.
Retrieved January 2005, from http://www.ebxml.org/specs/index.htm

[EN99] L. English. Improving Data Warehouse and Business Information Quality. John Wiley &
Sons, 1999.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 176

[F04] Ferrara, A. (2004). Web services: a process algebra approach. In: ICSOC. pp. 242–251,
ACM, 2004.

[FB02] Fensel, D. and Bussler, C. (2002). The Web Service Modeling Framework WSMF.
Electronic Commerce: Research and Applications, 1(2002), pp 113-137.

[FG92] G. Friedrich, G. Gottlob, W. Nejdl. Formalizing the repair process, Proc. of the 10th
European Conference on Artificial Intelligence ECAI-92, Vienna, Austria pp. 709-713,
1992.

[GK03] Goodwin, P. and Kassem, N. (2003). SOAP with Attachments API for Java (SAAJ)

Specification v1.2. SUN Microsystems (October 2003),
http://java.sun.com/webservices/saaj/index.jsp

[GKMR+05] Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., Sedukhin I., (editors): Web

Services Resource 1.2 (WS-Resource), OASIS Public Review Draft, 2005, available at
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-pr-01.pdf

[GPS99] Grefen, P., Pernici, B. and Sanchez, G. (1999). Database Support for Workflow

Management. The WIDE Project. Kluwer.

[GRC04] A. Grastien, M.-O. Cordier, C. Largouët. Extending decentralized discrete-event

modeling to diagnose reconfigurable systems, working notes 15th International
Workshop on Principles of Diagnosis DX’04, Carcassonne, France, pp. 75-80, June
2004.

[H05] Haller, A. (2005). D7.3v1.0 Mission Statement – WSMX. WSMX. Working Draft, January
2005. Retrieved December, 2004, from
http://www.wsmo.org/2005/d7/d7.3/v1.0/20050109/

[HDMC+04] Hakimpour, F., Domingue, J., Motta, E., Cabral, L. and Lei, Y. (2004). Integration

of OWL-S into IRS-III. In proceedings of the First AKT Workshop on Semantic Web
Services (AKT-SWS04); KMi, The Open University, Milton Keynes, UK.

[HP02] Hewlett-Packard Company (2002). Web Services Conversation Language (WSCL) 1.0.
W3C Note, March 2002. Retrieved December, 2004, from
http://www.w3.org/TR/wscl10/

[HSS05] Hinz, S., Schmidt, K., and Stahl, S. (2005). Transforming BPEL to Petri Nets. In:
W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 220–235, Springer
Verlag 2005.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 177

[IBI] IBM Wbsphere Business Integration Server
http://www.alphaworks.ibm.com/tech/bpws4j

[JHKK04] Jung, J., Hur, W., Kang, S. and Kim, H. (2004). Business process
choreography for B2B collaboration. IEEE Internet Computing, Volume 8 , Issue 1 ,
Jan-Feb 2004, pp 37 – 45.

[JBK85] J. Bergstra and J. Klop:Algebra of communicating processes with abstraction, Theoret.
Comput. Sci., 37 (1985), pp. 77–121

[KBRF+04] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T. and Lafon, Y. (2004). Web

Services Choreography Description Language Version 1.0. W3C Working Draft,
October 2004. Retrieved December, 2004, from http://www.w3.org/TR/ws-cdl-10/

[KN03] Khalaf, R. and Nagy, W.A. (2003). Business Process with BPEL4WS: Understanding

BPEL4WS, Part 7, Adding correlation and fault handling to a process. Research report,
IBM developerWorks, April 2003. Retrieved January, 2005, from

http://www-128.ibm.com/developerworks/webservices/library/ws-bpelcol7/

[L03] Langdon, C.S. (2003). The state of Web services. IEEE Computer, Volume 36, Issue 7, pp
93 – 94.

[L04] Leavitt, N. (2004). Are Web services finally ready to deliver? IEEE Computer, Volume 37,
Issue 11, Nov. 2004, pp 14 – 18.

[LAZ03]G. Lamperti, M. Zanella. Diagnosis of Active Systems, Kluwer, Academic Publishers,
2003.

[LKDK+03] Ludwig, H., Keller, A., Dan, A., King, R. P. and Franck, R. (2003). Web Service Level

Agreement (WSLA) Language Specification, Version 1.0. IBM Corporation (January
2003), http://www.research.ibm.com/wsla.

