Available online at www.sciencedirect.com

SCIENCE<dDIRECT@ JOURNAL OF

COMPUTATIONAL AND
APPLIED MATHEMATICS

—‘;j-“é >
LSEVIER Journal of Computational and Applied Mathematics 176 (2005) 91—103

www.elsevier.com/locate/cam

Asynchronous iterations with flexible communication:
contracting operators

Didier El BaZ, Andreas Frommér*1, Pierre Spitefi

8L aboratoire d’Analyse et d’Architecture des Systémes du CNRS, 7, avenue du Colonel Roche,
F-31077 Toulouse CEDEX 4, France
bFachbereich Mathematik und Naturwissenschaften, Universitat Wuppertal, Gauss-Strasse 20 D-42097 Wuppertal, Germany
CEcole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique et d’Hydraulique de Toulouse,
2, rue Camichel, B.P. 7122, F-31071 Toulouse CEDEX 1, France

Received 18 November 2003; received in revised form 2 June 2004

Abstract

The concept of flexible communication permits one to model efficient asynchronous iterations on parallel com-
puters. This concept is particularly useful in two practical situations. Firstly, when communications are requested
while a processor has completed the current update only partly, and secondly, in the context of inner/outer iterations,
when processors are also allowed to make use of intermediate results obtained during the inner iteration in other
processors.

In the general case of nonlinear or linear fixed point problems, we give a global convergence results for asyn-
chronous iterations with flexible communication whereby the iteration operators satisfy certain contraction hypothe-
ses. In this manner we extend to a contraction context previous results obtained for monotone operators with respect
to a partial ordering.
© 2004 Elsevier B.V. All rights reserved.

MSC:65Y05; 68Q10; 68Q22

Keywords:Asynchronous iterations; Parallel computing; Flexible communication; Fixed point methods

* Corresponding author.
E-mail addresseslbaz@laas.f(D. El Baz),frommer@math.uni-wuppertal.d&. Frommer) pierre.spiteri@enseeiht.fr
(P. Spiteri).
1The work of this author was partially funded by the French Ministry of Research through a visiting grant at ENSEEIHT.

0377-0427/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.07.009

http://www.elsevier.com/locate/cam
mailto:elbaz@laas.fr
mailto:frommer@math.uni-wuppertal.de
mailto:pierre.spiteri@enseeiht.fr

92 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103
1. Introduction

Parallel computers work efficiently only if the work load for a given computation between two synchro-
nisation points can be distributed evenly among the processors. At a synchronisation point, processors
generally need data which have been computed by other processors, so that usually they have to wait until
the other processors have finished their computation and, in the case of distributed memory architectures,
the communication of the data has been accomplished. There are situations where synchronisation may
become a decisive bottleneck. For example, on supercomputers with several thousands of processors
synchronisation can become costly due to technical restrictions. Moreover in many applications, and in
particular for nonlinear problems, it can be difficult to predict the computational cost of each parallel
task, so that an even distribution of the work load between the processors cannot be axchigyedA
similar situation arises if the parallel computer in use is a cluster of heterogeneous workstations which,
in addition, may not be available in dedicated mode. Then, the computational power available on each
processor is unpredictable, so that it is again impossible to obtain a fair assignation whereby each parallel
task requires equal time between two synchronisation points. In such situations it can be advantageous
to use the asynchronous paradigm instead of the synchronous one. We think in particular of iterative pro-
cesses whereby each iterative step produces an approximation to the solution of a given problem. Then,
classically, synchronisation will occur at the beginning of each iterative step where processors build up
the value of the current iterate from the data computed in all processors. In the asynchronous case, these
synchronisation points are completely skipped. Therefore, if certain processors perform their iterative
step faster than others, then the processors will get ‘out of phase’. When building up ‘their’ current iterate,
the processors will now use data from other processors which will not correspond to the data used in the
synchronized algorithm. In this manner, the asynchronous paradigm tends to eliminate idle times due to
synchronisation. On the other hand, the resulting asynchronous iteration is less structured, and there is &
need for theoretical results concerning the convergence and the speed of convergence of such methods.

