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Nonholonomic motion planning is best understood with some knowledge of
the underlying geometry. In this chapter, we first introduce in Section 1 the
basic notions of the geometry associated to control systems without drift. In
the following sections, we present a detailed study of an example, the car with
n trailers, then some general results on polynomial systems, which can be used
to bound the complexity of the decision problem and of the motion planning
for these systems.

1 Symmetric control systems: an introduction

1.1 Control systems and motion planning

Regardless of regularity hypotheses, control systems may be introduced in two
ways. By ascribing some condition

ẋ ∈ Vx

where Vx is, for every x, some subset of the tangent space TxM , or in a para-
metric way, as

ẋ = f(x, u)

where, for every x, the map u 7→ f(x, u) has Vx as its image.
In mechanics or robotics, conditions of the first kind occur as linear con-

straints on the velocities, such as rolling constraints, as well in free movement—
the classical object of study in mechanics, as in the case of systems propulsed
by motors.

Equations of the second kind may represent the action of “actuators” used
to move the state of the system in the configuration space. One can show that
if the action of two actuators are represented by ẋ = f1(x) and ẋ = f2(x),
we may also consider the action of any convex combination of vector fields f1

and f2, and add it to the possible actions without changing in an essential way
the accessible set A(x) or A(x, T ). For this reason, one may suppose Vx to be
convex, or equivalently, u 7→ f(x, u) to be affine, of the form (u1, . . . , um) 7→
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X0(x) + u1X1(x) + · · ·+ umXm(x), and defined on some convex subset Kx of
Rm, for some m. This is responsible for the form

ẋ = X0(x) + u1X1(x) + · · ·+ umXm(x)

under which control systems are often encountered in the literature. (It makes
no harm to suppose m and Kx to be independent of x, and to suppose that the
origin is an interior point of K = Kx.) The vector field X0 is called the drift.

Now, we will use only systems without drift, that is with X0 = 0, for the
study of the problem of motion planning for robots. We may content with such
systems as long as no dynamics is involved. That is, if the state of the system
represents its position, and if we control directly its velocity. As opposed to
a system whose state would represent position and velocities, and where the
control is exerted on accelerations. Consider the simplest possible of such a
system: a mobile point on a line, submitted to the control equation

ẍ = u.

Introducing the velocity y = ẋ, we see that this system is equivalent to a system
governed by the equation

ẋ = y

ẏ = u

which can be written as(
ẋ
ẏ

)
=
(
y
0

)
+ u

(
0
1

)
= X0 + uX1,

that is, with a non-zero drift X0.
For some applications, our study will be valid in the case of slow motion only,

and resemble to the thermodynamics of equilibriums, where all transformation
are supposed to be infinitely slow.

1.2 Definitions. Basic problems

To sum up, we shall be interested in control systems of the form

ẋ =
m∑
i=1

uiXi(x), x ∈M, (Σ)

where the configuration space M of the system is a C∞ manifold, X1, . . . , Xm

are C∞ vector fields on M , and the control function u(t) = (u1(t), . . . , ut(t))
takes values in a fixed compact convex K of Rm, with nonempty interior, and



Geometry of Nonholonomic Systems 57

symmetric with respect to the origin. Such systems are called symmetric (or
driftless). One also says that controls enter linearly in (Σ).

For any choice of u as a measurable function defined on some interval [0, T ],
with value in K, equation (Σ) becomes a differential equation

ẋ =
m∑
i=1

ui(t)Xi(x). (1)

Given any point x0 on M , we can integrate (1), taking

x(0) = x0 (2)

as an initial condition. For the sake of simplicity, we shall suppose that this
equation has a well-defined solution on [0, T ] for all choices of u (this is guaran-
teed if M is compact or if M = Rn, and vector fields Xi are bounded). Call this
solution xu. One says that xu is the path with initial point x0 and controlled
by u. We shall mainly be interested in its final value xu(T ). Classically, points
in M are called the states of the system. One says for example that the system
is steered from state x0 to state xu(T ) by means of the control function u.

One also says that xu(T ) is accessible, or reachable, in time T from x0. We
shall denote by A(x, T ) the set of points of M accessible from x in time T (or
in time ≤ T , it is the same thing for symmetric systems), and by A(x) the set
of points accessible from x, that is

A(x) =
⋃
T>0

A(x, T ).

Basic problems of Control Theory are:

– determine the accessible set A(x);
– given a point y, accessible from x, find control functions steering the system

from x to y;
– do the preceding in minimal time;
– more generally, find control function u ensuring any given property of xu(t),

the path controlled by u.

Given x0, the control function u(t) is considered as the input of the system,
and xu(t) as the output. In a more general setting, the output is only some
function h(x) of the state x, h being called the observation: the state is only
partially known. Here we will take as observation h = Id, and call indifferently
x the state or the output.

We can now state another basic problem:
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– can one find a map k : M → K such that the differential equation

ẋ = f(x, k(x)) (3)

has a determined behaviour, for example, has a given point x0 as an at-
tractor?

Since in this problem, the output is reused as an input, such a map k is called
a feedback control law, or a closed-loop control. If (3) has x0 as an attractor,
one says that k is a stabilizing feedback at x0.

1.3 The control distance

Return to the control system (Σ). For x, y ∈M , define d(x, y) as the infimum
of times T such that y is accessible from x in time T , so d(x, y) = +∞ if y is not
accessible from x. It is immediate to prove that d(x, y) is a distance [distance
function] on M . Of course, this is the case only because we supposed that K
is symmetric with respect to the origin in Rm.

Distance d will be called the control distance.
We can define d in a different way. First, observe that since K is convex,

symmetric, with nonempty interior, we can associate to it a norm ‖ · ‖K on
Rm, such that K is the unit ball ‖u‖K ≤ 1. Now, for a controlled path c = xu :
[a, b]→M obtained by means of a control function u ∈ L1([a, b],Rm), we set

length(c) =
∫ b

a

‖u(t)‖K dt. (4)

If c can be obtained in such a way from several different u’s, we take the infimum
of the corresponding integrals. Then, d(x, y) is the infimum of the lengths of
controlled paths joining x to y (and, of course, this is intended in the definition
of an infimum, +∞ if no such path exists).

A slightly variant construction may be useful. Transfer the function ‖ · ‖K
to TxM , by setting

‖v‖K = inf{ ‖(u1, . . . , um)‖K | v = u1X1(x) + · · ·+ umXm(x) }.

We get in this way a function on TxM which is a norm on span(X1(x), . . . ,
Xm(x)) and takes the value +∞ for vector not in this subspace. We can now
define the length of any absolutely continuous path c : [a, b]→M as

length(c) =
∫ b

a

‖ċ(t)‖K dt

and the distance d(x, y) as the infimum of length of paths joining x and y.
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Note that distances corresponding to different K, say K1 and K2, are equiv-
alent: there exists some positive constants A and B such that

Ad1(x, y) ≤ d2(x, y) ≤ Bd1(x, y).

The most convenient version of the control distance is obtained by taking
for K the unit ball of Rm, which gives

‖u‖ = (u2
1 + · · ·+ u2

m)1/2.

In this case, the distance d is called the sub-Riemannian distance attached
to the system of vector fields X1, . . . , Xm. As a justification for this name,
observe that, locally, any Riemannian distance can be recovered in such a way
by taking m = n, and as X1(x), . . . , Xn(x) an orthonormal basis, depending
on x, of the tangent space TxM . A more general, more abstract, definition of
sub-Riemannian metrics can be given, but we shall not use it in this book.

Now, observe that d(x, y) < ∞ if and only if x and y are reachable from
one another, that A(x, T ) is nothing else that the ball of center x and radius
T (for d), and that controlled paths joining x to y in minimal time are simply
minimizing geodesics.

Many problems of control theory, or path planning, get in this way a geo-
metric interpretation. For another example, one could think to obtain a feed-
back law k(x) stabilizing the system at x = x0 by choosing k so as to ensure
f(x, k(x)) to be the gradient of d(x, x0). Unfortunately, this does not work,
even if we take the good version of the gradient, i.e., the sub-Riemannian one:

grad f = (X1f)X1 + · · ·+ (Xmf)Xm.

and take k(x) = (X1f, . . . ,Xmf) for that purpose. But studying the reasons
of this failure is very instructive. Such a geometric interpretation, using the
sub-Riemaniann distance, really brings a new insight in theory, and it will in
several occasions be very useful to us.

1.4 Accessibility. The theorems of Chow and Sussmann

We shall deduce the classical theorem of Chow (Chow [7], Rashevskii [28]) from
a more precise result by Sussmann. Sussmann’s theorem will be proved using
L1 controls. However, it can be shown that the results obtained are, to a great
extend, independent of the class of control used (see Belläıche [2]).

Consider a symmetric control system, as described above,

ẋ =
m∑
i=1

uiXi(x), x ∈M, u ∈ K. (Σ)
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Recall the configuration space M is a C∞ manifold, X1, . . . , Xm are C∞ vector
fields on M , and K, the control set, or parameter set, is a fixed compact convex
of Rm, with nonempty interior, symmetric with respect to the origin.

In all this section, we fix a point x0 ∈ M , the initial point, and a positive
time T . Set

HT = L1([0, T ],Rm).

We shall call this space the space of controls. It may be considered as a normed
space by setting

‖u‖ =
∫ T

0

‖u(t)‖K dt.

Given u ∈ HT , we consider the differential equation{
ẋ =

∑m
i=1 ui(t)Xi(x), 0 ≤ t ≤ T

x(0) = x0
(5)

Under suitable hypotheses, the differential equation (5) has a well defined so-
lution xu(t). We will denote by

Endx0,T : HT →M

the mapping wich maps u to xu(T ). We will call Endx0,T , or End for short, the
end-point map.