[LRT03] Leymann, F., Roller, D. and Thatte, S.(2003). Goals of the BPEL4WS Specification.
http://xml.coverpages.org/BPEL4WS-DesignGoals.pdf

[M03a] Martin, D. (2003). The OWL Services Coalition. OWL-S: Semantic Markup for Web

Services. White Paper. Retrieved December, 2004, from
http://www.daml.org/services/owl-s/1.0/owl-s.html

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 178

[M03b] Mitra, N., Ed (2003). SOAP Version 1.2 Part 0: Primer. W3C Recommendation 24th
June. http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

[MAIS] MAIS (n.d.). MAIS project Home Page; retrieved January, 2005, from

http://black.elet.polimi.it/mais/

[MIC04]R. Micalizio, P. Torasso, G. Torta. On-line monitoring and diagnosis of multi-agent
systems: a model based approach, Proc. 16

th
 European Conference on Artificial

Intelligence ECAI’04, Valencia, Spain, pp. 848-852, August 2004.

[MIL89] R. Milner: Communication & Concurrency. Prentice Hall, 1989

[MM04] Milanovic, N. and Malek, M. (2004). Current Solutions for Web Service Composition.
IEEE Internet Computing, Volume 8, Issue 6, Nov.-Dec. 2004, pp 51 – 59.

[MMMP04] Maurino, A., Modafferi, S., Mussi, E. and Pernici, B. (2004). A framework for

provisioning of complex e-services. IEEE International Conference on Services
Computing (SCC 2004), Shanghai.

[MMY05] Maamar, Z., Mostefaoui, S.K. and Yahyaoui, H. (2005). Toward an Agent-Based and

Context-Oriented Approach for Web Services Composition. IEEE Transactions on
Knowledge and Data Engineering, Volume 17, Issue 5, May 2005, pp 686 – 697.

[MS] Microsoft Corporation (n.d.). Microsoft BizTalk Server; retrieved January, 2005, from
http://www.microsoft.com/biztalk/

[NEB93]W. Nejdl, J. Bachmayer. Diagnosis and repair iteration planning versus n-step look ahead
planning, working notes of the 4th International Workshop on Principles of Diagnosis

DX’93, Aberystwyth, Wales, UK, 1993.

[OBS] Oracle BPEL process manager Project Official web-site:
http://www.oracle.com/appserver/bpel_home.html

[P02] Paulson, L.D. (2002). Choreographing web services. IEEE Computer Volume 35, Issue 11,
Nov. 2002, pp 25 – 25.

[P03a] Peltz, C. (2003). Web services orchestration - a review of emerging technologies, tools,

and standards. Hewlett-Packard Company, 2003.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 179

[P03b] Peltz, C. (2003). Web services orchestration and choreography. IEEE Computer,
Volume 36, Issue 10, Oct. 2003, pp 46 – 52.

[PEM02]Y. Pencolé, M.-O. Cordier, L. Rozé. Incremental decentralized diagnosis approach for
the supervision of a telecommunication network, working notes of the 12th International

Workshop on Principles of Diagnosis DX’01, Sansicario, Italy, pp. 151-158, 2001a. Also
Proc.IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, pp. 435-440,
2002.

[PBM] Parasoft BPEL Maestro official site:

http://www.parasoft.com/jsp/products/home.jsp?product=BPEL

[PL05] Polleres, A. and Lara, R. (2005). D4.1v0.1 A Conceptual Comparison between WSMO and

OWL-S. WSMO Working Draft, January 2005. Retrieved January, 2005, from
http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/

[POS] Pexee Official web-site: http://pxe.fivesight.com/wiki/display/PXE/Home

[PP04] Pernici, B. and Plebani, P. (2004) A Reasoned Introduction to the Web Services World .
UPGRADE. Vol. V, No. 6, December 2004. p 55.

[PR02] G. Provan. A Model-Based Diagnosis Framework for Distributed Embedded Systems,
Proc. 8

th
 International Conference on Principles of Knowledge Representation and

Reasoning KR’02, Toulouse, France, pp. 341-352, April 2002.

[R96] Redman, T.C., ed. (1996). Data Quality for the Information Age. Artech House: Boston,
MA, USA.

[RLK04] Roman, D., Lausen, H. and Keller, U. (2004). D2v1.0. Web Service Modeling Ontology

(WSMO). WSMO Working Draft; September 2004. Retrieved January, 2005, from
http://www.wsmo.org/2004/d2/v1.0/20040920/

[ROB02]N. Roos, A. ten Teije, A. Bos, C. Witteveen. An analysis of multi-agent diagnosis, Proc.