Asynchronous iterations have been studied and implemented by many authors for a variety of different
applications. Any attempt to list all relevant publications is beyond the scope of this paper. Instead, we
refer to the overview articld 1] and the book5] for references in the case of linear and nonlinear systems
of equations and minimization problems and the very recent pdpe8$ for multisplitting ideas and
applications to complementarity problems. The recent pdgganalyses for the first time asynchronous
iterations from a stochastic perspective.

In this study, we further develop on a recent and general class of asynchronous iterations for linear and
nonlinear fixed point problems which has first been brought forward in a mathematical f¢8mu. 3}

This concept, called ‘asynchronous iterations with flexible communication’ allows for an even larger
degree of freedom on when and how communications are to be performed than the classical model for
asynchronous iterations (sp&12,4,5). In particular, the flexible communication model is well suited

to the following two situations which we call the ‘partial update’ situation and the ‘inner/outer’ context.

In the partial update situation, each processor has several components, say a block, of the iterate vectol
to update, and it may happen that another processor requests data at a moment when this processor he
updated only a part of the components of its block. In the classical asynchronous model, communication
of data would have to be delayed until the update is completed. This actually introduces an undesirable
partial synchronisation together with idle times. In the asynchronous model with flexible communication
we avoid this drawback and allow for the possibility to communicate data as soon as it is requested, even
if updates are completed only partly.

D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103 93

In the inner/outer context, we assume that we have an iteration function where some ‘inner’ iterations
have to be performed to approximate the value of the ‘outer’ iteration function at a given point. The
flexible communication model allows intermediate results from the inner iteration in a given processor
to be used by the other processors. As a consequence intermediate results are not labelled by an oute
iteration index. The basic idea is that such an intermediate value usually represents a better approximation
to the solution than the outcome of the previous outer iteration, the only value that would be available for
the other processors in the classical asynchronous model. This approach was shown to be very performan
in a partial ordering context if8,13,15](and alsd16] in a multisplitting context). Indeed, in the partial
ordering context, the updates as well as the intermediate values converge monotonically to the solution
of the problem (see in particulft3]). As a consequence, using intermediate values, i.e. for example, the
last available values, corresponds to using a better approximation to the solution. In the case of linear
systems of algebraic equations, reference is also madetb0] for studies concerning asynchronous
iterations with flexible communication (see also, in this c{&é,11).

In the general case of nonlinear or linear fixed point problems, convergence results for asynchronous
iterations with flexible communication have been obtainefBid3] in situations where the iteration
function is monotone with respect to the natural partial ordering and where the whole process can,
loosely speaking, be described via appropriate monotone ‘superfunctions’ of the basic iteration function.
For further details, the reader is referred18]. Reference is also made [tt0], for the convergence of
two-stage methods in the linear case (see @$]).

The purpose of the present paper is to extend the global convergence results obtained in the partial
ordering context for nonlinear and linear fixed point problems and publishgdB]ro the case where
the basic iteration function is contracting. It is important to notice that if one already gets a conver-
gence result in the partial ordering context, then to establish such a result in the case of contracting
operators is not straightforward at all. We note in particular that obtaining global convergence results
in the case of nonlinear fixed point problems and contracting operators is a difficult issue due to the
complexity of the studied parallel iterative schemes and in particular, the lack of synchronization points.
We will see in the sequel, that due to the difference of contexts, it has been possible to propose in this
paper a mathematical model for asynchronous iterations with flexible communication which is com-
plementary to the one presented[i8] since it does not rely on monotonicity assumptions. Finally,
we will also establish the connection with well-known results for the case of classical asynchronous
iterations.

The rest of this paper is organized as follows: we describe the different computational and mathematical
models for asynchronous iterations in Section 2. We then develop a convergence theory for contracting
operators in Section 3. An example is presented in Section 4.

2. Computational and mathematical models

We start by setting the stage for the iterations to be considered. As sugge$iej1i@], we will
distinguish between computational and mathematical models. A computational model is given in the
form of a pseudocode corresponding to the Single Program Multiple Data (SPMD). It explains the
implementation of the method. A mathematical model formulates the functional relation between the
iterates. It is used to analyze the iteration.

