
Parallel Monte-Carlo Simulations on GPU and Xeon Phi for Stratospheric Balloon
Envelope Drift Descent Analysis

Bastien Plazolles∗†, Didier El Baz∗, Martin Spel†, Vincent Rivola†, and Pascal Gegout‡
∗LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Email: elbaz@laas.fr
†R.Tech - Parc Technologique Delta Sud, 09340 Verniolle, France

Email: bastien.plazolles@rtech.fr
martin.spel@rtech.fr

vincent.rivola@rtech.fr
‡Géosciences Environnement Toulouse (CNRS UMR5563), 14 avenue Edouard Belin, F-31400 Toulouse, France

Université de Toulouse, F-31400 Toulouse, France
Email: pascal.gegout@get.omp.eu

Abstract—A performance evaluation of parallel Monte-Carlo
simulations on GPU and MIC is presented and the application
to stratospheric balloon envelope drift descent is considered.
The experiments show that GPU and MIC permit one to
decrease computing time by a factor of 4 and 2, respectively, as
compared to a parallel code implemented on a two sockets CPU
(E5-2680-v2) which allows us to use these devices in operational
conditions.

Keywords-parallel computing; multi-core CPU; CUDA;
OpenMP; GPU; Xeon Phi; numerical integrator; Monte-Carlo
perturbations;

I. INTRODUCTION

Nowadays, governments impose stringent regulations to

space agencies and meteorological offices concerning the

recovery of their devices. In particular the French govern-

ment requires the national space agency, CNES, to guarantee

a safe area of possible controlled descent during the flight

of a stratospheric balloon, to prevent any human casualty

or damage to property. Indeed, at the end of the flight

of a stratospheric balloon, when the scientific mission is

achieved, the envelope and the nacelle separate, and the

nacelle, which can weight one metric tone or more, descends

below a parachute while the envelope descends in the wind

without control. To address this safety requirement, a sta-

tistical risk analysis must be performed on the drift descent

of the envelope of a stratospheric balloon, so as to define

the recovery zone at the end of the flight. A common way

is to perform a Monte-Carlo perturbation [1] of the initial

conditions like the atmospheric parameters that present many

uncertainties. Nevertheless, this study is time consuming. In

particular, this type of study cannot be performed in opera-

tional conditions with classical CPUs. Moreover solutions

like cluster computing are not well suited to operational

conditions. Indeed, during balloon campaign, people usually

embark all the computation means on the operational field

(in Kiruna, North of Sweden or in Timmins, Canada for

example), restricting the weight of the later. This particular

conditions define what we are going to call our operational

challenge: to be able to perform a Monte-Carlo analysis of

a drift descent with only on-site computational means in

operational computation time, i.e. before the flying balloon

leaves the possible separation area.

Currently to determine the landing point of the strato-

spheric balloon envelope after a drift descent, the French

space agency uses a sequential code that takes around 0.1s

to compute a single drift descent trajectory, i.e. an unique

landing point. In its present form this code cannot be used

to perform a Monte-Carlo simulation of the drift descent,

as it is purely mono-core, mono threaded and would take

several hours to compute 100,000 simulations.

This is why we study the benefits of computing acceler-

ators like GPU and MIC, that can easily be transported on

operational field and that do not require too much energy. In

the sequel, we keep the algorithm of the CNES operational

code. We show how our parallelization strategy can take

benefits of the characteristics of both kind of accelerators to

achieve this operational challenge.

The paper is structured as follows: Section 2 deals with

computing accelerators. Section 3 summarizes the scientific

background of the envelope drift descent and the method

used for the Monte-Carlo analysis. Section 4 presents the

parallel implementation of our algorithm on the GPU, the

Intel Xeon Phi and multi-core Intel Xeon CPU, and the

different techniques that have been studied in order to

optimize the code. Section 4 gives also a synthesis of these

improvements and presents some general guidelines to ad-

dress similar problems. Section 5 deals with the conclusion.

II. COMPUTING ACCELERATORS

During the last decade a new set of computing accelerators

has emerged. These accelerators are highly parallel dedicated

hardware used to perform computing functions faster than

2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing

and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

978-1-5090-2771-2/16 $31.00 © 2016 IEEE

DOI 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.68

611

Figure 1. Thread and memory hierarchy in GPUs

the CPU. To the best of our knowledge, computing accelera-

tors, like GPU and Xeon Phi, have been successfully used in

the solution of classic problems like linear algebra or image

processing [2], [3]. Moreover few comparisons between the

devices have been conducted, see [4] and [5]. The features

of these new devices make them attractive for industrials to

solve real world applications [6], [7].

