
HPC Applications deployment on distributed
heterogeneous computing platforms via OMF, OML

and P2PDC

Didier El Baz∗†, The Tung Nguyen∗†, Guillaume Jourjon‡, and Thierry Rakotoarivelo‡
∗CNRS ; LAAS; 7 avenue du colonel Roche, Toulouse, France. Email: {ttnguyen,elbaz}@laas.fr

†Université de Toulouse; Toulouse France.
‡ NICTA, Australian Technology Park, Eveleigh, NSW Australia. Email: firstname.lastname@nicta.com.au

Abstract—A new tool and web portal are presented for
deployment of High Performance Computing applications on
distributed heterogeneous computing platforms. This tool relies
on the decentralized environment P2PDC and the OMF and
OML multithreaded control, instrumentation and measurement
libraries. Deployment on PlanetLab of a numerical simulation
application is studied. A first series of computational results is
displayed and analyzed.

Index Terms—component; HPC; heterogeneous computing;
peer-to-peer computing; application deployment; PlanetLab; nu-
merical simulation; asynchronous iterations

I. INTRODUCTION

The domains of parallel and distributed computing are

currently undergoing profound mutations. New concepts like

peer-to-peer, global computing and cloud computing have

recently emerged (see [1]). More recently, heterogeneous

technologies have started to be used with success for High

Performance Computing (HPC) applications as well (see [2]

and [3]). In particular, the combination of distributed and

heterogeneous technologies seems to be very promising for

HPC applications. These technologies have led to architectures

with hundred thousands or millions of cores where applica-

tion deployment, heterogeneity, power consumption and fault-

tolerance are key issues.

In this paper, we present the principle of an original solution

related to a web portal for peer-to-peer HPC application

deployment. The Portal is the combination of the decentralized

environment for high performance Peer-to-Peer Distributed

Computing, P2PDC, (see [4] and [5]) with tools like OML,

OMF and OMF Portal that facilitate the deployment, man-

agement of P2PDC applications as well as the retrieval and

analysis of results [6]–[9]. We introduce also in this paper a

new measurement channel for P2PDC on OML.

Section II deals with related work and background material.

The motivations of the study are presented in Section III. We

detail measurement channel for P2PDC and task deployment

in Section IV. Experiments carried out on PlanetLab are

presented in Section V. Finally, conclusions and future work

are presented in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we briefly present the three component on

which this current work is built, namely the decentralized

environment P2PDC, the OMF framework and the OML

library.

A. P2PDC

The P2PDC framework [4], [5] is a decentralised environ-

ment for high performance peer-to-peer distributed computing.

This framework is specialised in task parallel applications and

in particular P2PDC is intended for the resolution of numerical

simulation and optimization problems via distributed iterative

methods that lead to direct and frequent data exchanges

between machines [4], [10]–[12]. The P2PDC communication

process relies on the use of the Peer-to-Peer Self Adaptive

communication Protocol, (P2PSAP) [13], [14], in which a

reduced set of communication calls (e.g., P2Psend, P2Preceive
and P2Pwait) are used in order to facilitate programming.

Thus, the experimenter can concentrate on the choice of

distributed iterative computational schemes (e.g., synchronous
or asynchronous) he wants to be implemented and does not

need to focus on the communication mode between any two

peers. In addition to the two generic class of algorithms (e.g.,
synchronous or asynchronous), P2PDC also offers a hybrid

iterative computational scheme, whereby computations are

locally synchronous in a subset of peers organised in a cluster

and asynchronous between clusters. This hybrid mode is made

possible as P2PDC decentralized environment is based on a

hybrid topology manager and a hierarchical task allocation

mechanism. Further details are available in [10] and [15].

As described previously, the P2PDC framework uses of the

P2PSAP communication protocol [13], [14]. In addition to

the basic API calls we have explained above, this protocol

also dynamically chooses the most appropriate communication

mode between any two peers in the system in accordance with

both application requirements (i.e., the computational scheme

class) and underlying measurements of the network. Thus,

in the hybrid case, a synchronous communication mode is

implemented between machines in a group/cluster that are

relatively close and presenting similar characteristics, while an

asynchronous communication mode is implemented between

machines in different groups/cluster (i.e., no guarantee of

reliability).