94 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103

LetH : R* — R" denote the basic linear or nonlinear iteration function. We are interested in computing
a fixed pointx* of H by parallel variants of the successive approximation scheme:

S=HGEY, k=0,1,..., °given). 1)

We view the spac&" primarily as a Cartesian product of subspaces which represents blocks. In the
simplest case, each block is just one componeRt'irbut certain iteration functiond naturally induce
larger blocks. For example, the functiéhcould be derived from the solution of several smaller systems,
each of these systems being associated with one such block. To be precise, therdfore=t, ..., b
be a partitioning of the s€tl, . . ., n} into non-overlapping blocks, i.e.

b
=0}, L#0 fori=1...b LnIj=0 forisj.
i=1

Given a vectorr € R”, we use subscripts to denote the blocks corresponding to the above partitioning
and we will refer to such a part af as acomponenin the sequel. So, componente R" is from R
wheren; = |I;|. By using this notation, another way of writing the successive approximation scheme (1)
is thus:

gk xb), i=1...,b, k=0,1,...,)

whereH; denotes théth component of the operatdf.

On a parallel computer witlp processors, we now assign a set of components to each processor
P;, j=1,..., p.Wetherefore have an additional decompositiofiof. ., b} into (possibly overlapping)
subsetss;, j=1,..., p,ofthesefl, ..., b}, and the basic synchronous computational model is given
by the following algorithm; the mathematical model being just (2).

Algorithm 1. (Basic synchronous computational model, pseudocode for processeach processor
running the same pseudocode):

repeat until convergence
wait for all processors to have finished previous sweep
through loop

for i=1...,b

read x; from processor P, (where i € S,)
for i€ S;

compute x; < H;(x1,...,xp)

Remark 1. We note that if two subset$. and S, overlap and € S,, i € S, then the values fox;
computed by processofs and P, are equal.

In situations wheréd; is given only implicitly, one has to perform another, ‘inner’ iteration to evaluate
approximatelyH; (x1, ..., xp). At this point we just modify Algorithm 1 by introducing an inner loop
computing an approximation fat; (x).

D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103 95

Algorithm 2. (Inner/outer synchronous computational model, pseudocode for progg3sor

repeat until convergence
wait for all processors to have finished previous sweep
through loop
for i=1,....,b
read x; from processor P, (where i € S,)
set X =(x1,...,xp)
for ieS;
repeat until precise enough
compute new approximation x; for H;(x)
set x; =x;

Here, the stopping criterion ‘precise enough’ for the inner iteration means that the inner iteisate
sufficiently close taH; (x). The mathematical model for this iteration is given as follows:

=Gk, k=0,1,... (3)

where, for eaclt, the functionG* : R — R gives the result of the inner loop, and foe 1, ..., b the
componenG* (x¥) approximatesd; (x¥). In a practical situation, the functioi@ might be obtained for
example via several iterationg,(k) say, of a successive approximation scheme or some other iterative
method which approximatds; (x¥), starting, Withxf. If we denote the corresponding iteration function
by T; .« : R" — R", we then have

+1 i(k
We=xlo Y =T .00, q=0 L q -1 GEh =y (4)

The ‘classical’ asynchronous counter-part to the synchronous inner/outer method corresponding to
Algorithm 2 arises by just skipping the wait statement.

Algorithm 3. (Inner/outer asynchronous computational model, pseudocode for pro@ggsor

repeat until convergence
for i=1,...,b
read x; from processor P, (where i € S,)
set X =(x1,...,xp)
for iesS;
repeat until precise enough
compute new approximation x; for H;(x)
set x; =x;

Remark 2. If two subsetsS, andS,. overlap and € S,, i € S, then processoP; can take the most
recent value of;.

96 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103

Since processors may perform their iterations at different speeds, a mathematical model for this method

reads as follows, wheré* is as in (3). Foralf € {1,...,b}andk =0, 1, ...
k+1 G{-((xil(k), el be(k)) if i € Jg, 5
P U=k ; (5)
x; otherwise

where the indices; (k) denote appropriate previous time steps. The iteration irdexust now be
interpreted as a global counter which is stepped by one everyaim@rocessor starts a new sweep
through the outer loop. The additional superscript&) model the fact that the data used may come from
different steps of the global iteration. Finally, for edghthe set/; C {1, ..., b} corresponds to the set
S; in the computational model assuming that iteratias performed by processd;.