In the following sub-sections we introduce the two main

families of computing accelerators: GPU and Intel Xeon Phi.

A. GPU

1) Architecture: Graphics Processing Units (GPUs) are

highly parallel multithreaded, many-core architectures. They

are better known for image processing. Nevertheless,

NVIDIA introduced in 2006 CUDA (Compute Unified De-

vice Architecture), a technology that enables programmers

to use a GPU card to address parallel applications. Indeed,

NVIDIA’s GPUs are SIMT (Single Instruction, Multiple

Threads) architectures, i.e. the same instruction is executed

simultaneously on many data elements by the different

threads. They are especially well-suited to address problems

that can be expressed as data-parallel computations.

As shown in Fig. 1, a parallel code on the GPU (hereafter

named the device), is interleaved with a serial code executed

on the CPU (hereafter named the host). The parallel threads

are grouped into blocks which are organized in a grid. The

grid is launched via a single CUDA program, the so-called

kernel [8].

2) Memory hierarchy: The hierarchisation of the threads,

presented in the previous subsection, is related to the

memory hierarchy. There are 3 distinct levels of memory

accessible for the programmer on a GPU:

• Global memory: accessible to every threads within the

grid. This is the largest memory of the GPU (several

GB), but exhibits the highest latency.

• Per block shared memory: accessible by each thread

within a block. This memory cannot be accessed by a

thread from another block.

• Per thread local memory: only accessible to one

thread. This memory presents the lowest latency but is

limited in size (few KB of storage).

3) Future developments: In 2016, NVIDIA plans to

release the new PASCAL architecture exhibiting a higher

bandwidth memory (up to 1TB/s), two times more flops than

current Maxwell architecture (with an equivalent number

of CUDA cores), more memory and more mixed-precision

computing unit. Also, aware that one of the biggest caveat

of the GPU computing is the latency induced by the transfer

of data between the CPU and the GPU via the PCI-Express

link, NVIDIA will add to the Pascal architecture NVLink.

The new technology NVLink will let data move between

GPUs and CPUs five to twelve times faster, than with

current PCI-Express link (PCI-E 3.0) thanks to a higher

bandwidth [9]. Also Pascal architecture will take advantage

of HBM Gen2 stacked memory; denser memory chips will

permit to increase HBM memory from 16 up to 32 GB,

with a bandwidth of 1 TB/s.

4) GPU synthesis: GPUs are massively parallel com-

puting accelerators with few possibilities of vectorization

(vectorization at Instruction Level Parallelism by placing

consecutive operations in the pipeline if these operations are

not data dependent [10]). The same task is executed inside

the same group of 32 threads (called warp) of a given kernel

but different warps of a given kernel can perform different

tasks. The memory hierarchy permits one to optimize the

data placement in order to optimize the memory access

latencies. For these devices, it is important to provide enough

threads to keep busy all the warps, to try to have non

divergent threads in the same warp, to try to limit data

transfer between the CPU and the GPU and to optimize

data locality on the GPU.

B. Xeon Phi

1) Architecture: In 2013, Intel released the Many

Integrated Core (MIC) coprocessor: the Intel Xeon Phi also

known by the code name Knights Corner during its early

phase of development. The coprocessor is composed of

up to 61 processor cores, interconnected by a high-speed

bidirectional ring (see Fig. 2) [11]. The architecture of a core

is based on a modified x86 Pentium 54C cores and contains

a dedicated 512-bit wide Streaming SIMD Extensions

vector unit [12]. Each core can executes four hardware

612

Figure 2. Microarchitecture of the MIC coprocessor

Figure 3. Intel Xeon Phi execution modes: (a) offload mode, (b) native
mode and (c) Symmetric mode

threads (two per clock cycle and per ring’s direction). Like

the GPUs, the Intel Xeon Phi is connected to the CPU

via the PCI-Express connector. The memory controllers

and the PCIe client logic provides a direct interface to the

GDDR5 memory on the coprocessor and the PCIe bus,

respectively. The design of the coprocessor permits one

to run existing applications parallelised via OpenMP or MPI.

2) Programming mode: Unlike GPUs, we count three

different ways to execute an application on the Xeon Phi:

the native, offload and hybrid modes (see Fig 3) [11].