Now, the accessible set A(x0) (the set of points accessible from x0 for the
system Σ, regardless of time) is exactly the image of Endx0,T . Indeed, every
controlled path c : [0, T ′]→M , defined by the control u : [0, T ′]→M may be
reparametrized by [0, T ]. Conversely, if u ∈ H, and L = length(xu), the control
function

v(t) =
u(φ(t))
‖u(φ(t))‖K

, 0 ≤ t ≤ L,

where φ is defined as a right inverse to the mapping

s 7→
∫ s

0

‖u(τ)‖K dτ

from [0, T ] to [0, L] takes its values in K, and defines the same geometric path
as u.

Theorem 1.1 (Sussmann [36], Stefan [35]). The set A(x0) of points ac-
cessible from a given point x0 in M is an immersed submanifold.

We shall prove this theorem using arguments from differential calculus in
Banach spaces, taking advantage from the fact that the end-point map is a
differentiable mapping from H to M , a finite dimensional manifold.
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Recall the rank of a differentiable mapping at a given point is by definition
the rank of its differential at that point. The theorem of the constant rank
asserts that the image of a differential map with constant rank is an immersed
submanifold (for more details about this part of the proof, see Belläıche [2]).

Definition. Let ρ the maximal rank of the end-point map Endx0,T : HT →M .
We say that a control function u ∈ HT is normal if the rank of Endx0,T at u
is equal to ρ. We shall say that the path xu defined by u is a normal path.
Otherwise, u is said to be an abnormal control, and xu an abnormal path.
A point which can be joined to x0 by a normal path is said to be normally
accessible from x0.

Lemma 1.2. Every point accessible from x0 is normally accessible from x0.

Proof. Let y be a point accessible from x0, and let u ∈ HT a control steering
x0 to y. Choose a normal control z ∈ HT , steering x0 to some point z. Such
a control exists by definition. We claim that the control function w ∈ H3T

defined by

w(t) =


v(t) if 0 ≤ t ≤ T
v(2T − t) if T ≤ t ≤ 2T
u(t− 2T ) if 2T ≤ t ≤ 3T

is normal and steers x0 to y.
The second part of our assertion is evident: the path xw steers x0, first to

z, then back to x0, then to y. Now, the image of DEndx0,3T consists of the
infinitesimal variations δxw(3T ) obtained from infinitesimal variations δw of
w. We can consider special variations of w, namely variations of the first part
of w only, leaving the two other parts unchanged. In other words, we consider
the control functions

w(t) + δw(t) =


v(t) + δv(t) if 0 ≤ t ≤ T
v(2T − t) if T ≤ t ≤ 2T
u(t− 2T ) if 2T ≤ t ≤ 3T

Since v is a normal control, these variations yield infinitesimal variations
of δxw(T ) = xw+δw(T ) − xw(T ) which form a subspace of dimension ρ
at that point. Now, the corresponding variations of xw(3T ) are obtained
from those of xw(T ) by applying the flow of the time-dependent vector field∑

1≤i≤m wi(t)Xi(x) between time T and time 3T . Since this flow is a diffeo-
morphism of M , these variations of xw(3T ) form a subspace of dimension ρ of
the tangent space TyM . The space formed by variations of the xw(3T ) caused
by unrestricted variations of the control w has thus dimension ≥ ρ, an so has
dimension ρ. This proves that w is normal.

Of course, the fact that w is in H3T instead of being in HT is harmless.
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Proof of Sussmann’s theorem. The normal controls form an open subset Nx0,T

of HT . From Theorem 1.2, the accessible set A(x0) is the image of Nx0,T by
a constant rank map. By using the Theorem of constant rank, the proof is
done.

Theorem 1.3 (Chow [7], Rashevskii [28]). If M is connected (for its orig-
inal topology), and if the vector fields X1, . . . , Xm and their iterated brackets
[Xi, Xj ], [[Xi, Xj ], Xk], etc. span the tangent space TxM at every point of M ,
then any two points of M are accessible from one another.

Proof. Since the relation y ∈ A(x) is clearly an equivalence relation, we can
speak of accessibility components. Since

y ∈ A(x)⇐⇒ d(x, y) <∞,

the set A(x) is the union of open balls B(x,R) (for d), so it is itself an open
set. Whence it results that the accessibility components are also the connected
component of M for the topology defined by d.

It is clear that the accessibility components of M are stable under the flow
exp tXi of vector fieldXi (i = 1, . . . ,m). Therefore, the vector fieldsX1, . . . , Xm

are, at any point, tangent to the accessibility component through that point
(see [2] for details). And so are their brackets [Xi, Xj ], their iterated brackets
[[Xi, Xj ], Xk], etc.

If the condition on the brackets is fulfilled, then

TxA(x) = TxM

at every point x, as the preceding discussion shows. In that case, the acces-
sibility components are open. Since M is connected, there can be only one
accessibility component.

Definition. The following condition

(C) The vector fields X1, . . . , Xm and their iterated brackets [Xi, Xj ],
[[Xi, Xj ], Xk], etc. span the tangent space TxM at every point of M ,

is called Chow’s Condition.

When the Chow’s Condition holds, one says that system (Σ) is controllable.
The reciprocal of Chow’s theorem, that is, if (Σ) is controllable, the Xi’s and
their iterated brackets span the tangent space at every point of M , is true if
M and the vector fields are analytic, and false in the C∞ case (see Sussmann
[36]).

Chow’s Condition is also known under the name of Lie Algebra Rank Con-
dition (LARC) since it states that the rank at every point x of the Lie algebra
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generated by the Xi’s is full (self-evident definition). In the context of PDE,
it is known under the name of Hörmander’s Condition: if it is verified, the
differential operator X2

1 + · · ·+X2
m is hypoelliptic (Hörmander’s Theorem).

1.5 The shape of the accessible set in time ε

The purpose of this section is to study the geometric structure of A(x, ε) for
small ε. Let us recall that A(x, ε) denotes the set of points accessible from x
in time ε (or in time ≤ ε, it is the same thing) by means of control ui such
that

∑
u2
i ≤ 1. In other words, A(x, ε) is equal to B(x, ε), the sub-Riemaniann

closed ball centered at x with radius ε.
We suppose in the sequel that Chow’s condition is satisfied for the control

system (Σ). Choosing some chart in a neighbourhood of x0, we may write (1)
as

ẋ =
m∑
i=1

ui(t)
(
Xi(0) +O(‖x‖)

)
(6)

The differential equation (1) thus appear as a perturbation of the trivial equa-
tion

ẋ =
m∑
i=1

ui(t)Xi(0) (7)

Classical arguments on perturbation of differential equations show that the
solution of (6) is given by

x(T ) = x(0) +
m∑
i=1

(∫ T

0

ui(t) dt
)
Xi(0) +O(‖u‖2), (8)

where, for u, we use the L1 norm. Thus, with a linear change of coordinates,
the set of points accessible from x(0) = 0 in time T ≤ ε satisfies, for small ε

A(x, ε) ⊂ C[−ε, ε]n1 × [−ε2, ε2]n−n1 ,

where n1 is the rank of the family X1(0), . . . , Xm(0). As a first step, the set
A(x, ε) is then included in a flat pancake.

The expression (8) implies also that the differential of the end-point map-
ping at the origin in H is the linear map

u 7→
m∑
i=1

(∫ T

0

ui(t) dt
)
Xi(0).
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Since, typically, we suppose m < n, this linear map has rank n1 < n and the
end-point mapping is not a submersion at 0 ∈ H. Following our definition, this
means that the constant path at x0 is an abnormal path. This result has a lot
of consequences.

Given a neighbourhood U of x0, there may not exist a smooth mapping
x 7→ ux of U into H such that the control ux steers x0 to x, or, as well, x
to x0. A stronger result is Brockett’s theorem asserting the non-existence of
a continuous feedback law, stabilizing system (Σ) at a given point x0, when
m < n.

To go further in the description of the set A(x, ε) we can use the so-called
iterated integrals. For example, the system

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

x1(0) = x2(0) = x3(0) = 0

(9)

is solved by

x1(T ) =
∫ T

0

u1(t) dt

x2(T ) =
∫ T

0

u2(t) dt (10)

x3(T ) =
∫ T

0

(∫ t1

0

u1(t2) dt2

)
u2(t1) dt1 −

∫ T

0

(∫ t1

0

u2(t2) dt2

)
u1(t1) dt1

This scheme works for chained or triangular systems, that is, ẋj depends only
on the controls and x1, . . . , xj−1. But we shall see that it can be put to work
for any system. To begin with, let us rewrite (9) as

ẋ = u1X1(x) + u2X2(x), x(0) = 0.

Then (10) can be read as

x(T ) = x(0) +

(∫ T

0

u1(t) dt

)
X1(0) +

(∫ T

0

u2(t) dt

)
X2(0) +(∫ T

0

(∫ t1

0

u1(t2) dt2

)
u2(t1) dt1−

∫ T

0

(∫ t1

0

u2(t2) dt2

)
u1(t1) dt1

)
[X1, X2](0).
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Put this way, the formula for x(T ) can readily be generalized to any control
system of the form

ẋ =
∑

1≤i≤m

uiXi(x).