The following weak assumptions have become standard in asynchronous convergence thgtly (see

Virtually, they are fulfilled in any practical implementation. Foria {1, ..., b}:
o<si(k)<k, k=0,1,... (6)
Jimsi (k) = o0, ()
the set{k |i € Ji} is unbounded (8)

If, in addition, we want to make the inner iterates more generally the current value of any component of
the iterate vector available to the other processors, we end up with asynchronous iterations with flexible
communication. To describe the computational model we just replacedite x; statement byead
X; in Algorithm 3 to indicate that a processor may now read at any time the current result of the inner
iteration or more generally the current value of any compongfrom the other processors.

Algorithm 4. (Asynchronous computational model with flexible communication, pseudocode for
processoir;)

repeat until convergence
for i=1,....,b
read x; from processor P, (where i € S,)
set x=(X1,...,%p)
for ieS;
repeat until precise enough
compute new approximation x; for H;(x)
set x; =x;

Note that the last statement which defing$s not necessary for the algorithm to work; however, the
statement is helpful to formulate the mathematical model.

Remark 3. If two subsetsS, andS,. overlap and € S,, i € S,» then processoP; can take the most
recent value of;. If it is not possible to determine what is the most recent value, then the decision can
be taken arbitrarily on the basis of the last received data.

D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103 97

Mathematically, an asynchronous iterative sequence with flexible communi¢afipis described by
the following modification of (5). Forall € {1,...,b}andk =0, 1, ...

ko ~k <k e
kL G/(x],....x,) ifi GJI/{,
i xk otherwise

1

(9)

In order to establish convergence results, it is necessary to somehow restrict the possiblé{‘values
This was done irj13] and[8] in the context of partial ordering, see ald®]. In the present paper, we
take a different, complementary approach, and impose the following norm constraint.

IE5 = xF I fui <[x°® = x*||, foralli=1,...,b, (10)

wherex*®) denotes the vectan}®, ..., x»®).

Remark 4. Itis important to note that in the above model of asynchronous iterations with flexible com-
munication (9)—(10), where we assume that (6)—(8) are true, we do not need any monotonicity condition
concerning the access to the components of the iterate vector, such as, for example, the hypothesis (3.9
of [13]. This is because our convergence results will be based on contraction and not an partial ordering
techniques. As a consequence, the class of parallel iterative methods considered in this paper is in some
sense complementary to those considerdd3hand even more general.

3. Convergence results

In the convergence theory for asynchronous iterations, weighted maximum norms play a prominent
role.

Definition 1. Letu € R? be a vector, all componenis of which are positive. For=1, ..., b let| - |;
be some nornR”. Then the weighted maximum norm||,, in R" =R"! x - - - x R" is defined as follows

b
el = max il /.
1=

For the standard asynchronous iteration given by Algorithm 3 and the mathematical model (5), the
following global convergence result is basically containeflLi].

Theorem 1. Assume that if5) all operatorsG* have a common fixed point in the sense that there exists
x* € R" such thatforalli € {1, ..., b} we have

Gk =xf, k=0,1,....

In addition assume that the following uniform contraction hypothesis with respeétigfulfilled: there
exists a weighted maximum notm ||, anda« € [0, 1) such that for all k we have

1G*(x) = x*lu<o- lx = x*|l, for all x € R".

98 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103

Moreovet suppose that assumptioli®)—(8) are satisfied. Then the iterateg of the asynchronous
iteration (5) converge toc*:

lim x* = x*.

k—o00

Since synchronous iterations can be viewed as special asynchronous iterations (take, for example,
sj(k) =k andJ, = {1, ..., b}), the result of Theorem 1 also holds for the iteration (3). Actually, in this
case the result could be rephrased using any norm rather than just a weighted maximum norm. For the
asynchronous case, the weighted maximum norm is necessary: it was already slitthan for an
affine operatoG*(x) = Ax + ¢ for all k, which is not contracting with respect to a weighted maximum
norm, there exists an asynchronous iteration satisfying (6)—(8) such that its iterates do not converge.

We now develop a global convergence result similar to Theorem 1 for the case of an asynchronous
iteration with flexible communication.