The native execution mode, consists in taking advantage

of the fact that the Xeon Phi has a Linux micro OS running

in it, and appears as another machine connected to the host

which can be reached via a ssh connection. For this mode,

the application and the input files are copied into the Xeon

Phi, and the application is launched from it. In the beginning,

the sequential part of the application runs on one core of

the coprocessor, then the parallel part of the application is

deployed over the different cores of the coprocessor. Existing

parallel code running on CPU or cluster can be compiled

with the -mmic option in order to run natively on the Phi

without any modifications.

The offload execution mode or heterogeneous program-

ming mode, is similar to what is done for GPU: the

application starts on the host and runs a sequential part of

the code. Then the CPU sends data to the Xeon Phi, and

launches the parallel computation on the coprocessor.

The symmetric mode is similar to the offload mode,

except that a part of the parallel computation is also

performed on the host. The code needs to be compiled

twice: for the host and for the coprocessor. In this mode,

one of the major challenges is to properly balance work

between the host and the Phi.

3) Future developments: Intel is developing the future

of the Intel Xeon Phi product family, with the release

for the first semester of 2016 of the Knights Landing

products. The cores of this new architecture will be based

on heavily modified Silvermont Atom core, each core

having two 512-bit vector units (AVX-512). The Knights

Landing processor will have three times the single threaded

performance as the custom Pentium 54C cores used in the

Knights Corner. This new architecture is planned with 3

teraflops double precision. The new Knights Landing will

be released in two versions: a coprocessor one, that could

be connected to a CPU via a PCIe bus, just like the Knights

Corner, and a standard CPU form factor. Also Intel has

already planned Knights Hill, the 3rd generation of Intel

Xeon Phi product family based on the 2nd generation of

Intel Omni-Path architecture [13].

4) Xeon Phi synthesis: Intel Xeon Phi are parallel

computing accelerators. They compensate their low

parallelism (comparing to GPUs), by their ability to

vectorize computations. The same task is executed for a

vector, i.e. an OpenMP process, but different OpenMP

processes can perform different tasks. For these devices,

it is important to provide enough threads to keep busy all

the cores, to take advantage of the vector units, and to take

care of data locality.

III. APPLICATION

In this section we introduce the equations that govern

the descent of a stratospheric balloon envelope. Then we

present the method used to retrieve atmospheric data and

ballistic coefficient in tables at each time step, and how

we implement the Monte-Carlo perturbations. Finally we

introduce the algorithm of the envelope drift descent.

A. Physical model of the envelope drift descent

In the model of the drift descent of the envelope, the

position of the envelope is defined, in the local frame with

�z along the vertical direction, at any time step t by its

altitude z(t), its latitude lat(t) and its longitude lon(t).
In this coordinate system, the motion of the envelope can

be decomposed into two independents parts: the vertical

motion and the horizontal motion.

613

�x

�y

�z

Envelope

�g

�FDrag

Wind

Recovery zone

Figure 4. Sketch of drift descent motion dynamics

1) Vertical motion: The vertical movement of the enve-

lope is modeled by the sum of two forces: gravitational force

�g and drag force �FDrag as shown in Fig. 4. The acceleration

of the envelope is then computed according to the following

equation (1):

a(t, z) =
−1
2

ρ(z)v(t)|v(t)| ∗B(t)− g, (1)

where: a(t, z), is the envelope vertical acceleration at

time t and altitude z, in m.s−2; v(t), is the vertical speed

of the envelope at time t, in m.s−1; ρ(z), is the density

of the atmosphere at the altitude z, in kg.m−3, computed

from pressure and temperature via the ideal gas law; B(t),
is the ballistic coefficient of the envelope; g, is the Earth

gravitational acceleration.

The new vertical position of the envelope, is computed at

every time step by integrating (1), via Euler’s method.We

choose to use the Euler’s method as the physical model is

linear and does not present any numerical instability with

the time step used for the calculation (dt = 0.1s).

2) Horizontal motion: The horizontal movement of the

envelope is only determined by the direction and the strength

of the wind. Thus we define, U the speed of the wind along

the zonal component (positive to the East), and V the speed

of the wind along the meridional component (positive to the

South), in m.s−1. In the code, at every time step, the new

position in latitude and longitude is computed , via Euler’s

method, according to equations (2) and (3), assuming the

hypothesis of a spherical Earth:

lat(t+ dt) = lat(t) + arcsin(
V (z)dt

RT + z
), (2)

lon(t+ dt) = lon(t) + arcsin(
U(z)dt

(RT + z) cos(lat(t))
), (3)

where, RT the Earth radius in m, z the vertical position.