The P2PSAP communication protocol was originally de-

signed as an extension of the CTP transport protocol [16]

2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/14 $31.00 © 2014 IEEE

DOI 10.1109/PDP.2014.15

617

implemented in the CACTUS framework which makes use

of micro-protocols [17]. The CTP protocol includes a wide

range of micro-protocols including a small set of basic micro-

protocols that are needed in every configuration and a set

of micro-protocols implementing various transport properties.

Recently, the P2PSAP communication protocol takes into

account Ethernet and Infiniband clusters [14].

Finally, reference are also made to [1] and [18] for more

details on peer-to-peer computing.

B. OMF

In order to evaluate new networking technologies, re-

searchers have developed and deployed large facilities like

PlanetLab complementarily to preliminary simulated results.

These platforms aim at providing real conditions for testing

research works while proposing repeatability in a semi-closed

environment. Nevertheless, offering and performing repeata-

bility requires the development of management frameworks.

During the last decade, the cOntrol and Management Frame-

work (OMF) [7] has been developed to tackle this difficult

challenge. This framework offers a suite of management,

control and measurement services for networking platforms.

Researchers have built large experimental facilities (aka

testbeds) such as Planetlab to evaluate new networking tech-

nologies at scale. Such an evaluation with real conditions

complements any preliminary simulated results, and similarly

needs to be repeatable within the semi-closed environment

provided by the testbed. Providing such systematic repeatabil-

ity is challenging when the evaluation involves testbeds with

large number of heterogeneous resources. The cOntrol and

Management Framework (OMF) [7] offers a software suite to

control and manage resources in networking testbeds, and to

define and orchestrate experiments using these resources. OMF

provides testbed operators with several services to provision

and configure various resource types (e.g. virtual machines,

wireless devices, etc...). From a researcher’s point of view,

it provides a high level domain-specific language (OEDL) to

describe an experiment and a set of tools to automatically

deploy and orchestrate it on a given testbed.

An OMF experiment starts with the definition of an Exper-

iment Description using OEDL. It describes the resources to

use, the measurements to collect, and the tasks to perform dur-

ing the experiment run. The researcher passes this description

to the OMF system which performs all the required operations

to deploy, configure and execute the different elements and

steps of the experiment. During the experiment run, if the

researcher requested some measurements from any OML-

instrumented resources [6], then the corresponding measure-

ment streams will be automatically created and collected.

This framework is currently used on many testbeds world-

wide, and has been integrated with other research and ed-

ucational tools. For example, it is used as the experiment

orchestration system for the IREEL e-learning platform [9],

which allows students to perform classroom lab experiments

on networking testbeds. OMF has also been integrated to

the LabWiki web-based portal [8], which aims at provid-

ing researchers with a software replacement for laboratory

notebooks. Labwiki provides unified tools to define research

objectives, plan corresponding experiments, deploy and exe-

cute them (using OMF), analyze the collected data (using an

R interpreter1), and present and share the results with peer

researchers.

C. OML

OML [6] is a multithreaded instrumentation and data col-

lection library. It is a stand-alone open source software, which

allows the collection of any type of measurements from

any type of distributed applications, and their storage in a

unified format (e.g. SQL). OML data reporting can operate

alongside an application’s original reporting mechanism or as

its replacement. Using OML allows researcher to easily collect

and correlate data from different distributed sources to evaluate

prototypes, test research hypotheses, or investigate anomalies.

The typical OML data path starts with the definition of a

Measurement Point (MP) within the instrumented application.

This MP is an abstraction for a tuple of related metrics, which

will be reported as a measurement sample to the OML library

by the application. During run-time, the OML library turns the

received samples into a Measurement Stream (MS). This MS

is then directed to an optional Processing Points (PP), which

implement processing functions that consume the incoming

MS and produce new resulting MSs (e.g. min/max over a

window, weighted average of two metrics). The Resulting MSs

are then directed to local or remote Termination Points (TP),

which store the measurements in various format (e.g. SQL).