Theorem 2. Assume that there exists a weighted maximum rjoriy, a contraction constant € [0, 1)
and a common fixed point* for all operatorsG* such that fork =0, 1, . ..

1GF(x) — x*||ly <o - |lx — x*||, forall x € R, (11)

Assume that in the asynchronous iteration with flexible communicatfgrgiven in(9) the usual condi-
tions (6)—(8) are satisfied as well ad.0). Then limy_, oo xX = x*.

Proof. The proof follows the lines of the standard proof in the non-flexible case. We show that there
exists a sequence of integérs such that we have

X — x*|l, <o? - [1x0 — x*||, for all k>k,. (12)
We proceed by induction and start by showing that (12) is trug ferO with ko = 0, i.e. we show
e = [l <I1x® = x*[l, for k=ko=0. (13)

Trivially, (13) is true fork = 0. Assume that (13) holds up to sorheFor k + 1 we then have by (9)
and (11):

k+1)
Il = Xl i = Nk — i i for i ¢ Jy,
k+1 ~ -
e = Xl fui = 1GFEY, - X) = Xl fui (14)
So- |GE L E — xlu, fori e Ji.

From (14) and (10) we get, in the case where Ji
k+1 ~k ~ b~k
IIJC,-+ —x] i fui <IN(X], ... %) —x¥|lu = fpjlx x5 — x;’fllj/uj
<O — ¥ <120 — 2%l

where the last inequality is due to the induction hypothesis. We therefore see that (13) is krueXor
We continue the proof of (12) by induction gn the validity for p = 0 just having been shown. Assume
that (12) is true up to some and definek, ;1 as follows. Letg, 1 be the smallest positive integer such

D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103 929

thats; (k) >k, forall j =1,..., b and for allk >¢,41. Such a value exists because of (7). kgt, be
the minimal value fok such that
k
U Ze=1{1....p}
ez‘]p+l

which exists by (8). Then far >k, 1 each componerithas been updated at least once at some iteration
¢ with £>¢,1, and the corresponding indiceg¢) satisfy

sj)=>k, forall jel{l,...,b}. (15)
Thus, we can write

k= xklo = xl-“'l = Gf()?z).
From (11) we therefore have

Ibef = x 1l fui=N1G () = xFlli fuy <l £° = x|l

= o a5 —x"l /g <o maxe s — .

where the last inequality is due to (10). But by (15) we haug) >k, for all j, so that the induction
hypothesis yields méx , [|x*1“) — x*||, <a? [x® — x*||,.. This proves (12) fop + 1.

In the case where the functioﬁz{‘ correspond to some inner iteration according to (4), it is of interest

to discuss when the assumptions on Gfein Theorems 1 and 2 are fulfilled. This is formulated in the
following lemma.

Lemma 1. Assume that the functiort are contracting with respect ta* in the norm| - ||;, and assume
that all operatorsT; , from (4) are contracting with respect té/; (x) in the norm|| - ||;. This means that
we have numberg € [0, 1) andf; , € [0, 1) such that

| Hi(x) —x|li <B- llxi —x7|; forall x € R" and for all i, (16)

I Tix (xi) — Hy () [li <Py llxi — Hi(x)||; forall x e R" and for all i. a7
Thenforalli € {1,...,b},

1GE) — 21l fur <BEL B+ D)+ B) - llx = 27l

In particular, if for each k and i we take; (k) sufficiently large such the(ﬁiq”')fk) B+ +p)<a<1l,then
assumptior{11)is satisfied

Proof. First note that from (4) we immediately get, by using (17)

i(k
IGE @) — Hi o)l < B2 llxi — Hi (o)l

100 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103

Together with (16) this yields
IGY (x) — x} i < 1GF (x) — Hi(o)lli + [Hi (x) = x7li
<BEE xi — Hi@)lly + 1Hi () = i,
<BEE - (i = xF N+ IxF = Hioll) + 1 H; () = x7 i,
<BIE g — xF N+ @ B L) — X,
<BEE lxg — xF N+ @+ DY Bl — X
= BB+ + B - llxe — 1l

Dividing by u;, and majorizing|x; — x;[|; /u; by [lx — x*||, proves the lemma. O

4. Application to linear systems

We consider a linear system
Ax =c, (18)

whereA = (a;;) € R is non-singular. Recall that is called a nonsingular M-matrix i;; <0 for
i #J andA‘ll> 0, where this inequality is to be understood componentwise. Nonsingular M-matrices
arise in a variety of applications, particularly in finite difference discretizations of elliptic boundary value
problems; see e.g14].