END

alt > alt_ground

update atmospheric parameters
update ballistic coe�cient

update vertical position
update horizontal position

t+dt

YES

NO

Figure 5. Envelope drift descent calculation

B. Parameters interpolation and Monte-Carlo perturbation

The atmospheric parameters (pressure, temperature, wind)

are retrieved at every time step of the simulation by inter-

polation of atmospheric data obtained via weather forecast.

In the same manner the envelope ballistic coefficient is

interpolated from an evolution table based on reanalysis of

previous flights.

In order to perform the Monte-Carlo analysis of the

envelope drift descent, the atmospheric parameters (pressure,

temperature and wind) are perturbed. As we wanted our

method to be the less conservative on what concern the

size of the computed fallout area, a systematic perturbation

of the atmospheric parameters is applied at each time step

according to equation (4).

Parameterperturbed = ParameterInitial ± αparameter ∗ σparameter, (4)

where: αparameter is an uniformly distributed random value

between 0 and 1. This value is generated at the beginning

of the simulation and is different for each parameters of

each simulation. σparameter is the standard deviation for

the parameter computed comparing weather forecast data

and true atmospheric conditions encountered by the balloon

during its ascending phase. The sign of the perturbation is

also randomly generated at the beginning of the simulation

for each parameter of each simulation. The perturbation

parameters (α, σ, sign) are stored in three vectors of N

elements (N, the number of simulation to perform).

Thus our application perfectly fits for the usage of com-

puting accelerators such as GPUs or Xeon Phi, as it has a

lot of independent task, working on different data.

C. Envelope drift descent algorithm

The numerical integration of an envelope drift descent at

each time step, is composed of four parts, as shown in Fig. 5:

• update the atmospheric parameters at the current al-

titude, via interpolated values from forecast data and

perturbations derived from equation (4).

614

Table I
DESCRIPTION OF DEVICES CHARACTERISTICS

Name Arch. Cores Clock Total memory Memory bandwdith Vector unit Compute

(GHz) (MB) max (GB/s) capability

K40 Kepler 2880 0.745 12000 288 N.A. 3.5

Xeon Phi 7120P N.A. 61 1.24 16000 352 AVX-512 N.A.

(512-bit SIMD)

Xeon E5-2680 v2 N.A. 20 2.8 25 (cache/proc) 59.7 AVX N.A.

(256-bit SIMD)

• update the ballistic coefficient from the ballistic coeffi-

cient evolution table.

• update the vertical position via equation (1)

• update the horizontal position via equations (2) and (3).

IV. PARALLEL IMPLEMENTATIONS ON CPU, GPU

AND MIC

The Monte-Carlo application studied in this paper belongs

to the class of pleasingly parallel applications, since each

drift descent simulation is independent. As explained in

[14] this important class represents more than 20% of the

total number of parallel applications and this proportion is

growing.

In this section, we present the experimental setups and

protocol and we describe for the different architectures,

i.e., GPU, Xeon Phi and CPU, the basic parallel algorithm

and the main steps of optimization of the parallel code

showing each time the gain obtained. Finally, we show the

performances of the final codes, and we compare the parallel

computing times on the different computing systems.

A. Description of the experimental conditions

1) Hardware: We consider two computing systems (see

Table 1).

• A cluster node, composed of two Intel Xeon E5-2680

v2 at 2.8GHz with 10 physical cores each and an Intel

Xeon Phi Coprocessor 7120P, with 61 cores at 1.238

GHz and 16GB memory .

• A computing system with a NVIDIA Tesla K40, with

2,880 CUDA cores at 0.745GHz and 12 GB memory.

2) Software: The GPU implementation of the code is per-

formed using CUDA 7 [15]. The Xeon Phi implementation

of the code is performed using OpenMP 4.0 and compiled

using the Intel Compiler version 14.0.1 (Intel Parallel Studio

XE 2015).