One gets (the proof is not hard, cf. Brockett [5])

x(T ) = x(0) +
∑

1≤i≤m

(∫ T

0

u1(t) dt+O(‖u‖2)

)
Xi(0) +

∑
1≤i<j≤m

(∫ T

0

(∫ t1

0

ui(t2) dt2

)
uj(t1) dt1−

∫ T

0

(∫ t1

0

uj(t2) dt2

)
ui(t1) dt1

)
[Xi, Xj ](0) +O(‖u‖3),

or, written in a more civilized manner

x(T ) = x(0) +
∑

1≤i≤m

(ATi (u) +O(‖u‖2))Xi(0) +

∑
1≤i<j≤m

ATij(u)[Xi, Xj ](0) +O(‖u‖3)

which can, for given T , be considered as a limited expansion of order 2 of the
end-point mapping about 0 in H. Observe that ATi (u) is a linear function with
respect to u ∈ H, and ATij(u) is a quadratic function on H. This expansion
generalizes the expansion (8) and the set A(x, ε) satisfies now

A(x, ε) ⊂ C[−ε, ε]n1 × [−ε2, ε2]n2−n1 × [−ε3, ε3]n−n2 . (11)

Having shown that A(x, ε) is contained in some box, one can ask whether
it contains some other box of the same kind. Of course, before this question
can be taken seriously, one has to replace inclusion (11) by

A(x, ε) ⊂ C[−ε, ε]n1 × [−ε2, ε2]n2−n1 × [−ε3, ε3]n3−n2 × · · ·

where the integers n1, n2, n3, . . . are the best possible.
Now, except for the case n2 = n which can be dealt with directly, the proof

of an estimate like

C ′[−ε, ε]n1 × [−ε2, ε2]n2−n1 × [−ε3, ε3]n3−n2 × · · · ⊂ A(x, ε)

requires new techniques and special sets of coordinates. Instead of computing
limited expansion up to order r, we will compute an expansion to order 1 only,
but by assigning weights to the coordinates. This will be done in §§1.6–1.8.
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1.6 Regular and singular points

In the sequel we will fix a manifold M , of dimension n, a system of vector
fields X1, . . . , Xm on M . We will suppose that X1, . . . , Xm verify the condition
of Chow. We will denote by d the distance defined on M by means of vector
fields X1, . . . , Xm.

Let L1 = L1(X1, . . . , Xm) be the set of linear combinations, with real
coefficients, of the vector fields X1, . . . , Xm. We define recursively Ls =
Ls(X1, . . . , Xm) by setting

Ls = Ls−1 +
∑
i+j=s

[Li,Lj ]

for s = 2, 3, . . . , as well as L0 = 0. The union L = L(X1, . . . , Xm) of all Ls is
a Lie subalgebra of the Lie algebra of vector fields on M which is called the
control Lie algebra associated to (Σ).

Now, for p in M , let Ls(p) be the subspace of TpM which consists of the
valuesX(p) taken, at the point p, by the vector fieldsX belonging to Ls. Chow’s
condition states that for each point p ∈M , there is a smallest integer r = r(p)
such that Lr(p)(p) = TpM . This integer is called the degree of nonholonomy at
p. It is worth noticing that r(q) ≤ r(p) for q near p. For each point p ∈ M ,
there is in fact an increasing sequence of vector subspaces, or flag:

{0} = L0(p) ⊂ L1(p) ⊂ · · · ⊂ Ls(p) ⊂ · · · ⊂ Lr(p)(p) = TpM.

We shall denote this flag by F(p).
Points of the control system split into two categories: regular states, around

which the behaviour of the system does not change in a qualitative way, and
singular states, where some qualitative changes occur.

Definition. We say that p is a regular point if the integers dimLs(q) (s = 1,
2, . . . ) remain constant for q in some neighbourhood of p. Otherwise we say
that p is a singular point.

Let us give an example. Take M = R2, and

X1 =
(

1
0

)
, X2 =

(
0
xk

)
(k is some integer). Then for c = (x, y) we have dimL1(c) = 1 if x = 0,
dimL1(c) = 2 if x 6= 0, so all points on the line x = 0 are singular and the
others are regular. For other examples, arising in the context of mobile robot
with trailers, see Section 2.
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It is worth to notice that, when M and vector fields X1, . . . , Xm are an-
alytic, regular points form an open dense set in M . Moreover, the sequence
dimLs(p), s = 0, 1, 2, . . . , is the same for all regular points in a same connected
component of M and is streactly increasing for 0 ≤ s ≤ r(p). Thus the degree
of nonholonomy at a regular point is bounded by n−m+ 1 (if we suppose that
no one of the Xi’s is at each point a linear combination of the other vector
fields). It may be easily computed when the definition of the Xi’s allows sym-
bolic computation, as for an analytic function, being non-zero at the formal
level is equivalent to being non-zero at almost every point.

Computing, or even bounding the degree of nonholonomy at singular points
is much harder, and motivated, for some part, sections 2 and 3 (see also
[9,11,19,24]).

1.7 Distance estimates and privileged coordinates

Now, fix a point p in M , regular or singular. We set ns = dimLs(p) (s =
0, 1, . . . , r).

Consider a system of coordinates centered at p, such that the differentials
dy1, . . . , dyn form a basis of T ∗pM adapted to F(p) (we will see below how to
build such coordinates). If r = 1 or 2, then it is easy to prove the following
local estimate for the sub-Riemannian distance. For y closed enough to 0, we
have

d(0, (y1, . . . , yn)) � |y1|+ · · ·+ |yn1 |+ |yn1+1|1/2 + · · ·+ |yn|1/2 (12)

where n1 = dimL1(p) (the notation f(y) � g(y) means that there exists con-
stants c, C > 0 such that cg(y) ≤ f(y) ≤ Cg(y)). Coordinates y1, . . . , yn1 are
said to be of weight 1, and coordinates yn1+1, . . . , yn are said to be of weight
2.

In the general case, we define the weight wj as the smallest integer s such
that dyj is non identically zero on Ls(p). (So that wj = s if ns−1 < j ≤ ns.)
Then the proper generalization of (12) would be

d(0, (y1, . . . , yn)) � |y1|1/w1 + · · ·+ |yn|1/wn . (13)

It turns out that this estimate is generically false as soon as r ≥ 3. A simple
counter-example is given by the system

X1 =

1
0
0

 , X2 =

 0
1

x2 + y

 (14)
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on R3. We have

L1(0) = L2(0) = R2 × {0}, L3(0) = R3,

so that y1 = x, y2 = y, y3 = z are adapted coordinates and have weight 1, 1
and 3. In this case, the estimates (13) cannot be true. Indeed, this would imply

|z| ≤ const.
(
d(0, (x, y, z)

)3
,

whence ∣∣∣z(exp(tX2)p
)∣∣∣ ≤ const. t3,

but this is impossible since

d2

dt2
z
(

exp(tX2)(p)
)∣∣∣∣
t=0

= (X2
2z)(p) = 1.

However a slight nonlinear change of coordinates allows for (13) to hold. It is
sufficient to replace y1, y2, y3 by z1 = x, z2 = y, z3 = z − y2/2.

In the above example, the point under consideration is singular, but one can
give similar examples with regular p in dimension ≥ 4. To formulate conditions
on coordinate systems under which estimates like (13) may hold, we introduce
some definitions.

Call X1f, . . . , Xmf the nonholonomic partial derivatives of order 1 of f
relative to the considered system (compare to ∂x1f, . . . , ∂xnf). Call further
XiXjf , XiXjXkf , . . . the nonholonomic derivatives of order 2, 3, . . . of f .

Proposition 1.4. For a smooth function f defined near p, the following con-
ditions are equivalent:

(i) One has f(q) = O
(
d(p, q)s

)
for q near p.

(ii) The nonholonomic derivatives of order ≤ s− 1 of f vanish at p

This is proven by the same kind of computations as in the study of example
(14).

Definition. If Condition (i), or (ii), holds, we say that f is of order ≥ s at p.

Definition. We call local coordinates z1, . . . , zn centered at p a system of
privileged coordinates if the order of zj at p is equal to wj (j = 1, . . . , n).

If z1, . . . , zn are privileged coordinates, then dz1, . . . , dzn form a basis of
T ∗pM adapted to F(p). The converse is not true. Indeed, if dz1, . . . , dzn form
an adapted basis, one can show that the order of zj is ≤ wj , but it may be
< wj : for the system (14), the order of coordinate y3 = z at 0 is 2, while w3 = 3.
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To prove the existence, in an effective way, of privileged coordinates, we
first choose vector fields Y1, . . . , Yn whose values at p form a basis of TpM in
the following way.

First, choose among X1, . . . , Xm a number n1 of vector fields such that
their values form a basis of L1(p). Call them Y1, . . . , Yn1 . Then for each s
(s = 2, . . . , r) choose vector fields of the form

Yi1i2...is−1is = [Xi1 , [Xi2 , . . . [Xis−1 , Xis ] . . . ]] (15)

which form a basis of Ls(p) mod Ls−1(p), and call them Yns−1+1, . . . , Yns .
Choose now any system of coordinates y1, . . . , yn centered at p such that

the differentials dy1, . . . , dyn form a basis dual to Y1(p), . . . , Yn(p). (Starting
from any system of coordinates x1, . . . , xn centered at p, one can obtain such
a system y1, . . . , yn by a linear change of coordinates.)

Theorem 1.5. The functions z1, . . . , zn recursively defined by

zq = yq −
∑

{α |w(α)<wq}

1
α1! . . . αq−1!

(Y α1
1 . . . Y

αq−1
q−1 yq)(p) zα1

1 . . . z
αq−1
q−1 (16)

form a system of privileged coordinates near p. (We have set w(α) = w1α1 +
· · ·+ wnαn.)

The proof is based on the following lemma.

Lemma 1.6. For a function f to be of order > s at p, it is necessary and
sufficient that

(Y α1
1 . . . Y αnn f) (p) = 0

for all α = (α1, . . . , αn) such that w1α1 + · · ·+ wnαn ≤ s.

This is is an immediate consequence of the following, proved by J.-J. Risler
[4]: any product Xi1Xi2 . . . Xis , where i1, . . . , is are integers, can be rearranged
as a sum of ordered monomials∑

cα1...αn(x)Y α1
1 . . . Y αnn

with w1α1 + · · · + wnαn ≤ s, and where the cα1...αn ’s are smooth functions.
This result reminds of the Poincaré-Birkhoff-Witt theorem.

Observe that the coordinates z1, . . . , zn supplied by the construction of The-
orem 1.5 are given from original coordinates by expressions of the form

z1 = y1

z2 = y2 + pol(y1)
· · ·

zn = yn + pol(y1, . . . , yn−1)
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where pol denotes a polynomial, without constant or linear term, and that the
reciprocal change of coordinates has exactly the same form.