An evaluation of OML has been performed [6] to assess

its impact on the the instrumented application’s performance

and on the data reporting channel when such channel is

being shared with the experiment’s own traffic. This evaluation

showed that OML has a statistically non-significant impact on

the instrumented application, and that its impact of the data

channel can be minimal when it is used with adequate PPs.

III. MOTIVATION

While peer-to-peer networks have demonstrated many ad-

vantages as compared to a centralised architecture, including

their openness as well as their robustness at scale, they still

present numerous challenges in the particular case of HPC.

Among these challenges we are particularly interested in the

application/task deployment and fault-tolerant capabilities.

In our architecture, using P2PDC, we have described in [4]

how the computational scheme is initiated. In particular, in our

framework a self-elected peer has to initiate the computation.

This initialisation can be seen as a series of successive task,

first this peer decomposes the data set, then it sends theses

subsets as application code to workers, these workers later

receive computed results either directly from other peers or

from coordinator peers. In this particular scenario, as only one

peer is transmitting the data to all the other peers, it constitutes

1http://www.r-project.org/

618

a bottleneck in the system especially if this peer does not have

access to a fast network.

A second generally accepted problem related to HPC over

a P2P network concerns the duration of the computation in

P2PDC. Indeed, although subtasks are distributed in order to

be computed among several peers, this duration may be long.

This results in a mandatory commitment from the submitter

to always stay connected until the completion of the compu-

tation. Hence, if the submitter disconnects, the computation

terminates immediately.

A third problem related to HPC over P2P concerns the

accurate estimation of the number of available peers at any

given time. For example, there might be more free peers during

the night than during the day, but users can not always connect

and start their application during the night.

Finally, we point out a last drawback of the current version

of P2PDC: the received results are in raw format so that

users have to make further treatment in order to obtain

more sophisticated representations such as graphs or statistical

analysis.

In order to overcome these drawbacks and to facilitate the

deployment, management of P2PDC applications as well as

the retrieval and analysis of results, we propose in this paper

a solution based on the combination of P2PDC with tools

developed at NICTA (i.e., OML, OMF and OMF Portal).

IV. TASK DEPLOYMENT

In this section, we first introduce a new measurement

channel for P2PDC based on the OML library that reduces

the volume of collected measurements and which limits the

impact of the measurements on the computation. We then

present an innovative application of this measurement scheme

as task deployment architecture.

A. New measurement Channel

As detailed in Section II-C, the OML framework provides

users with filters enabling some preprocessing on a specific

measurement stream in a processing point located either at

the resource that produces the measurement or on the path of

the measurement stream.

We note also that not only unnecessary data are stored in

the database while further manipulations need to be made

in order to extract necessary information. Hence, we have

proposed to provide users with a new type of filter that allows

users to perform some preprocessing on several measurement

streams from different resources. Such a preprocessing can

dramatically reduce the volume of collected measurements and

thus limit the impact of the measurements on the computation.

In order to minimize the impact on the current architecture,

the new type of filter is implemented in an OML proxy-server

[19]. The proxy-server can be placed in the same machine

as OML Server or in a separate machine. The measurement

architecture is displayed in Figure 1.

In the context of P2PDC, we have developed a new type

of filters that allows users to perform some preprocessing on

several measurement streams from different resources. Such

Figure 1: Hierarchical measurement architecture.

preprocessing can significantly reduce the volume of collected

measurements and thus limit the impact of the measurements

on the computation and the experimental network. In order to

minimize the impact on the current architecture, the new type

of filter is implemented in an enhanced OML proxy-server [19]

which constitutes an OML Processing Point [6]. The proxy-

server can be placed in the same machine as OML Server or

in a separate machine. Thus, the measurement architecture is

shown in Figure 1.

In Figure 1, a node does not inject measurement stream

directly to OML Server but to processing point (proxy-server).

A max(.) filter is implemented on the proxy-server that cal-

culates the maximum computational error from n entering

streams (where n is the number of nodes) at each time step

and forwards this value to OML Server. Hence, the volume of

collected measurements stored in database at OML Server is

reduced by a factor n. Moreover, users do not need to make

any further manipulation on collected measurements.