B. Experimental protocol

In this paper, we present average computing times for

ten instances of problems. The measurement starts with the

loading of the first data, and stops when the results of the

last simulation are gathered. Computations are performed

Table II
COMPUTATION TIME FOR 100,800 SIMULATIONS ON GPU

Parallel Overall Time Communication Time Computation Time
implementation (s) (s) (s)

Loop parallelism 21.49 17.39 4.1
Task parallelism 3.03 0.12 2.91

Task parallelism with 2.79 0.11 2.68
memory management

CPU GPU
CPU <->GPU

communications

list of N simulations

i<N => alt[i]>alt_ground

YES

END

NO

retrieve altitudes
of N simulations

retrieve other
parameters results

i<N && alt[i] > alt_ground

update atmospheric parameters
update ballistic coe�cient

update vertical position
update horizontal position

t+dt

N simulations results

YES

NO

Global Memory

atmospheric pro�le

ballistic coe�cient table

perturbations table

atmospheric pro�le

ballistic coe�cient table

perturbations table

Figure 6. GPU loop parallel algorithm

using double precision floating point operations. In all

experiments, we use all the available cores on the CPU

and Xeon Phi, and for the Xeon Phi each core runs the

maximum number of threads supported (4 threads per core).

As the parallel threads of our application are independent,

we set the KMP AFFINITY of the MIC and of the CPU to

“granularity=fine” [16], [17].

C. Parallelization on the GPU

In this subsection, we show how we have implemented

the parallel algorithm on the GPU in order to take advantage

of it’s massive parallelism capability.

1) Loop parallel algorithm: We begin the parallelization

of our application on the GPU, using a loop parallel

algorithm represented Fig. 6, and referenced as Loop

615

parallelism in Table II. We decide to start with this

algorithm, because it is typically the kind of algorithm

one gets when using GPU numerical solver of Ordinary

Differential Equations library such as odeint [18], with

complex models that necessitate to update data between

two time step, like in our case with atmospheric data. In

this algorithm the CUDA kernel corresponds to a single

iteration of the while loop shown in Fig. 5. This way,

the lifetime of the CUDA kernel corresponds to one time

step of the numerical integration, one thread is associated

with one simulation and at each launch of the kernel we

instantiate as many CUDA threads as there are simulations

to perform. A new kernel is launched at each step. In

order to ensure persistence of the data between two time

steps, every variable is stored in the global memory. The

atmospheric data, the ballistic coefficient table and the

perturbations parameters that are generated on the CPU are

sent to the GPU only once, before the first time step. At

each time step, only the vector containing the altitude of

all the simulations is copied back to the CPU in order to

evaluate the advance of the simulations. The other results

are copied back to the CPU when all simulations are

performed. This algorithm permits one to compute 100,800

simulations (3150 warps of 32 threads) of envelope drift

descent in 21.49s.

2) Limitations of communications: Then we start

investigating the performance of our loop parallel algorithm

using nvprof. It appears that most of the time is spent

copying data between the device and the host, i.e., 17.93s

(80.92% of overall execution time), while the kernel

execution only counts for 4.1s (19.08% of overall execution

time). In order to reduce the communications, we decide

to change our parallel implementation for a task parallel

algorithm. We redesign the kernel so that each CUDA

thread performs the main while loop presented Fig. 5,

instead of only one time step. This model is referenced as

Task parallelism in Table 2. As a result, we perform only

two communications between the CPU and the GPU: one

at the beginning and one at the end of the application, and

we only launch one kernel. Also, instead of generating the

perturbation coefficients on the CPU and copying them on

the GPU, we use the cuRAND library so that each CUDA

thread generates it’s own set of perturbation coefficients.

This new algorithm performs 100,800 simulations in 3.03s,

resulting in a reduction of the computation time by a factor

of 85.9%. The communications between the CPU and

the GPU only count for 0.04% (0.12s) of the execution

time, while the kernel counts now for 99.86% (2.91s). It is

interesting to point that the kernel execution time is 2.91

s, while it was 4.1s with the loop parallel algorithm. This

reduction of 29.3% of the execution time of the kernel is

due to the instantiation of only one kernel instead of the

instantiation of 19,039 kernels as in the case of the loop

CPU GPU
CPU <->GPU

communications

list of N simulations

END

Global
Memory

atmospheric pro�le

ballistic coe�cient table

atmospheric pro�le

ballistic coe�cient table

Local
Memory

atmospheric pro�le

ballistic coe�cient table

perturbations coe�cients

update atmospheric parameters
update ballistic coe�cient

update vertical position
update horizontal position

t+dt

alt > alt_ground

list of N simulations

YES

Global
Memory

simulations results

NO

retrieve simulations
results

Figure 7. GPU task parallel and memory management algorithm

parallel algorithm.