Other ways of getting privileged coordinates are to use the mappings

(z1, . . . , zn) 7→ exp(z1Y1 + · · ·+ znYn) p (see [14]),
(z1, . . . , zn) 7→ exp(znYn) · · · exp(z1Y1) p (see [18]).

Following the usage in Lie group theory, such coordinates are called canonical
coordinates of the first (resp. second) kind.

1.8 Ball-Box Theorem

Using privileged coordinates, the control system (Σ) may be rewritten near p
as

żj =
m∑
i=1

ui
[
fij(z1, . . . , zj−1) +O

(
‖z‖wj

)]
(j = 1, . . . , n),

where the functions fij are weighted homogeneous polynomials of degree wj−1.
By dropping the O

(
‖z‖wj

)
, we get a control system (Σ̂)

żj =
m∑
i=1

ui
[
fij(z1, . . . , zj−1)

]
(j = 1, . . . , n),

or, in short,

ż =
m∑
i=1

uiX̂i(z),

by setting X̂i =
∑n
j=1 fij(z1, . . . , zn)∂zj . This system is nilpotent and the vec-

tor fields X̂i are homogeneous of degree -1 under the non-isotropic dilations
(z1, . . . , zn) 7→ (λw1z1, . . . , λ

wnzn). The system (Σ̂) is called the nilpotent ho-
mogeneous approximation of the system (Σ). For the sub-Riemaniann distance
d̂ associated to the nilpotent approximation, the estimate (17) below can be
shown by homogeneity arguments. The following theorem is then proved by
comparing the distances d and d̂ (for a detailed proof, see Belläıche [2]).

Theorem 1.7. The estimate

d (0, (z1, . . . , zn)) � |z1|1/w1 + · · ·+ |zn|1/wn (17)

holds near p if and only if z1, . . . , zn form a system of privileged coordinates at
p.
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The estimate (17) of the sub-Riemannian distance allows to describe the
shape of the accessible set in time ε. A(x, ε) can indeed be viewed as the sub-
Riemannian ball of radius ε and Theorem 1.7 implies

A(x, ε) � [−εw1 , εw1 ]× · · · × [−εwn , εwn ].

Then A(x, ε) looks like a box, the sides of the box being of length proportionnal
to εw1 , . . . , εwn . By the fact, Theorem 1.7 is called the Ball-Box Theorem (see
Gromov [16]).

1.9 Application to complexity of nonholonomic motion planning

The Ball-Box Theorem can be used to address some issues in complexity of
motion planning. The problem of nonholonomic motion planning with obstacle
avoidance has been presented in Chapter [Laumond-Sekhavat]. It can be for-
mulated as follows. Let us consider a nonholonomic system of control in the
form (Σ). We assume that Chow’s Condition is satisfied. The constraints due
to the obstacles can be seen as closed subsets F of the configuration space M .
The open set M − F is called the free space. Let a, b ∈ M − F . The motion
planning problem is to find a trajectory of the system linking a and b contained
in the free space.

From Chow’s Theorem (§1.4), deciding the existence of a trajectory linking
a and b is the same thing as deciding if a and b are in the same connected
component of M − F . Since M − F is an open set, the connexity is equivalent
to the arc connexity. Then the problem is to decide the existence of a path in
M − F linking a and b. In particular this implies that the decision part of the
motion planning problem is the same for nonholonomic controllable systems as
for holonomic ones.

For the complete problem, some algorithms are presented in Chapter
[Laumond–Sekhavat]. In particular we see that there is a general method (called
“Approximation of a collision-free holonomic path”). It consists in dividing the
problem in two parts:

– find a path in the free space linking the configurations a and b (this path
is called also the collision-free holonomic path);

– approximate this path by a trajectory of the system close enough to be
contained in the free space.

The existence of a trajectory approximating a given path can be shown as
follows. Choose an open neighbourhood U of the holonomic path small enough
to be contained in M −F . We can assume that U is connected and then, from
Chow’s Theorem, there is a trajectory lying in U and linking a and b.
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What is the complexity of this method?
The complexity of the first part (i.e., the motion planning problem for

holonomic systems) is very well modeled and understood. It depends on the
geometric complexity of the environment, that is on the complexity of the
geometric primitives modeling the obstacles and the robot in the real world
(see [6,30]).

The complexity of the second part requires more developments. It can be
seen actually as the “complexity” of the output trajectory. We have then to
define this complexity for a trajectory approximating a given path.

Let γ be a collision-free path (provided by solving the first part of the
problem). For a given ρ, we denote by Tube(γ, ρ) the reunion of the balls of
radius ρ centered at q, for any point q of γ. Let ε be the biggest radius ρ such
that Tube(γ, ρ) is contained in the free space. We call ε the size of the free space
around the path γ. The output trajectories will be the trajectories following γ
to within ε, that is the trajectories contained in Tube(γ, ε).

Let us assume that we have already defined a complexity σ(c) of a trajectory
c. We denote by σ(γ, ε) the infimum of σ(c) for c trajectory of the system linking
a and b and contained in Tube(γ, ε). σ(γ, ε) gives a complexity of an output
trajectory. Thus we can choose it as a definition of the complexity of the second
part of our method.

It remains to define the complexity of a trajectory. We will present here
some possibilities.

Let us consider first bang-bang trajectories, that is trajectories obtained
with controls in the form (u1, . . . , um) = (0, . . . ,±1, . . . , 0). For such a tra-
jectory the complexity σ(c) can be defined as the number of switches in the
controls associated to c.

We will now extend this definition to any kind of trajectory. Following
[3], a complexity can be derived from the topological complexity of a real-
valued function (i.e., the number of changes in the sign of variation of the
function). The complexity σ(c) appears then as the total number of sign changes
for all the controls associated to the trajectory c. Notice that, for a bang-
bang trajectory, this definition coincides with the previous one. We will call
topological complexity the complexity σt(γ, ε) obtained with this definition.

Let us recall that the complexity of an algorithm is the number of elemen-
tary steps needed to get the result. For the topological complexity, we have
chosen as elementary step the construction of a piece of trajectory without
change of sign in the controls (that is without manoeuvring, if we think to a
car-like robot).
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Another way to define the complexity is to use the length introduced in §1.3
(see Formula (4)). For a trajectory c contained in Tube(γ, ε), we set

σε(c) =
length(c)

ε

and we call metric complexity the complexity σm(γ, ε) obtained with σε(c). Let
us justify this definition on an example. Consider a path γ such that, for any
q ∈ γ and any i ∈ {1, . . . ,m}, the angle between Tqγ and Xi(q) is greater than
a given θ 6= 0. Then, for a bang-bang trajectory without switches contained
in Tube(γ, ε), the length cannot exceed ε/ sin θ. Thus, the number of switches
in a bang-bang trajectory (⊂ Tube(γ, ε)) is not greater than the length of the
trajectory divided by ε (up to a constant). This links σε(c) and σm(γ, ε) to the
topological complexity.

Let us give an estimation of these complexities for the system of the car-like
robot (see Chapter [Laumond–Sekhavat]). The configurations are parametrized
by q = (x, y, θ)T ∈ R2 × S1 and the system is given by:

q̇ = u1X1 + u2X2, with X1 =

cos θ
sin θ

0

 , X2 =

0
0
1

 .

It is well-known that, for all q ∈ R2 × S1, the space L2(q) has rank 3 (see
Section 2).

Let us consider a non-feasible path γ ⊂ R2 × S1. When γ is C1 and its
tangent vector is never in L1(q), one can link the complexity σm(γ, ε) to the
number of ε-balls needed to cover γ. By the Ball-Box Theorem (§1.8), this
number is greater than Kε−2, where the constant depends on γ.

More precise results have been proven by F. Jean (see also [22] for weaker
estimates). Let T (q) (‖T‖ = 1) be the tangent vector to γ. Assume that T (q)
belongs to L2(q)− L1(q) almost everywhere and that γ is parametrized by its
arclength s. Then we have, for small ε 6= 0:

σt(γ, ε) and σm(γ, ε) � ε−2

∫ L

0

det(X1, X2, T )(γ(s)) ds

(let us recall that the notation σ(γ, ε) � f(γ, ε) means that there exist c, C > 0
independant on γ and ε such that cf(γ, ε) ≤ σ(γ, ε) ≤ Cf(γ, ε)).

2 The car with n trailers

2.1 Introduction

This section is devoted to the study of an example of nonholonomic control
system: the car with n trailers. This system is nonholonomic since it is subject
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to non integrable constraints, the rolling without skiding of the wheels. The
states of the system are given by two planar coordinates and n+ 1 angles: the
configuration space is then R2×(S1)n+1, a (n+3)-dimensional manifold. There
are only two inputs, namely one tangential velocity and one angular velocity
which represent the action on the steering wheel and on the accelerator of the
car.

Historically the problem of the car is important, since it is the first non-
holonomic system studied in robotics. It has been intensively treated in many
papers throughout the litterature, in particular from the point of view of find-
ing stabilizing control laws: see e.g. Murray and Sastry ([25]), Fliess et al. ([8]),
Laumond and Risler ([23]).

We are interested here in the properties of the control system (see below
§2.2). The first question is indeed the controllability. We will prove in §2.4 that
the system is controllable at each point of the configuration space. The second
point is the study of the degree of nonholonomy. We will give in §2.6 an upper
bound which is exponential in terms of the number of trailers. This bound is
the sharpest one since it is a maximum. We give also the value of the degree
of nonholonomy at the regular points (§2.5). The last problem is the singular
locus. We have to find the set of all the singular points (it is done in §2.5) and
also to determinate its structure. We will see in §2.7 that one has a natural
stratification of the singular locus related to the degree of nonholonomy.