In large scale experiments, where the number of nodes

involved may be important and spread over a large network,

if all measurement streams from all nodes are collected by

single OML server (or a proxy-server), this entity may become

a bottleneck leading to a loss of efficiency in measurement

collection process.

With the presence of filters on proxy-server, we can deploy

a hierarchical measurement architecture that not only avoids

the bottleneck at OML Server (or proxy-server) but also

reduces the volume of measurement data sent over long-

distance link. Then, we can put inside a group of nearby

nodes a proxy-server implementing a filter that processes

measurement streams, in a streaming fashion, injected by peers

in this group. Afterward, a top-level proxy-server integrates

measurement streams injected by group’s proxy-servers and

forwards integrated metrics to OML Server.

We note that measurement streams of a group of nearby

nodes are pre-processed locally inside this group and only one

measurement stream is sent from a given group to top-level

proxy-server without a loss of meta-data information thanks

to the capabilities of OML [6]. The multi-level hierarchical

measurement architecture is displayed in Figure 2.

619

Figure 2: Multi-level hierarchical measurement architecture.

Figure 3: Task deployment via OML

B. Reverse Measurement Framework for HPC Task Deploy-
ment and P2PDC Web Portal

In this section, we detail a method that makes use of the

OML measurement library in order to deploy tasks on peers.

As previously explained, the OML measurement library allows

to define measurement points inside programs and create

measurement streams to either a local or a remote server.

In our case, we use this library in a reverse manner, whereby

data to distribute are injected to several clients instead of

the generic case where several clients inject measurements

that would be collected by a server. Figure 3 displays the

architecture of the system for task deployment.

At the beginning of the solution of a given HPC application

(e.g., a numerical simulation problem), the initial dataset is

often decomposed into n parts, each part being assigned to a

given machine or peer.

In P2PDC architecture, when programmers define a task,

they usually need to read the dataset from a binary file, de-

compose it into subsets and integrate data subsets to subtasks

as parameters; then, data subsets are sent along with subtasks

to peers. This process is usually quite repetitive and error

prone. With the integration of P2PDC and OMF/OML, the

task submission and deployment are done through a centralised

web server or portal. On this portal, the data file of a task is

uploaded to a file Repository and needs to be distributed to

peers when the computation begins.

Figure 4: Web portal for HPC applications.

For clarification, let’s take the example of the resolution of

a discretized numerical simulation problem via a distributed

or parallel iterative algorithm. In this class of problems, the

dataset is often in the form of a matrix with dimension

d = 1, 2, 3, A solution over four peers can give rise

to the following pillar decomposition of the dataset for a

matrix with size 128×128×128: [0 . . . 63][0 . . . 63][0 . . . 127],
[0 . . . 63][64 . . . 127][0 . . . 127], [64 . . . 127][0 . . . 63][0 . . . 127]
and [64 . . . 127][64 . . . 127][0 . . . 127]. During the deployment,

each sub-matrix needs to be sent to a peer.

In our method, the portal generates an XML file that defines

the deployment/filtering process. This XML file is later stored

in the Portal File Repository alongside with data files. Dataset

are then distributed automatically to peers via a proxy-server

using mechanisms adapted from OML.

Indeed, in order to deploy the dataset to the participating

peer, the P2PDC Submitter [4] injects the dataset in an OML

Measurement Point (MP). This MP creates the measurement

stream in direction to the local proxy-server and therefore free

the submitter from the deployment procedure burden.

This proxy-server will in turn takes charge of the dataset

transfer to the peers based on a filter describing the de-

composition process. This filtering process is called the

Init_Portal_Proxy filter in Figure 3. This specific filter creates

n OML Measurement Streams, where n denotes the number

of peers, in direction to remote proxy-servers on peer-side

where another filter, called type Init_Portal_Client, filters

out the dataset and presents it to the P2PDC worker in an

adequate format. Like the Init_Portal_Proxy filter, Init_Peer

filter does not write any data to output but sends data to

P2PDC worker. The communication between Init_Peer filter

and P2PDC Worker is made via local socket.

We conclude this section by presenting the principle of an

HPC web portal for application deployment and measurement

as shown in Figure 4.