We decomposi” =R" x - - - x R" into b blocks (Wichf-’:1 n; =n) and partitionA, x, ¢ accordingly
into blocksA;;, x;, ¢;. The solution:* of (18) can be characterized as the fixed poirfiothe components
H; of which are given as

b
Hi(x)=Ai_il Ci — Z A,'J'Xj , i=1,...,b.
Jj=1j#i
Note that together witi the diagonal blockd;; are nonsingular M-matrices, too (see for €/40]), so
that the inversed . all exist.
EvaluatingH; is costly because one has to solve systems with the matrixVe therefore introduce
additional splittings
Aii=B;—C;, i=1...,b,

and performy; (x) steps of the iteration

forg=0,...,q:(x)—1
1
solve Biyiq+ = Ciy? + (¢i — Zl;:l,j;ei Aijxj).
Let us denote
qi (x) _ qix)
G (x) =y, (19)

the result of this iteration which should be an approximatiof6x).

D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103 101

We now consider an asynchronous iteration with flexible communication (9), where in each iteration

k the functionG* is taken to beql.q(k) with some non-zero value faf(k). For the block componentg
in (9) we assume

ik e (o), g1 O (psey, (20)

which means thaféf may be any of thmtermediateresuItSyg, g =0,...,q(k) of the iteration above
which evaluatess (x*).

We will now show that under the given M-matrix assumptions and under suitable assumptions on the
splittingsA;; = B; — C;, the crucial conditions (11) and (10) for Theorem 2 are all fulfilled, i.e. we have
convergence of the asynchronous iteration with flexible communication.

For this purpose, let us assume that all splittidgs= B; — C;, are weak regular, i.e. we have

B7'>0, B'¢;>0, i=1,...,b. (21)

Note that this condition is fulfilled for the most important standard splittings like the Jacobi and the Gauss-
Seidel splitting, sincel;; is a nonsingular M-matrix. This condition applies also to ILU factorizations.
We need the following auxiliary result.

Lemma 2. Let A be a non-singular M-matrix and;;, = B; — C; be weak regular according 21).Let
D = diag(B;) be the block diagonal matrix with diagonal blocks and letA =D — F, T — D~1F.
Moreovert lete = (1, .. ., 1)T be the vector inR" with all components equal to one and le& A le.
Then

() v>0,T>0and
Tv<av for somen € [0, 1). (22)

(i) Defining the weighted max norjn ||, InR" as

b j)
Il = max M = |V x|, V =diagv),
- 1
we have
1Tx]l <oflx]lv, (23)
and thus

n
n 1 .
T, =max — tijl -v; =V " TV|ec<o.
171l = ma: v,-Zl'”' =1 oo <
]:

(iif) Using weighted max norms on the bloaksind7;; € R"*"/ defined through
il = 1V, x oo (24)

IT:;1li; = IV, T3 Villoo, Vi, V; diagonal blocks of V (25)

102 D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103

we have foi =1,...,b
b b
STl =187 Celli + Y 1B Ay lij < (26)
j=1 J=1j#
In particular, fori =1,...,b
IB71C i < 1. (27)

Proof. SinceA is a nonsingular M-matrix and the splittings are weak regular, we figv@. The inverse
of A is a nonnegative matrix without zero rows. This shows that all components-of !¢ have to be
positive. Usingl’ =1 — D~ 1A, where, againp is nonnegative without nonzero rows, we see that

Tv=v—D71e<v,

which finishes the proof for (22) in (i). Sinc® is nonnegative, part (i) is just a reformulation of (22).
This is also the case for (26), which restates (23) in a block oriented manner.

With these preparations we can now prove the following result. It improves upon Lemma 1, because it
shows that with (20) conditions (11) and (10) are satisfied without further restriction.