2.2 Equations and notations

Different representations have been used for the car with n trailers. The problem
is to choose the variables in such a way that simple induction relation may
appear. The kinematic model introduced by Fliess [8] and Sørdalen [33] satisfies
this condition. A car in this context will be represented by two driving wheels
connected by an axle. The kinematic model of a car with two degrees of freedom
pulling n trailers can be given by:

ẋ = cos θ0v0,
ẏ = sin θ0v0,

θ̇0 = sin(θ1 − θ0)v1
r1
,

...
θ̇i = sin(θi+1 − θi)vi+1

ri+1
,

...
θ̇n−1 = sin(θn − θn−1)vnrn ,
θ̇n = ω,

(18)
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where the two inputs of the system are the angular velocity ω of the car and
its tangential velocity v = vn. The state of the system is parametrized by
q = (x, y, θ0, . . . , θn)T where:

– (x, y) are the coordinates of the center of the axle between the two wheels
of the last trailer,

– θn is the orientation angle of the pulling car with respect to the x-axis,
– θi, for 0 ≤ i ≤ n − 1, is the orientation angle of the trailer (n − i) with

respect to the x-axis.

Finally ri is the distance from the wheels of trailer n − i + 1 to the wheels of
trailer n− i, for 1 ≤ i ≤ n− 1, and rn is the distance from the wheels of trailer
1 to the wheels of the car.

The point of this representation is that the system is viewed from the last
trailer to the car: the numbering of the angles is made in this sense and the
position coordinates are those of the last trailer. The converse notations would
be more natural but unfortunately it would lead to complicated computations.

The tangential velocity vi of the trailer n− i is given by:

vi =
n∏

j=i+1

cos(θj − θj−1) v,

or vi = fiv where

fi =
n∏

j=i+1

cos(θj − θj−1).

The motion of the system is then characterized by the equation:

q̇ = ωX1(q) + vX2(q)

with the control system {X1, X2} given by:

X1 =


0
0
...
0
1

 X2 =


cos θ0 f0

sin θ0 f0

...
1
rn

sin(θn − θn−1)
0





76 A. Belläıche, F. Jean and J.-J. Risler

2.3 Examples: the car with 1 and 2 trailers

Let us study first the example of the car with one trailer. The state is q =
(x, y, θ0, θ1)T and the vector fields are:

X1 =


0
0
0
1

 X2 =


cos θ0 cos(θ1 − θ0)
sin θ0 cos(θ1 − θ0)

1
r1

sin(θ1 − θ0)
0


We want to solve the three problems above (controllability, degree of nonholon-
omy, singular set). For that, we have to study the Lie Algebra generated by the
control system (see §1.6). Let us compute the first brackets of X1 and X2:

[X1, X2] =


− cos θ0 sin(θ1 − θ0)
− sin θ0 sin(θ1 − θ0)

1
r1

cos(θ1 − θ0)
0

 , [X2, [X1, X2]] = 1
r1


sin θ0

− cos θ0

− 1
r1
0

 .

It is straightforward that, for any q, the vectors X1(q), X2(q), [X1, X2](q) and
[X2, [X1, X2]](q) are independant. This implies that, for each q:

dimL1(X1, X2)(q) = 2,
dimL2(X1, X2)(q) = 3,
dimL3(X1, X2)(q) = 4,

where Lk(X1, X2)(q) is the linear subspace generated by the values at q taken
by the brackets of X1 and X2 of length ≤ k.

These dimensions allow us to resolve our three problems. First, the condi-
tions of the Chow theorem are satisfied at each point (since the configuration
space is 4-dimensional), so the car with one trailer is controllable. On the other
hand, the dimensions of the Lk(X1, X2)(q) doesn’t depend on q, so all the
points are regular and the degree of nonholonomy is always equal to 3.

Let us consider now the car with 2 trailers. If we compute the first brackets,
we obtain the following results:

– if θ2 − θ1 6= ±π2 , then the first independant brackets are X1(q), X2(q),
[X1, X2](q), [X2, [X1, X2]](q) and [X2, [X2, [X1, X2]]](q);

– if θ2 − θ1 = ±π2 , then the first independant brackets are X1(q), X2(q),
[X1, X2](q), [X2, [X1, X2]](q) and [X1[X2, [X2, [X1, X2]]]](q).

Thus the car with 2 trailers is also controllable since, in both cases, the subspace
L5(X1, X2)(q) is 5-dimensional. However we have now a singular set, the points
q such that θ2 − θ1 = ±π2 . At these points, the degree of nonholonomy equals
5 and at the regular points it equals 4.
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2.4 Controllability

The controllability of the car with n trailers has first been proved by Lau-
mond ([21]) in 1991. He used the kinematic model (18) but a slightly different
parametrization where the equation were given in terms of ϕi = θi − θi−1 and
(x′, y′) ((x′, y′) is the position of the pulling car). The proof of the controllabil-
ity given here is an adaptation of the proof of Laumond for our parametrization.
This adaptation has been presented by Sørdalen ([33]).

Theorem 2.1. The kinematic model of a car with n trailers is controllable.

Proof. Let us recall some notations introduced in §1.6.
Let L1(X1, X2) be the set of linear combinations with real coefficients of

X1 and X2. We define recursively the distribution Lk = Lk(X1, X2) by:

Lk = Lk−1 +
∑
i+j=k

[Li,Lj ] (19)

where [Li,Lj ] denotes the set of all brackets [V,W ] for V ∈ Li and W ∈ Lj .
The union L(X1, X2) of all Lk(X1, X2) is the Control Lie Algebra of the system
{X1, X2}.

Let us now denote L′1(X1, X2) the set of linear combinations of X1 and
X2 which coefficients are smooth functions. By the induction (19) we construct
from L′1(X1, X2) the sets L′k(X1, X2) and L′(X1, X2).

For a given state q, we denote by Lk(X1, X2)(q), resp. L′k(X1, X2)(q), the
subspace of Tq(R2 × (S1)n+1) wich consists of the values at q taken by the
vector fields belonging to Lk(X1, X2), resp. L′k(X1, X2).

Obviously, the sets Lk(X1, X2) and L′k(X1, X2) are different. However, for
each k ≥ 1 and each q, the linear subspaces Lk(X1, X2)(q) and L′k(X1, X2)(q)
are equal. We are going to prove this equality for k = 2 (the proof for any k
can be easily deduced from this case).
By definition L2(X1, X2)(q0) is the linear subspace generated by X1(q0), X2(q0)
and [X1, X2](q0). L′2(X1, X2)(q0) is generated by X1(q0), X2(q0) and all the
[f(q)X1, g(q)X2](q0) with f and g smooth functions. Then L2(X1, X2)(q0) ⊂
L′2(X1, X2)(q0).
From the other hand a bracket [fX1, gX2](q0) is equal to:

fg[X1, X2](q0)− g(X2.f)X1(q0) + f(X1.g)X2(q0).

Thus [fX1, gX2](q0) is a linear combination with real coefficients of X1(q0),
X2(q0) and [X1, X2](q0). Then L′2(X1, X2)(q0) = L2(X1, X2)(q0), which prove
our statement for k = 2.

To establish the controllability, we want to apply Chow’s theorem (see §1.4):
we have then to show that the dimension of L(X1, X2)(q) is n + 3. For that,
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we are going to prove that L′(X1, X2)(q) is n + 3-dimensionnal and use the
relation L′(X1, X2)(q) = L(X1, X2)(q).

Let us introduce the following vector fields, for i ∈ {0, . . . , n − 1}, which
belong to L′(X1, X2):

W0 = X1 Wi+1 = ri+1(sinϕiVi + cosϕiZi)
V0 = X2 Vi+1 = cosϕiVi − sinϕiZi)
Z0 = [X1, X2] Zi+1 = [Wi+1, Vi+1].

The form of these vector fields can be computed by induction. We give only
the expression of the interesting ones:


Wi = (0, . . . , 0︸ ︷︷ ︸

n−i+2

, 1, 0, . . . , 0︸ ︷︷ ︸
i

)T , i = 0, . . . , n

Vn = (cosϕ0,
1
r1

sinϕ0, 0, . . . , 0)T ,
Zn = (− sinϕ0,

1
r1

cosϕ0, 0, . . . , 0)T .

(20)

We have n + 3 vector fields which values at each point of the configu-
ration space are independant since their determinant equals 1/r1. Therefore
L′(X1, X2)(q), and then L(X1, X2)(q), are equal to Tq(R2 × (S1)n+1). We can
then apply Chow’s theorem and get the result.

Remark. A stronger concept than controllability is given by the following
definition: the system {X1, X2} is called well-controllable if there exists a basis
of n+ 3 vector fields in L(X1, X2)(q) such that the determinant of the basis is
constant for each point q of the configuration space.
The n+ 3 vector fields that we have constructed in the proof satisfy this con-
dition. So the car with n trailers is well-controllable.

2.5 Regular points

Let us denote βn(q) the degree of nonholonomy of the car with n trailers. It
can be defined as:

βn(q) = min{k | dimLk(X1, X2)(q) = n+ 3}.

We have already computed (§2.3) the values of this degree for n = 1 and 2:

β1(q) = 3, β2(q) = 4 or 5.

It appears, for n = 2, that the configurations where the car and the first
trailer are perpendicular have particular properties. This fact can be generalized
as follows ([19]):
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Theorem 2.2. The singular locus of the system is the set of the points for
which there exists k ∈ [2, n] such that θk − θk−1 = ±π2 .

The regular points are then the configuration where no two consecutives
trailers (except maybe the last two) are perpendicular. It results from §1.6
that the degree of nonholonomy at regular points is ≤ n+2. In fact this degree
is exactly n+ 2. It can be shown for instance by converting the system into the
so-called chained form as in Sørdalen ([33]). This gives us a first result on the
degree of nonholonomy:

Theorem 2.3. At a regular point, i.e., a point such that θk − θk−1 6= ±π2
∀k = 2, . . . , n, the degree of nonholonomy equals n+ 2.

2.6 Bound for the degree of nonholonomy

A first bound for this degree has been given by Laumond ([21]) as a direct
consequence of the proof of controllability: we just have to remark that the
vector fields (20) belong to L′2n+1(X1, X2). Thus the degree of nonholonomy
is bounded by 2n+1. However this bound is too large, as it can be seen in the
examples with 1 or 2 trailers.

It has been proved in 1993 ([24,34]) that a better bound is the (n+3)-th
Fibonacci number, which is defined by F0 = 0, F1 = 1, Fn+3 = Fn+2 + Fn+1.
Luca and Risler have also proved that this bound is a maximum which is
reached if and only if each trailer (except the last one) is perpendicular to the
previous one.

Theorem 2.4. The degree of nonholonomy βn(q) for the car with n trailers
satisfies:

βn(q) ≤ Fn+3.

Moreover, the equality happens if and only if θi − θi−1 = ±π2 , i = 2, . . . , n.

Let us remark that this bound is exponential in n since the value of the
n-th Fibonacci number is given by:

Fn =
1√
5

[(
1 +
√

5
2

)n
−

(
1−
√

5
2

)n]
.

2.7 Form of the singular locus

The last problem is to determinate the form of the singular locus, which is given
in Theorem 2.2. We already know the values of the degree of nonholonomy in
two extremal cases:
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– if no two consecutive trailers are perpendicular, βn(q) = n+ 2;
– if each trailer is perpendicular to the previous one, βn(q) = Fn+3.

We have now to characterize the states intermediate between these both cases.
For a given state q, we have the following sequence of dimensions:

2 = dimL1(X1, X2)(q) ≤ · · · ≤ dimLk(X1, X2)(q) ≤ · · · ≤ n+ 3. (21)

Let us recall that, if this sequence stays the same in an open neighbourhood
of q, the state q is a regular point of the control system; otherwise, q is a
singular point (see §1.6). Thus to give the sequence (21) at any state q allows
to characterize the singular locus.

To determinate the sequence (21), we only need the dimensions of the spaces
Lk(X1, X2)(q) such that Lk(X1, X2)(q) 6= Lk−1(X1, X2)(q). For that we define,
for i ∈ {1, n+ 3}:

βni (q) = min{k | dimLk(X1, X2)(q) ≥ i}

In other words, the fact that k = βni (q) is equivalent to:{
dimLk(X1, X2)(q) ≥ i
dimLk−1(X1, X2)(q) < i

(22)

The sequence (21) can be entirely deduced from the sequence βni (q), i =
1, . . . , n+ 3. Hence the singular locus is completly characterized by the βni (q)’s
which we are going to study. Let us remark that βnn+3(q) is the degree of non-
holonomy βn(q).

According to its definition, βni (q) increases with respect to i, for i lesser
than dimL(X1, X2)(q) (when i is strictly greater than this dimension, βni (q) is
equal to −∞). In fact we will establish (in Theorem 2.5) that this sequence is
strictly increasing with respect to i for 2 ≤ i ≤ n + 3. In other words, we will
prove that, for 2 ≤ i ≤ n+ 3, βni (q) > −∞ and that k = βni (q) is equivalent to
(compare with (22)):

{
dimLk(X1, X2)(q) = i
dimLk−1(X1, X2)(q) = i− 1

We can also calculate easily the first values of these sequences. It is clear
that the family X1, X2, [X1, X2] is three dimensional for all q (see the examples
n = 1 and 2). Then the dimensions of L1(X1, X2)(q) and L2(X1, X2)(q) are
respectively 2 and 3 and we have, for all state q:

βn1 (q) = 1 βn2 (q) = 1 βn3 (q) = 2. (23)
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Finally, for q ∈ R2 × (S1)n+1 and 1 ≤ p < n, we will denote the projection on
the first (n + 3 − p) coordinates of q by qp, that is qp = (x, y, θ0, . . . , θn−p)T .
qp belongs to R2 × (S1)n−p+1 and it can be seen as the state of a car with
n − p trailers. Hence we can associate to this state the sequence βn−pj (qp),
j = 1, . . . , n− p+ 3.

We can now give the complete characterization of the singular locus, i.e., the
computation of the βni (q) and the determination of a basis of Tq(R2×(S1)n+1).
The following theorem has been proved by F. Jean in ([19]). We restrict us to
the case where the distances ri equal 1.

Theorem 2.5. Let ap defined by a1 = π/2 and ap = arctan sin ap−1. ∀q ∈
R2 × (S1)n+1, for 2 ≤ i ≤ n+ 3, βni (q) is streactly increasing with respect to i
and can be computed, for i ∈ {3, n+ 3}, by the following induction formulae:

1. if θn − θn−1 = ±π2 , then

βni (q) = βn−1
i−1 (q1) + βn−2

i−2 (q2)

2. if ∃p ∈ [1, n − 2] and ε = ±1 such that θk − θk−1 = εak−p for every
k ∈ {p+ 1, n}, then

βni (q) = 2βn−1
i−1 (q1)− βn−2

i−2 (q2)

3. otherwise,

βni (q) = βn−1
i−1 (q1) + 1.

Moreover, at a point q, we can construct a basis B = {Bi, i = 1 . . . n + 3} of
Tq(R2 × (S1)n+1) by:

B1 = X1

B2 = X2

Bi = [X1, X2, . . . , X2︸ ︷︷ ︸
βn−1
i−1 (q1)

, X1, . . . , X1︸ ︷︷ ︸
βni (q)−βn−1

i−1 (q1)−1

] for i > 2,

where [Xi1 , . . . , Xis ] denotes [[. . . [Xi1 , Xi2 ], . . . , Xis−1 ], Xis ].

Let us consider the sequence (βni (q))i=2,...,n+3 (we remove βn1 (q) because it
is always equal to βn2 (q)). For example, for n = 2, the sequence (β2

i (q)) is equal
to (1, 2, 3, 5) on the hyperplanes θ2 − θ1 = ±π2 . The complementary of these
two hyperplanes are the regular points of the system and corresponds to the
values (1, 2, 3, 4) of the sequence (β2

i (q)).
As we have seen in Theorem 2.2, the singular locus is the union of the the

hyperplanes θk−θk−1 = ±π2 , 2 ≤ k ≤ n. On each hyperplane we have a generic
sequence (βni (q)) and the non generic points are:
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- either in the intersection with another hyperplane θj − θj−1 = ±π2 which
corresponds to the case 1 of Theorem 2.5;

- either in the intersection with an hyperplane θk+1 − θk = ±a2, (a2 = π
4 )

which corresponds to the case 2 of Theorem 2.5.

For these ”more singular” sets, we have again some generic and some singular
points that we can find with Theorem 2.5. We have then a stratification of
the singular locus by the sequence (βni (q)). Let us consider for instance the
hyperplane θ2− θ1 = π

2 . The generic sequence (βni (q)) is equal to (1, 2, . . . , n+
1, n+3) (it is a direct application of the recursion formulae of Theorem 2.5). The
non generic points are at the intersection with the hyperplanes θj−θj−1 = ±π2 ,
j = 3, . . . , n and with θ3 − θ2 = ±π4 . On θ2 − θ1 = π

2 , θ3 − θ2 = π
4 , the generic

sequence is (1, 2, . . . , n+ 1, n+ 4) and we can continue the decomposition.
Let us remark at last that Theorem 2.5 contains all the previous results.

For instance, it proves that βnn+3(q) is always definite ( i.e., > −∞): the rank
of L(X1, X2)(q) at any point is then n + 3 and the system is controllable. We
can also compute directly the values of βnn+3(q) and then its maximum, and so
on.

3 Polynomial systems

3.1 Introduction

We will deal in this section with polynomial systems, i.e., control systems in Rn

made with vector fields Vi =
∑n
j=1 P

j
i ∂Xi, where the P ji ’s are polynomials in

X1, . . . , Xn. Polynomial systems are important for “practical” (or “effective”)
purpose, because polynomials are the simplest class of functions for which sym-
bolic computation can be used. Also, we can hope of global finiteness properties
(on Rn) for such systems, and more precisely of effective bounds in term of n
and of a bound d on the degrees of the P ji .

In this section, we will study the degree of nonholonomy of an affine sys-
tem without drift Σ made with polynomial vector fields V1, . . . , Vs on Rn, and
prove that it is bounded by a function φ(n, d) depending only on the dimension
n of the configuration space Rn, and on a bound d on the degrees of the P ji .
As a consequence, we have that the problem of controllability for a polyno-
mial system (V1, . . . , Vs) of degree ≤ d (with rational coefficients) is effectively
decidable: take x ∈ Rn, compute the value at x of the iterated brackets of
(V1, . . . , Vs) up to length φ(n, d). Then the system is controllable at x if and
only if the vector space spaned by the values at x of these brackets is Rn (see
above §1.4). For the controllability on Rn, take a basis of Lφ(n,d), i.e., of the
elements of degree ≤ φ(n, d) of the Lie algebra L(V1, . . . , Vs). Then the system
Σ is controllable on Rn if and only if this finite family of vector fields is of
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rank n at any point x ∈ Rn. But this is known to be effectively decidable: one
has to decide if a matrix M with polynomial entries is of rank n at any point
of Rn. The matrix M is the matrix (V1, . . . , Vs, Vs+1, . . . , Vk), where the Vi’s
are the vector fields of Σ for 1 ≤ i ≤ s, and for s+ 1 ≤ i ≤ k a set of brackets
of the form [[. . . [Vi1 , Vi2 ], Vi3 , ] . . . ]Vip ], with 1 ≤ ij ≤ s, spaning Lφ(n,d). Let I
be the ideal of R[X1, . . . , Xn] spaned by all the n×n minors of the matrix M .
Then Σ is controllable on all Rn if and only if the zero set of I is empty, and
that is effectively decidable (see for instance [15] or [17]).