AAMAS’02, Bologna, Italy, pp. 986-987, July 2002.

[SWZ00] G. Shankaranarayan, R. Y. Wang, and M. Ziad. Modeling the Manufacture of an

Information Product with IP-MAP. In Proceedings of the 6th International Conference
on Information Quality, 2000.

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 180

[SPP05] M. Scannapieco, E. Pierce, and B. Pernici. IP-UML: Towards a methodology for quality

improvement based on the IP-MAP framework. AMIS (Advances in Management

Information Systems) Monograph on Information Quality, 2005.

[ST01] S. Thatte: XLANG - Web Services for Business Process Design. Technical report,
Microsoft Corporation, 2001

[SUW93]Y. Sun, D. Weld. A framework for model-based repair, Proc. of the 11th National

Conference on Artificial Intelligence AAAI-93, Washington, DC, USA, pp.182-187,
1993.

[SWM04] Smith, M.K., Welty, C. and McGuinness, D.L. (2004). OWL Web Ontology Language

Guide. W3C Recommendation, February 2004. Retrieved January 2005, from
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

[TOS] Twister official web-site: http://www.smartcomps.org/twister/

[TPP02] Tosic, V., Patel, K. and Pagurek, B. (2002). WSOL - Web Service Offerings Language. In:
Workshop "Web Services, e-Business, and the Semantic Web (WES)". In conjunction
with CAISE '02.

[TPPE+03] Tosic, V., Pagurek, B, Patel, K., Esfandiari, B and Ma, W. (2003). Management

Applications of the Web Service Offerings Language (WSOL). CAiSE 2003, pp 468-484.

[UDDI] UDDI : http://www.uddi.org/

[UDDI-XML] UDDI Group, UDDI Version 2.0 XML Schema,
http://www.uddi.org/schema/uddi_v2.xsd

[V04] Vinoski, S. (2004). WS-Nonexistent Standards. IEEE Internet Computing, Volume 8, Issue
6, Nov.-Dec. 2004, pp 94 – 96.

[VTKB03] Van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B. and Barros, A. P.
(2003). Workflow Patterns. Distributed and Parallel Databases, 14(3), pp 5-51, July
2003.

[W04a] Vambenepe, W. (Ed.) (2004). Web Services Distributed Management: Management Using

Web Services (MUWS 1.0) Part 1. Committee Draft, OASIS, December 2004. Available
at: http://www.oasisopen.org/apps/org/workgroup/wsdm/download.php/10558/cd-wsdm-
muws-part1-1.0.pdf

IST-516933: WS-DIAMOND D1.1

 SIXTH FRAMEWORK PROGRAMME 181

[W04b] Vambenepe, W. (Ed.). (2004). Web Services Distributed Management: Management

UsWeb Services (MUWS 1.0) Part 2. Committee Draft, OASIS, December 2004.
Available at:
http://www.oasisopen.org/apps/org/workgroup/wsdm/download.php/10557/cd-wsdm-
muws-part2-1.0.pdf

[WAN98] R. Wang. A Product Perspective on Total Data Quality Management. Communications
of the ACM, 41(2), 1998.

[WF02] Weerawarana, S. and Francisco, C. (2002). Business Process with BPEL4WS:

Understanding BPEL4WS, Part 1, Concepts in business processes. Research report, IBM
developerWorks, Aug. 2002. Retrieved January, 2005, from

http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol1/

[WFMC] WfMC - Workflow Management Coalition (n.d.). Retrieved January, 2005, from
http://www.wfmc.org

[WfXML] Workflow Management Coalition. (2001). Workflow Management Coalition Workflow

Standard - Interoperability Wf-XML Binding.

[WS-BPEL 2.0] Arkin, A. et al. (2005). Web Services Business Process Execution Language

Version 2.0. Committee Draft, 21st December, OASIS.

[WWC92] Wiederhold, G., Wegner, P. and Ceri, S. (1992). Toward megaprogramming.
Communications of the ACM, Volume 35 , Issue 11, 1992, pp 89 – 99.

[W3C] W3C - World Wide Web Consortium (n.d.). Retrieved January, 2005, from
http://www.w3.org

[XPDL] Workflow Management Coalition. (2002). Workflow Process Definition Interface - XML

Process Definition Language (XPDL).