In this foreseen HPC web portal, users would upload their

application codes as well as datasets in file format to the

Portal via a web interface. Thanks to this web interface, they

can easily customize their application according to different

scenarios(e.g., change the dataset, the number of workers

or topology description). Moreover, users can schedule to

start the application at a given time or when experiment

620

requirements are met.

Based on scheduling information, the OMF Experiment

Controller on the Portal selects a given machine on the network

to start the application; this machine is called a Virtual Sub-

mitter. Virtual Submitters can be dedicated machines managed

by Portal administrators or peers with attractive characteristics

in the network. Once the application is launched on a given

Virtual Submitter, dataset is sent directly from the Portal to

workers as described above using the dedicated OML filters.

Once the resolution is complete, results can be collected

through an OML measurement stream to the OML Server

either from Virtual Submitter or directly from workers. The

former case, where results are usually sent from workers to

the Virtual Submitter, constitutes the legacy results collection

in P2PDC environment [4]. In this case, the Virtual Submitter

makes results aggregation and sends the final measurement to

the OML server. Finally, the OML Server on the Portal stores

results measurement streams into database and offers them to

the user once the experiment is finished.

Furthermore, users can write R scripts in order to be able

to create graphs or tables representation of the results on the

portal. We acknowledge that there may be several Portals on

the network as any organization or even any individual user

can install its own Portal. Furthermore, with the presence of

the Portal, users do not need to stay connected when the

computation is running and they can reconnect later on and

retrieve the result from the Portal.

Finally we consider that the introduction of a Web Portal

facilitates application deployment and measurements. More-

over, knowledge of the state of the network and machines is

made possible through a web service.

We also note that the creation of events in order to dynam-

ically tune the solution process is now possible thanks to the

OML new channel and the use of appropriate filters. This leads

to the possibility to implement easily self-adaptive distributed

methods or multi-methods. Thus gains in efficiency become

possible.

V. EXPERIMENTS ON PLANETLAB

HPC applications have been deployed on PlanetLab thanks

to P2PDC and the OMF, OML libraries. We present now a

first series of experiments obtained with PlanetLab. We note

that the new measurement channel for task deployment has

been used in order to carry out these experiments.

In order to test our implementation of OML integration

inside P2PDC, we have conducted a measurement campaign

over PlanetLab. We present hereafter a first series of experi-

ments obtained with PlanetLab.

PlanetLab is a global research network that supports the

development of new network services. Since the beginning of

2003, more than 1,000 researchers at top academic institutions

and industrial research labs have used PlanetLab in order

to develop new technologies for communication protocols,

distributed storage, network mapping, peer-to-peer systems,

distributed hash tables, and query processing. PlanetLab con-

sists of more than 1100 nodes at 512 sites.

The HPC application that we have considered concerns

the resolution of the obstacle problem [4]. Obstacle problems

occur in many scientific domains like mechanics; they occur

also as sub-problems of various problems in finance, e.g.,

Black-Scholes problem for options pricing.

In the stationary case, the obstacle problem can be formu-

lated as follows.

⎧⎪⎪⎨
⎪⎪⎩

Find u∗ such as
Λ.u∗ − f ≥ 0, u∗ ≥ φ everywhere in Ω
(Λ.u∗ − f)(φ− u∗) = 0, everywhere in Ω
B.C.

(1)

where Ω ⊂ R
2 (or R3) is an open set, Λ is an elliptic operator,

φ a given function and B.C. denotes the boundary conditions

on ∂Ω.

There are many equivalent formulations of the obstacle

problem in the literature like complementary problem, vari-

ational inequality and constrained optimization problem; the

reader if referred to [20], [21] and [22] for more details.

We concentrate here on the following variational inequality

formulation.{
Find u∗ ∈ K such as
∀v ∈ K, 〈Λ.u∗, v − u∗〉 ≥ 〈f, v − u∗〉 (2)

where K is a closed convex set defined by

K = {v|v ≥ φ everywhere in Ω}, (3)

and 〈., .〉 denotes the dot product 〈u, v〉 = ∫
Ω
uvdx

The discretization of the above problem leads to the follow-

ing large scale fixed point problem whose solution via parallel

algorithms present many interest [20], [22].{
Find u∗ ∈ V such as
u∗ = F (u∗), (4)

where V is an Hilbert space and the mapping F : v �→ F (v)
is a fixed point mapping from V into V .