3) Memory management: At this point we still have not

considered the locality of data, storing all variables in the

global memory. So we modify the kernel in order to perform

a local copy of all the data (atmospheric and ballistic), and

we define all the variables in the local memory. This way, the

vector state of the balloon envelope (containing the position

and the speed), which is updated at each computation (see

Figure 5), resides in the thread local memory reducing mem-

ory access latency. Only the final step of each simulation is

stored in the global memory. This algorithm is referred to as

Task parallelism and memory management in Table II. Also,

in order to ensure that each thread keeps the state vector in

its local memory we use cudaFuncCachePreferL1 in order to

increase the thread L1 memory to 48 KB. The resulting gain

in performance is of 5%, while the local memory overhead

(i.e. the ratio of local memory traffic to total memory traffic)

[19] increases from 0.06% to 92.79% as compared with the

previous implementation. This algorithm is presented Fig. 7.

D. Parallelization on the Xeon Phi

In this subsection, we show how we have implemented

the parallel code on the Xeon Phi in order to take advantage

of it’s massive vectorization capability.

1) Task parallel algorithm: For the implementation of

the application on the Xeon Phi, we decide to use the native

programming mode, in order to avoid communications

616

Table III
COMPUTATION TIME FOR 100,800 SIMULATIONS ON XEON PHI

Parallel Time

implementation (s)

Task parallelism 29.98

Task parallelism with 23.06

vectorization

Task parallelism with 8.02

vectorization and

memory management

Task parallelism with 6.86

memory management and

fixed size vectorization

between the CPU and the Xeon Phi. Doing this, it seems

natural to adopt a task parallel algorithm (referenced as

Task parallelism in Table III). All the vectors are allocated

using the instruction posix memalign(), and aligned on

64 bits. The parallelization across the Phi, is ensured via

OpenMP. We instantiate 244 OpenMP processes. Each

process has to perform, sequentially, M times the while loop

presented Fig. 5, i.e. M envelope drift descent simulations.

M is selected in order that M times the number of OpenMP

process equals the total number of simulations to perform.

The variables of the simulations are stored in vectors shared

among the OpenMP processes. The perturbations table are

generated by each OpenMP process for it’s M simulations.

The uniqueness of each perturbation is guaranteed by

the management of the seed of the random number that

depends on the rank of the OpenMP process. This algorithm

computes 100,800 simulations in 29.98s.

2) Vectorization: The above implementation does not

fully use the capacity of the Xeon Phi as there is no

vectorization. So we modify the above algorithm to

correct this. Our strategy consists in vectorizing with

the special instruction #pragma simd, the while loop

presented Fig. 5 and keeping the OpenMP parallelization

introduced previously. We also add the compiler directive

#pragma vector aligned, to guarantee to the compiler that

all memory accesses are aligned. This new algorithm is

referenced as Task parallelism with vectorization in Table 3.

The size of the vectors is defined at the application execution

and is set to 32. Thus, to compute 101,504 simulations, the

application launches 244 OpenMP processes that compute

416 simulations each, launching 13 blocks of 32 vectorized

simulations; this is performed in 23.06s.

3) Memory management: Analyzing the performance

of the previous algorithm, it appears that the vectorization

was not efficient due to the time spent accessing data in

the global memory of the Xeon Phi. In oder to address

this issue, we decide to store state vectors (containing the

Figure 8. Computation duration versus number of simulations

position and speed of the envelope) in the local memory

of each OpenMP process creating private variables. This

new implementation (referenced as Task parallelism with

vectorization and memory management in Table III)

computes 101,504 simulations in 8.02s.

4) Fixed size vectorization: During the process of

optimization of the application, we fix vector size

beforehand, i.e. before compilation, to 32. This is the

Algorithm with memory management and fixed size

vectorization of Table III. Thanks to this modification,

the application compute 101,504 simulations in 6.86s. It

appears that this gain is due to the fact that if the size of

the vector is not set at the compile time, the Intel compiler

adds extra control features that slowdown the application.

So fixing the value will prevent this behavior.

E. Parallelization on the CPU

We note that the parallel algorithm implemented on the

CPU is the same as the one implemented on the Xeon

Phi. De facto, the CPU implementation is multi-threaded,

vectorized and addresses memory locality issues. The code

is compiled without specific -mmic compilation option

and with AVX compilation options (-mtune=core-avx-i

-axCORE-AVX-I -mavx). As the Xeon E5-2680-v2 L1

cache is wider and more efficient than the one of the Xeon

Phi, experiments show that 32 is not the vector size that

gives the best performance. We obtain the best performance,

i.e., the best compromise between the cache efficiency and

the dimension of the vector unit, using vectors of size 128.