The bound described here for the degree of nonholonomy is doubly expo-
nential in n. A better bound (and in fact an optimal one) would be a bound
simply exponential in n, i.e., of the form O(dn) or dO(n), or again dn

O(1)
. For

an optimal bound in a particular case, see Section 2 of this chapter, for the
case of the car with n trailers. Note that this system is not polynomial.

3.2 Contact between an integral curve and an algebraic variety in
dimension 2

In this section, we will work over the field C, but all the results will be the same
over the field R. By the contact (or intersection multiplicity) between a smooth
analytic curve γ going through the origin O in Cn and an analytic germ of
hypersurface at O, {Q = 0}, we mean the order of Q|γ at O. More precisely, let
X1(t), . . . , Xn(t), Xi(0) = 0 be a parametrization of the curve γ near the origin
(Xi(t) are convergent power series in t). Then the contact of γ and {Q = 0} at
O is the order at 0 of the power series Q(X1(t), . . . , Xn(t)) (i.e., the degree of
the non zero monomial of lowest degree of this series). Let us give an example,
for the convenience of the reader. Set n = 2, Q(X,Y ) = Y 2 −X3, γ(t) defined
by X(t) = t2 +2t5, Y (t) = t3 +t4. We have Q|γ = (t3 +t4)2−(t2 +2t5)3 = 2t7+
higher order terms; then the contact exponent between γ and the curve {Q = 0}
is 7.

Let us first recall some classical facts about intersection multiplicity. If
Q1, . . . , Qp are analytic functions defined in a neighborhood of O, we will set
Z(Q1, . . . , Qp) for the analytic germ at O defined by Q1 = · · · = Qp = 0, and
C{X1, . . . , Xn} for the ring of convergent power series.

Then, if in Cn we have {O} = Z(Q1, . . . , Qn), the intersection multiplicity
at O of the analytic germ defined by {Qi = 0} (1 ≤ i ≤ n) is by definition

µ(Q1, . . . , Qn) = dimC
C{X1, . . . , Xn}

(Q1, . . . , Qn)
(24)

Recall that the condition {O} = Z(Q1, . . . , Qn) (locally at O) is equivalent
to the fact that the C-vector space C{X1,...,Xn}

(Q1,...,Qn) is of finite dimension. Recall
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at last that when Q1, . . . , Qn are polynomials of degrees q1, . . . , qn, we have
µ(Q1, . . . , Qn) ≤ q1 · · · qn by Bézout’s theorem, if dimC

C{X1,...,Xn}
(Q1,...,Qn) < +∞.

Let V = P1∂/∂X1 + · · ·+ Pn∂/∂Xn be a polynomial vector field such that
V (O) 6= 0, deg(Pi) ≤ d. Let Q(X1, . . . , Xn) be a polynomial of degree q. Set

Q1 = P1∂Q/∂X1 + · · ·+ Pn∂Q/∂Xn

Q2 = P1∂Q1/∂X1 + · · ·+ Pn∂Q1/∂Xn

...
Qn−1 = P1∂Qn−2/∂X1 + · · ·+ Pn∂Qn−2/∂Xn

(i.e., Q0 = Q and Qi =< P, gradQi−1 >=
∑n
j=1 Pj ∂Qi−1/∂Xj , for 1 ≤ i ≤

n−1); Q1 is the Lie derivative of Q along the vector field V , and more generally,
Qi is the Lie derivative of Qi−1 along the vector field V .
We have the following:

Theorem 3.1. Let V be a vector field in Cn whose coordinates are polyno-
mials of degree ≤ d, and such that V (O) 6= 0. Let γ be the integral curve of
V going through O, and Q a polynomial of degree q. Assume Q|γ 6≡ 0, and
that O is isolated in the algebraic set Z(Q,Q1, . . . , Qn−1) (which means that
dimC

C{X1,...,Xn}
(Q,...,Qn−1) < +∞). Then the contact exponent ν between Q and γ sat-

isfies

ν ≤ qq1 · · · qn−1 + n− 1, (25)

where qi is a bound for the degree of Qi, namely qi = q + i(d− 1).

Proof. We may assume ν ≥ n. Let γ(t) : t 7→ (X1(t), . . . , Xn(t)) be a smooth
analytic parametrization of γ. By definition, ν is the order of the power series
Q ◦ γ(t) = Q(X1(t), . . . , Xn(t)). Now, Q1 ◦ γ(t) = Q1(X1(t), . . . , Xn(t)) is the
derivative of Q ◦ γ(t), and therefore is of order ν− 1 at O. Similarly Qi ◦ γ(t) is
of order ν − i for 1 ≤ i ≤ n− 1. We have that the series Q(X1(t), . . . , Xn(t)) is
of the form tνv(t), i.e., belongs to the ideal (tν) in C{X1, . . . , Xn}. Similarly,
Qi(X1(t), . . . , Qn(t)) belongs to the ideal (tν−i).
Set γ∗ for the ring homomorphism : C{X1, . . . , Xn} −→ C{t} induced by the
parametrization of γ. The image of γ∗ contains by assumption a power series
of order one, i.e., of the form v(t) = tu(t), with u(O) 6= 0. Then the inverse
function theorem implies that t itself is in the image of γ∗, i.e., that γ∗ is
surjective. Hence we have a commutative diagramm of ring homomorphisms:

C{X1, . . . , Xn}
γ∗−−−−−→ C{t}y

y
C{X1,...,Xn}

(Q,Q1,...Qn−1)

γ̄∗−−−−−→ C{t}
(tν−n+1)
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where the vertical arrows represent the canonical maps. Since γ∗ is surjective,
we have also that γ̄∗ is surjective.

This implies that

ν − n+ 1 = dimC
C{t}

(tν−n+1)
≤ dimC

C{X1, . . . , Xn}
(Q, . . . , Qn−1)

≤ qq1 · · · qn−1

or ν ≤ qq1 · · · qn−1 +n−1 as asserted, the last inequality coming from Bézout’s
theorem.

Remark. One may conjecture that such a kind of result is valid (may be with
a slightly different bound) without the hypothesis dimC

C{X1,...,Xn}
(Q,...,Qn−1) finite. This

would imply a simply exponential bound (i.e., of the form C(n)dn, or dn
0(1)

)
for the degree of nonholonomy.

Notice that for Theorem 3.1, we may always assume that the polynomial
Q(X1, . . . , Xn) is reduced (or even irreducible), because if Q = R1 . . . Rs, the
bound (25) for the Ri’s implies the same bound for Q. In fact, it is enough to
prove that if Q = RS, r = degR, s = degS, q = r + s, then

r(r+d−1) · · · (r+(n−1)(d−1))+s(s+d−1) · · · (s+(n−1)(d−1))+2(n−1) ≤
q(q + d− 1) · · · (q + (n− 1)(d− 1)) + n− 1

which is immediate by induction on n.
If A is a C-algebra, let us denote by dimA its dimension as a ring (it is its

“Krull dimension”), and dimCA its dimension as a C-vector space. If A is an
analytic algebra, i.e., A = C{X1,...,Xn}

I where I is an ideal, I = (S1, . . . , Sq),
then its dimension as a ring is the dimension (over C) of the germ at O of the
analytic space defined by Z(S1, . . . , Sq). We have that dimCA < +∞ if and
only if dimA = 0.

Notice that Q1 cannot be divisible by Q (since Q ◦ γ(t) is of order ν, and
Q1 ◦ γ(t) of order ν − 1). Therefore, if Q is irreducible, we have

dim
C{X1, . . . , Xn}

(Q,Q1)
= n− 2.

This implies that in Theorem 3.1, we may always assume that we have
dim C{X1,...,Xn}

(Q,...,Qn−1) ≤ n− 2.
In particular, (25) is true in dimension 2 without additional hypothesis:

Corollary 3.2. Let V = P1∂/∂X+P2∂/∂Y be a polynomial vector field in the
plane of degree ≤ d, such that V (O) 6= 0, γ the integral curve of V by O, and
Q(X,Y ) a polynomial of degree q such that Q|γ 6≡ 0. Then the contact exponent
ν of Q and γ satisfies

ν ≤ q(q + d− 1) + 1.
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This corollary has first been proved by A. Gabrielov, J.-M. Lion and R.
Moussu, [10].

3.3 The case of dimension n

We have the following result, due to Gabrielov ([12])

Theorem 3.3. Let V =
∑
Pi∂/∂Xi be a polynomial vector field, with Pi ∈

C[X1, . . . , Xn] of degree ≤ d, such that V (O) 6= 0, Q(X1, . . . , Xn) a polynomial
of degree ≤ q such that Q|γ 6≡ 0. Then the contact exponent ν between Q and
γ satisfies

ν ≤ 22n−1
n∑
k=1

[q + (k − 1)(d− 1)]2n (26)

Remark. This bound is polynomial in d and q and simply exponential in n. It
is optimal (up to constants) since it comes from Example 2) below that there
exists a lower bound also polynomial in d and q and simply exponential in n.

Remark. In 1988 Nesterenko ([27]) found a bound of the form

ν ≤ c(n)dn
2
qn,

namely simply exponential in n when d is fixed, but doubly exponential in the
general case.

Remark. In dimension 3, the following bound has been found by A. Gabrielov,
F. Jean and J.-J. Risler, [9]:

ν ≤ q + 2q(q + d− 1)2.

3.4 Bound for the degree of nonholonomy in the plane

In the two-dimensional case, we have the following bound for the degree of
non-holonomy (see [29]):

Theorem 3.4. Let Σ = (V1, . . . , Vs) be a control system made with polynomial
vector fields on R2 of degree ≤ d; let r(x) be the degree of nonholonomy of Σ
at x ∈ R2. Then,

r(x) ≤ 6d2 − 2d+ 2 (27)
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Proof. Take x = O. Let as above (see §1.6) Li(O) be the vector space spaned
by the values at O of the brackets of elements of Σ of length ≤ i. We may
assume dimL1(O) = 1, because otherwise the problem of computing r(O) is
trivial (if dimL1(O) = 0, then Ls(O) = {0} ∀s ≥ 1, and if dimL1(O) = 2,
we have L1(O) = R2 and r(O) = 1 by definition). We therefore assume that
V1(O) 6= 0, and set V = V1.