We consider the distributed solution of the above fixed point

problem via the projected Richardson method combined with

asynchronous iterative schemes of computation. Reference is

made to [4] for the mathematical formulation of asynchronous

projected Richardson methods.

We recall that asynchronous iterative algorithms are suc-

cessive approximation methods. They correspond to a general

model of distributed or parallel computations whereby each

processor goes at its own pace and updates without order,

nor synchronization, the components of the iterate vector that

have been assigned to it. The pace depends on processor

characteristics and computational load. The reader is also re-

ferred to [23] for more details on asynchronous iterations. The

convergence of asynchronous projected Richardson method

has been established in [20]. Furthermore, advantages of

asynchronous iterative schemes of computation for various

problems including boundary value and optimization problems

have been shown in particular in [22], [24]–[31].

We note that asynchronous iterations are well suited to

621

Figure 5: Computational results with PlanetLab.

HPC applications carried out on a network like PlanetLab

where latency can be important. Asynchronous algorithms

present also some interesting fault-tolerance properties since

they permit one to cope with message loss that can occur in

a peer-to-peer network. In the asynchronous context, message

loss is not critic: it does not lead to system deadlock and

the information contained in a missing message can be easily

replaced via the one contained in a new message.

We have considered a 3D obstacle problem with size:

192× 192× 192. We have used 24 machines from 12 sites (2

machines on each site): 4 sites in the US and 8 sites in Europe.

Latency between machines at a same site was about 0.1 ms

while latency between machines of different sites varies from

30 ms to 330ms. Machines are heterogeneous; processor’s

frequency varies from 2.4 to 3.0 GHz.

Experiments have been carried out on 1, 2, 4, 8, 16 and

24 machines. OMF and OML were used to facilitate task

deployment as well as measurements like error and solution

time.

Computational time in the sequential case (i.e., with one

machine), varies from 3158 s to 6555 s according to the

configuration of the machine. Synchronous iterative schemes

of computation are not suited to this type of networks, since

latency is much greater than the duration of a single relaxation

in that case. Hence, we have considered only asynchronous

iterative schemes of computations in our experiments. More-

over, PlanetLab limits the bandwidth used in 24 hours; thus we

have reduced update’s frequency in order to respect PlanetLab

user’s charter: a node sends updates to its neighbors every 10

relaxations. Through experiments, we found that the reduction

of update’s frequency increases computational time from 5%

to 10%.

Computational results are displayed in Figure 5 where the

sequential computational time of the fastest machine was used

in order to calculate speedup.

We note that the combination of asynchronous iterative

schemes of computation with the decentralized environ-

ment for high performance peer-to-peer distributed computing

P2PDC and OMF, OML libraries is attractive. As a matter of

fact despite heterogeneity and sometimes big latencies due to

machines located on two continents, non-negligible speedup

is nevertheless obtained.

VI. CONCLUSION

The integration of the OML measurement tool within the

P2PDC decentralized environment for HPC on heterogeneous

computing platforms has been considered in this paper. This

integration presents the following three benefits.

1) A new distributed measurement channel based on the

OML measurement library has been introduced. This

channel reduces the volume of collected measurements

and thus limits the impact of the measurements on the

computation.

2) A modular system for the injection of computational

data into a network has been proposed. This system is

used in particular for efficient distribution of data on the

overlay network and deployment of HPC applications on

distributed platforms such as PlanetLab.

3) Thanks to the OML new channel and the use of appropri-

ate filters, the creation of events in order to dynamically

tune the solution process is made possible. This leads to

self-adaptive distributed methods or multi-methods that

are more efficient.

A Web Portal for HPC applications deployment and mea-

surement has also been proposed in this paper. This Portal

results from the combination of P2PDC with tools developed

at NICTA, i.e. OML, OMF and OMF Portal. In particular,

we have given the principle of the Portal architecture and

explained how this Portal can facilitate the deployment, the

management of P2PDC applications as well as the retrieval

and analysis of computational results.