This algorithm computes 102,400 simulations (20 OpenMP

processes that compute 5,120 simulations each, launching

40 blocks of 128 vectorized simulations) in 13.31s.

F. Operational Challenge

For stratospheric balloon studies the operational challenge

consists in computing very fast, many envelope drift descent

simulations (enough to obtain a statistically unbiased result)

617

before balloon launch or during the balloon flight. In partic-

ular during flight this analysis appears as a decision support

and must be performed as fast as possible. Moreover, such

computation must be performed via computing systems that

can be easily embedded on the operation site, e.g.laptop or

even central unit, in order to prevent connection issues.

Fig. 8 displays the computing time on the different

platforms for several numbers of simulations. As we can

see, the K40 and the Xeon Phi 7120P, address the operational

challenge, since 1,000,000 simulations require respectively

32.4 and 64.2s, while they require 130.5s on a computing

node with two Intel Xeon. Thus these devices appear to be

more efficient than a standard cluster node. Moreover, both

devices can be plugged on a computer, and their electric

consumption of around 300W (PDT of 300W for the Phi

7120p, and 235W for the K40), make them suitable too

operational conditions.

G. Synthesis and Guidelines

We see that the parallel implementation on GPU and Xeon

Phi of the Monte-Carlo simulation of envelope drift descent,

permits one to reduce the computing time and to fulfill

operational conditions. Indeed, the computing time on the

K40 GPU is about four times faster than the one obtained

with a parallel code on the two E5-2680 CPU. Similarly the

computing time on the Xeon Phi 7120P is twice as fast.

On what concerns specifically code optimization, we note

that reductions in computing time have been obtained thanks

to the following improvements.

• On what concerns GPU implementation: the reduction

of communications between the host and device along

with the reduction of kernels launched per simulation,

changing our algorithm from a loop parallel to a task

parallel approach, was very efficient. This has led to

a 86% reduction in the computing time. In particular,

such modifications permit one to dramatically reduce

the synchronizations between threads since the appli-

cation is pleasantly parallel.

• On what concerns Xeon Phi implementation: the

combination of memory management and vectorization

is the key issue in the Xeon Phi case. Indeed, this leads

to a 73% reduction in the computing time. However

we note that without memory management such an

important reduction in computing time could not be

obtained. Also imposing the size of vectors before

compilation appears to reduce the computing time by

14%.

We believe these guidelines are also valid for other appli-

cations related to numerical integration and more generally

to numerical simulation.

V. CONCLUSION

The implementations of our parallel algorithm on the GPU

K40 and Xeon Phi 7120P are more than twice as fast as a

parallel and vectorized implementation on the two sockets

CPU E5-2680-v2. In order to obtain these results it is crucial

to properly consider the architectures of both accelerators

and to design the codes accordingly, i.e., take advantage

of the massive parallelism ability of the GPUs and use the

parallelism combined with massive vectorization abilities of

the Xeon Phi. Also, a good understanding of the physical

problem permits one to optimize the data locality and hence

to improve the performance of the parallel application.
Computing accelerators appear to be very serious alter-

natives to clusters in order to solve real world problems

in operational conditions. The application presented in the

present paper, is an illustration of a numerical integrator

with Monte-Carlo perturbation of initial conditions. This

is a general class of problems which has many fields of

applications such as atmospheric reentry of satellites [20],

ballistic trajectory prediction [21], ray tracing of GNSS

[10], parafoil automatic guidance [22], and we believe that

thanks to the guidelines, presented in this paper, many

of these applications could strongly benefit of computing

accelerators.
As the methodology presented here can be applied

to more complex processes by replacing the core of

the algorithm, we are now working on generalizing our

approach and designing a library that will be made available

to the community.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of

NVIDIA Corporation with the donation of the Tesla K40

GPU used for this research work.
The authors wish to thank Dr. D. Gazen and Dr. J. Escobar

of Observatoire Midi-Pyrénées for their advices and the

access to the cluster in Toulouse.
Finally the authors thank the DEDALE work group

coordinated by CNES, France.

REFERENCES

[1] C. P. Robert and G. Casella, Monte-Carlo Statistical Methods.
Springer, 2004.

[2] V. Boyer and D. El Baz, “Recent Advances on GPU Com-
puting in Operations Research,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW),
2013 IEEE 27th International, May 2013, pp. 1778–1787.