Lemma 3.5. Assume r(O) > 1, which in our case implies that the system Σ
is controllable at O. Then there exists Y ∈ Σ such that det(V, Y )|γ 6≡ 0.

Proof. Assume that det(V, Y )|γ ≡ 0 ∀Y ∈ Σ. Then, in some neighborhood
of O, any vector field Y ∈ Σ is tangent to the integral curve γ of V from
O. This implies that the system cannot be controllable at O, since in some
neighborhood of O the accessible set from O would be contained in γ.

Let us now state a Lemma in dimension n.

Lemma 3.6. Let V, Y1, . . . , Yn be vector fields on Rn. Then

V.det(Y1, . . . , Yn) =
n∑
i=1

det(Y1, . . . , [V, Yi], . . . , Yn) +

Div(V ).det(Y1, . . . , Yn).

Let us recall that Div(V ) = ∂P1/∂X1 + ∂P2/∂X2 + · · · + ∂Pn/∂Xn, where
V = P1∂/∂X1 + · · ·+ Pn∂/∂Xn.

Proof. This formula is classical. See for instance [13, Exercice page 93], or [26,
Lemma 2.6].

of Theorem 3.4, continued. Let γ be the integral curve of V by O. By Lemma
3.5, there exists Y ∈ Σ such that det(V, Y )|γ 6≡ 0. Set Q = det(V, Y )|γ .

By Lemma 3.6, we have V.det(V, Y ) = det(V, [V, Y ])+DivV det(V, Y ). Let ν
be the order of contact of Q and γ. We have that Q|γ = aνt

ν+ · · · , with aν 6= 0,
and that (V.Q)|γ = νaνt

ν−1 +· · · because V|γ can be identified with ∂/∂t. Then
det(V, [V, Y ])|γ is of order ν − 1 in t, and we see that when differentiating ν
times in relation to t, we find that

det(V, [V [V, . . . [V, Y ] . . . ]])(O) 6= 0,

the bracket inside the parenthesis being of length ν+1. This means by definition
of r(O) that r(O) ≤ ν + 1.
The polynomial Q is of degree ≤ 2d, and V is a polynomial vector field of
degree ≤ d. Then Corollary 3.2 gives ν ≤ 2d(2d+ d− 1) + 1 = 6d2− 2d+ 1.
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Example. 1) Set

Σ

{
V1 = ∂/∂X +Xd∂/∂Y
V2 = Y d∂/∂X

Then it should be easily seen that for this system, r(O) = d2 + 2d + 1. The
inequality r(O) ≥ d2 + 2d + 1 has been checked by F. Jean. This proves that
the estimation (27) is asymptotically optimal in term of d, up to the constant
6.

2) Let in Rn

Σ


V1 = ∂/∂X1

V2 = Xd
1∂/∂X2

...
Vn = Xd

n−1∂/∂Xn.

We see easily that for this system, r(O) = dn−1, which means that in general
φ(n, d) is at least exponential in n.

3.5 The general case

We have the following result, where for simplicity, and because it is the most
important case, we assume the system controllable.

Theorem 3.7. Let n ≥ 3. With the above notation, let r(x) be the degree of
non-holonomy at x ∈ Rn for the control system Σ made with polynomial vector
fields of degree ≤ d. Let us assume that the system Σ is controllable. Then we
have the following upper bound:

r(x) ≤ φ(n, d), with φ(n, d) ≤ 2n−2(1 + 22n(n−2)−2d2n
n+3∑
k=4

k2n). (28)

Proof. We first state without proof a result of Gabrielov [11].

Lemma 3.8. Let (V1, . . . , Vs) be a system of analytic vector fields controllable
at O such that V1(O) 6= 0. Let f be a germ of an analytic function such that
f(O) = 0 and f |γ(V1) 6≡ 0 (γ(V1) denotes the trajectory of V1 going through O).
Then there exists n vector fields χ1, . . . , χn satisfying

– χ1 = V1, χ2 is one of the Vi, and, for 2 < k ≤ n, χk is either one of the Vi
or belongs to the linear subspace generated by [χl, fχm], for l,m < k;

– there exists a vector field χε = χ1 + ε2χ2 + · · ·+ εn−1χn−1 such that

det(χ1, . . . , χn)|γ(χε) 6≡ 0.
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Let us assume x = O. For a generic linear function f , the conditions f(O) =
0 and f |γ(V1) 6≡ 0 are ensured. We can then apply the lemma and obtain n vector
fields χ1, . . . , χn. From the first point of Lemma 3.8, χk is a polynomial vector
field of degree not exceeding 2k−2d. Thus the vector field χε is polynomial of
degree not exceeding 2n−3d and the determinant Q = det(χ1, . . . , χn) is also
polynomial. Its degree does not exceed d+ d+ · · ·+ 2n−2d = 2n−1d.

The second point of Lemma 3.8 ensures that Q and χε fulfill the conditions
of Theorem 3.3. Then, applying (26), the contact exponent ν between Q and
γ(χε) satisfies

ν ≤ 22n3−4n−1
n∑
k=1

(4d+ k − 1)2n.

Each derivation of Q along χε decreases this multiplicity by 1. Hence the
result of ν consecutives derivations of Q along χε does not vanish at O. By using
Lemma 3.6, that means that there exists n brackets ξk = [χε, . . . , [χε, χk] . . . ],
with at most ν occurences of χε, such that:

det(ξ1(O), . . . , ξn(O)) 6= 0.

¿From the first point of Lemma 3.8, each χk is a linear combination with
polynomial coefficient of brackets of the vector fields Vi of length not exceeding
2k−2. This implies χk(O) ∈ L2k−2(Σ)(O) (this is the same reasoning as in the
proof of Theorem 2.1). We have then χε(O) ∈ L2n−3(Σ)(O) and, ∀k, ξk(O) ∈
L2n−2+ν2n−3(Σ)(O).

Since det(ξ1, . . . , ξn) 6= 0, the subspace L2n−2+ν2n−3(Σ)(O) is of dimension
n and then

r(O) ≤ 2n−2(1 + 22n(n−2)−2d2n
n+3∑
k=4

k2n).
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Seidenberg,” Bull. Soc. Math. Fr., 118, 101–126, 1990.

18. H. Hermes, “Nilpotent and high-order approximations of vector field systems,”
SIAM Review , 33 (2), 238–264.



Geometry of Nonholonomic Systems 91

19. F. Jean, “The car with N trailers: characterization of the singular configurations,”
ESAIM: COCV, http://www.emath.fr/cocv/ , 1, 241–266, 1996.

20. J.-P. Laumond, “Singularities and Topological Aspects in Nonholonomic Motion
Planning,” in Nonholonomic Motion Planning , 149–199, Z. Li and J. Canny Ed.,
Klumer Academic Publishers, 1993.

21. J.-P. Laumond, “Controllability of a multibody mobile robot,” in Proceedings of
the International Conference on Advanced robotics and Automation, 1033–1038,
Pisa, Italy, 1991.

22. J-P. Laumond, P. E. Jacobs, M. Taix and R. M. Murray, “A motion planner for
nonholonomic mobile robot,” in LAAS-CNRS Report , oct. 1992.

23. J.-P. Laumond and J.-J. Risler, “Nonholonomics systems: Controllability and
complexity,” Theoretical Computer Science, 157, 101–114, 1996.

24. F. Luca and J.-J. Risler, “The maximum of the degree of nonholonomy for the car
with n trailers,” 4th IFAC Symposium on Robot Control , 165–170, Capri, 1994.

25. R. M. Murray and S. S. Sastry, “Nonholonomic Motion Planning: Steering using
sinusoids,” IEEE Transactions on Automatic Control , 38 (5), 700–716, May 1993.

26. A. Nagel, E. M. Stein and S. Wainger, “Metrics defined by vector fields,” Acta
Math., 155, 103–147, 1985.

27. Y. V. Nesterenko, “Estimates for the number of zeros of certain functions,” New
Advances in transcendance Theor , 263–269, A. Baker Ed., Cambridge, 1988.

28. P. K. Rashevsky, “Any two points of a totally nonholonomic space may be con-
nected by an admissible line,” Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys.
Math., 2, 83–94, 1938 (Russian).

29. J.-J. Risler, “A bound for the degree of nonholonomy in the plane,” Theoretical
Computer Science, 157, 129–136, 1996.

30. J. T. Schwartz and M. Sharir, “On the ‘Piano Movers’ problem II: general tech-
niques for computing topological properties of real algebraic manifolds,” Advances
in Applied Mathematics, 4, 298–351, 1983.

31. A. Seidenberg, “On the length of Hilbert ascending chain,” Proc. Amer. Math.
Soc., 29, 443–450, 1971.

32. E. Sontag, “Some complexity questions regarding controllability,” Proc. of the
27-th IEEE Conf. on Decision and Control , 1326–1329, Austin, 1988.

33. O. J. Sørdalen, “Conversion of the kinematics of a car with n trailers into a chain
form,” IEEE International Conference on Robotics and Automation, 1993.

34. O. J. Sørdalen, “On the global degree of non holonomy of a car with n trailers,”
4th IFAC Symposium on Robot Control, 343–348, Capri, 1994.

35. P. Stefan, “Accessible sets, orbits, and foliations with singularities,” Proc. London
Math. Soc., 29 (3), 699–713, 1974.

36. H. J. Sussmann, “Orbits of families of vector fields and integrability of distribu-
tions,” Trans. Amer. Math. Soc., 180, 171–188, 1973.

37. H. J. Sussmann, “Lie brackets, Real Analyticity and Geometric control,”
in Differential Geometric Control Theory , Brockett, Millman, Sussmann Ed.,
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