Finally, the deployment of an HPC application on PlanetLab

has been considered. The numerical solution of an obstacle

problem has been carried out on a network with 24 machines in

twelve sites and two continents. A first series of computational

results has been displayed and analyzed.

In the future, we plan to extend the P2PSAP communi-

cation protocol in order to take into account MX/Myrinet

networks as well as multi-networks platforms that combine

Infiniband, MX/Myrinet and Ethernet networks. We plan also

to concentrate on heterogeneity. In particular, we shall consider

heterogeneous platforms combining CPUs and GPUs.

ACKNOWLEDGEMENT

Part of this study has been made possible via ANR contract

ANR-07-CIS7-011. Experiments presented in this paper were

carried out using the PlanetLab experimental testbed being

developed under GENI with support from several Universities

as well as funding bodies.

REFERENCES

[1] K. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud Computing,
from Parallel Processing to the Internet of Things. Morgan Kaufmann,
2012.

[2] J. Dongarra, “Emerging heterogeneous technologies for high perfor-
mance computing,” in Proc. 27th IEEE International Parallel & Dis-
tributed Processing Symposium and Workshops (IPDPSW), Boston, May.
2013.

622

[3] V. Boyer and D. El Baz, “Recent advances on GPU computing in
Operations Research,” in Proc. 27th IEEE International Parallel &
Distributed Processing Symposium and Workshops (IPDPSW), Boston,
May. 2013, pp. 1778–1787.

[4] T. T. Nguyen, D. El Baz, P. Spiteri, G. Jourjon, and M. Chau, “High
performance peer-to-peer distributed computing with application to ob-
stacle problem,” in Proc. 24th IEEE International Parallel & Distributed
Processing Symposium and Workshops (IPDPSW), Atlanta, May. 2010,
pp. 1453–1461.

[5] B. Cornea, J. Bourgeois, T. T. Nguyen, and D. El Baz, “Performance
prediction in a decentralized environment for peer to peer computing,”
in Proc. 25th IEEE International Parallel & Distributed Processing
Symposium and Workshops (IPDPSW), Anchorage, May. 2011, pp.
1613–1621.

[6] O. Mehani, G. Jourjon, T. Rakotoarivelo, and M. Ott, “An instrumen-
tation framework for the critical task of measurement collection in the
future Internet,” NICTA, Tech. Rep. 6065, 2012.

[7] T. Rakotoarivelo, M. Ott, I. Seskar, and G. Jourjon, “OMF: a control and
management framework for networking testbeds,” in SOSP Workshop on
Real Overlays and Distributed Systems (ROADS ’09), Big Sky, USA,
Oct. 2009, p. 6.

[8] G. Jourjon, T. Rakotoarivelo, and M. Ott, “A portal to support rigorous
experimental methodology in network research,” in Proc. of TridentCom,
Apr. 2011.

[9] ——, “From Learning to Researching, ease the shift through testbeds,”
in Proc. of TridentCom, ser. LNICST, vol. 46. Berlin Heidelberg:
Springer-Verlag, 2010, pp. 496–505.

[10] T. Garcia, M. Chau, T. T. Nguyen, D. El Baz, and P. Spiteri, “Asyn-
chronous peer-to-peer distributed computing for financial applications,”
in Proc. 25th IEEE International Parallel & Distributed Processing
Symposium and Workshops (IPDPSW), Anchorage, May. 2011, pp.
1453–1461.

[11] M. Hifi, T. Saadi, and N. Haddadou, “High performance peer-to-peer
distributed computing with application to constrained two-dimensional
guillotine cutting problem,” in Proc. 19th Conference on Parallel,
Distributed and networked-based Processing, Cyprus, Feb. 2011, pp.
552–559.

[12] D. El Baz, M. Hifi, and T. Saadi, “Peer-to-peer solution of 2D-cutting
stock problems,” in Proc. 11th Workshop on Graphs and Combinatorial
Optimization, 2012, pp. 116–120.

[13] D. El Baz and T. T. Nguyen, “A self-adaptive communication protocol
with application to high performance peer-to-peer distributed comput-
ing,” in Proc. of the 18th Conference on Parallel, Distributed and
networked-based Processing, PDP 2010, Pisa, Italy, Feb. 2010, pp. 327–
333.