[3] A. ul Hasan Khan, M. Al-Mouhamed, and L. Firdaus, “Eval-
uation of Global Synchronization for Iterative Algebra Al-
gorithms on Many-Core,” in Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing
(SNPD), 2015 16th IEEE/ACIS International Conference on,
June 2015, pp. 1–6.

618

[4] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz,
“Comparative Performance Analysis of Intel (R) Xeon Phi
(TM), GPU, and CPU: A Case Study from Microscopy
Image Analysis,” in Proceedings of the 2014 IEEE
28th International Parallel and Distributed Processing
Symposium, ser. IPDPS ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 1063–1072. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2014.111

[5] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance
Evaluation of Sparse Matrix Multiplication Kernels on
Intel Xeon Phi,” CoRR, vol. abs/1302.1078, 2013. [Online].
Available: http://arxiv.org/abs/1302.1078

[6] S. Saini, H. Jin, D. Jesperson, S. Cheung, J. Djomehri,
J. Chang, and R. Hood, “Early Multi-Node Performance Eval-
uation of a Knights Corner (KNC) Based NASA Supercom-
puter,” in IEEE 24th International Heterogeneity Computing
Whorkshop, 2015.

[7] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A.
Jarvis, “Exploring SIMD for Molecular Dynamics, Using
Intel Xeon Processors and Intel Xeon Phi Coprocessors,”
in Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, ser.
IPDPS ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 1085–1097. [Online]. Available: http:
//dx.doi.org/10.1109/IPDPS.2013.44

[8] NVIDIA. Nvidia. CUDA 7.0 Programming
Guide. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[9] ——. www.nvidia.com.

[10] P. Gegout, P. Oberle, C. Desjardins, J. Moyard, and P.-M.
Brunet, “Ray-Tracing of GNSS Signal Through the Atmo-
sphere Powered by CUDA, HMPP and GPUs Technologies,”
Selected Topics in Applied Earth Observations and Remote
Sensing, IEEE Journal of, vol. 7, no. 5, pp. 1592–1602, May
2014.

[11] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-
Performance Programming, ser. Morgan Kaufmann. Elsevier
Science & Technology Books, 2013.

[12] R. Farber. Programming Intel’s Xeon
Phi: A Jumpstart Introduction. [On-
line]. Available: http://www.drdobbs.com/parallel/
programming-intels-xeon-phi-a-jumpstart/240144160

[13] E. Gardner. What public disclosure has In-
tel made about Knights Landing? [On-
line]. Available: https://software.intel.com/en-us/articles/
what-disclosures-has-intel-made-about-knights-landing

[14] K. Hwang, G. C. Fox, and J. Dongarra, Distributed and
Cloud Computing: From Parallel Processing to the Internet of
Things, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

[15] NVIDIA. Nvidia. CUDA 7.0. [Online]. Available: https:
//developer.nvidia.com/cuda-toolkit

[16] R. Rahman, Intel Xeon Phi Coprocessor Architecture and
Tools: The Guide for Application Developers, 1st ed.
Berkely, CA, USA: Apress, 2013.

[17] Intel. Thread Affinity Interface. [Online]. Avail-
able: https://software.intel.com/en-us/node/522691#KMP
AFFINITY ENVIRONMENT VARIABLE

[18] A. Karsten and M. Mario. odeint. [Online]. Available:
http://headmyshoulder.github.io/odeint-v2/

[19] NVIDIA. Profiler user’s guide. [Online]. Available: http://
docs.nvidia.com/cuda/profiler-users-guide/#nvprof-overview

[20] B. Plazolles, M. Spel, V. Rivola, and D. El Baz, “Monte-Carlo
analysis of Object Reentry in Earth s Atmosphere Based on
Taguchi Method,” in Proceedings of the 8th European Sym-
posium on Aerothermodynamics for Space Vehicle, Lisbon,
2015.

[21] M. Ilg, J. Rogers, and M. Costello, “Projectile Monte-Carlo
Trajectory Analysis Using a Graphics Processing Unit,” AIAA
Atmospheric Flight Mechanics Conference, 2011. [Online].
Available: http://dx.doi.org/10.2514/6.2011-6266

[22] J. Rogers and N. Slegers, “Robust Parafoil Terminal
Guidance Using Massively Parallel Processing,” AIAA
Atmospheric Flight Mechanics Conference, 2013. [Online].
Available: http://dx.doi.org/10.2514/6.2012-4736

619