Theorem 3. Let AandA;; = B; — C; be asin Lemma 2 and takdrom (22). Moreover define the norms
| - II; on the blocks as in Lemn#a Then we havdor 49 defined in(19),¢ >1,

199 (x) — x™||e <af|lx — x*e, (28)
and, in particular,
199 (x) — x*[l; <allx — x*[le. ¢ =0.1,....

Heree=(1,...,1)" € R?,i.e.|| - ||. denotes the maximum norm built up from notmg; on the blocks
as

b
Ixlle = max lxi ;-

Proof. The solutionc* of (18) is a fixed point of¢4 for all ¢, so that we have

gl (x) — xF=91(x) — 91 (x"),
b
_ -1 _
=BG T) —af) = BT Y Ay —xD)
j=Lj#i
This gives

— B — -1
VG) = x)=V BTGV TR T () — 1))
b
— D ViIBTRAGV(V NG = x)s
J=Lj#i

D. El Baz et al. / Journal of Computational and Applied Mathematics 176 (2005) 91—-103 103

which, by using the norms previously defined, yields

b

q -1 q—1 -1

197 o) — xF 1< IB7 Cillia - 1970 = xFli+ > B Augllij - llxj — x50
J=1j#i

Via induction ong and by using (26) as well as (22) we obtain

197 (x) = xFlli < lloe = x¥le,

forallg >1and and thus (28). Therefore, the asynchronous iterative method with flexible communication
converges for linear systems with nonsingular M-matrices.

Remark 5. Similar results can be obtained for H-matrix by using H-splittings,[$6¢

References

(1]
(2]
(3]

[4]
(5]

(6]

[7]
(8]

Z. Bai, Experimental study of the asynchronous multisplitting relaxation methods for the linear complementarity problems,
J. Comput. Math. 20 (2002) 561-574.

Z. Bai, D.J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel
asynchronous methods, Internat. J. Comput. Math. 79 (2002) 205-232.

Z.Bai,Y. Huang, A class of asynchronous parallel multisplitting relaxation methods for large sparse linear complementarity
problems, J. Comput. Math. 21 (2003) 773-790.

G. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Comput. Mach. 25 (1978) 226—244.

D. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, Prentice-Hall, Englewood Cliffs,
NJ, 1989.

R. Bru, V. Migallén, J. Penadés, D. Szyld, Parallel synchronous and asynchronous two-stage multisplitting methods,
Electronic Trans. Numer. Anal. 3 (1995) 24-38.

D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra Appl. 2 (1969) 199-222.

D. El Baz, P. Spiteri, J.C. Miellou, D. Gazen, Asynchronous iterative algorithms with flexible communication for nonlinear
network flow problems, J. Parallel Distrib. Comput. 38 (1996) 1-15.

A. Frommer, D. Szyld, Asynchronous two-stage iterative methods, Numer. Math. 69 (1994) 141-153.

A. Frommer, D. Szyld, Asynchronous iterations with flexible communication for linear systems, Calculateurs Paralléles,
Réseaux Systemes Répartis 10 (1998) 421-429.

A. Frommer, D. Szyld, On asynchronous iterations, J. Computat. Appl. Math. 123 (2000) 201-216.

J.C. Miellou, Algorithmes de relaxation chaotique a retards, RAIRO Anal. Numér. R1 (1975) 55-82.

J.C. Miellou, D. El Baz, P. Spiteri, A new class of iterative algorithms with order intervals, Math. Comp. 67 (1998)
237-255.

J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
P. Spiteri, J. Miellou, D. El Baz, Asynchronous Schwarz alternating method with flexible communication for the obstacle
problem, Calculateurs Paralléles, Réseaux et Systéemes Répartis 13 (2001) 47—-66.

P. Spiteri, J. Miellou, D. El Baz, Parallel Schwarz and multisplitting methods for a nonlinear diffusion problem, Numer.
Algorithms 33 (2003) 461-474.

J.C. Strikwerda, A probabilistic analysis of asynchronous iteration, Linear Algebra Appl. 349 (2002) 125-154.

D.B. Szyld, Different models of parallel asynchronous iterations with overlapping blocks, Comp. Appl. Math. 17 (1998)
101-115.

	Asynchronous iterations with flexible communication:contracting operators
	Introduction
	Computational and mathematical models
	Convergence results
	Application to linear systems
	References