[14] S. Tembo, T. T. Nguyen, and D. El Baz, “Distributed Iterative Solution
of Numerical Simulation Problems on Infiniband and Ethernet Clusters
via the P2PSAP Self-Adaptive Protocol,” in Proc. of the 21st Euromi-
cro conference on Parallel, Distributed and Network-Base Processing,
Belfast, Feb. 2013, pp. 121–125.

[15] T. T. Nguyen and D. El Baz, “Fault-tolerant implementation of peer-to-
peer distributed iterative algorithms,” in Proc. 15th IEEE International
Conference on Computational Science and Engineering, Paphos Cyprus,
2012, pp. 137–145.

[16] G. Wong, M. Hiltunen, and R. Schlichting, “A Configurable and
Extensible Transport Protocol,” in Proceedings of IEEE INFOCOM,
2001, pp. 319–328.

[17] M. A. Hiltunen, “The CACTUS approach to building configurable
middleware services,” in Proc. of DSMGC 2000, 2000.

[18] G. Jourjon and D. El Baz, “Some solutions for Peer to Peer Global
Computing,” in Proc. of the 13th Euromicro conference on Parallel,
Distributed and Network-Base Processing, 2005, pp. 49–58.

[19] J. White, G. Jourjon, T. Rakotoarivelo, and M. Ott, “Measurement
architectures for network experiments with disconnected mobile nodes,”
in TridentCom 2010, 6th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks &
Communities, ser. Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering,
A. Gavras, N. Huu Thanh, and J. Chase, Eds., ICST. Heidelberg,
Germany: Springer-Verlag Berlin, May 2010. [Online]. Available:
http://www.nicta.com.au/research/research_publications/show?id=3298

[20] P. Spitéri and M. Chau, “Parallel Asynchronous Richardson Method
for the Solution of Obstacle Problem,” in Proc. of the 16th Annual

International Symposium on High Performance Computing Systems and
Applications, 2002, pp. 133–138.

[21] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux
Limites non Linéaires. Dunod, 1969.

[22] J. C. Miellou, D. El Baz, and P. Spitéri, “A new Class of Asynchronous
Iterative Methods with Order Intervals,” Mathematics Of Computation,
vol. 67, no. 221, pp. 237–255, 1998.

[23] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1997.

[24] D. Bertsekas and D. El Baz, “Distributed Asynchronous Relaxation
Methods for Convex Network Flow Problems,” SIAM Journal on Control
and Optimization, vol. 25, no. 1, pp. 74–85, 1987.

[25] D. El Baz, “A computational experience with distributed asynchronous
iterative methods for convex network flow problems,” in Proc. of the
28th IEEE Conference on Decision and Control, 1989, pp. 590–591.

[26] D. El Baz, “M-functions and Parallel Asynchronous Algorithms,” SIAM
Journal on Numerical Analysis, vol. 27, no. 1, pp. 136–140, 1990.

[27] D. El Baz, “Asynchronous gradient algorithms for a class of convex
separable network flow problems,” Computational Optimization and
Applications, vol. 5, no. 3, pp. 187–205, 1996.

[28] D. El Baz, P. Spiteri, J. C. Miellou, and D. Gazen, “Asynchronous
iterative algorithms with flexible communication for nonlinear network
flow problems,” Journal of Parallel and Distributed Computing, vol. 38,
pp. 1–15, 1996.

[29] M. Jarraya and D. El Baz, “Implementation of distributed iterative
algorithm for optimal control problems on several parallel architectures,”
Journal of Systems and Software, vol. 60, pp. 141–148, 2002.

[30] D. El Baz, A. Frommer, and P. Spiteri, “Asynchronous iterations with
flexible communication: contracting operators,” Journal of Computa-
tional and Appied Mathematics, vol. 176, pp. 91–103, 2005.

[31] M. Chau, D. El Baz, R. Guivarch, and P. Spiteri, “MPI implementation
of parallel sub-domain methods for linear and nonlinear convection-
diffusion problems,” Journal of Parallel and Distributed Computing,
vol. 67, pp. 581–591, 2007.

623

