
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04835-3

1 3

Fast parallel algorithms for finding elementary circuits 
of a directed graph: a GPU‑based approach

Amira Benachour1  · Saïd Yahiaoui2 · Didier El Baz3 · 
Nadia Nouali‑Taboudjemat2 · Hamamache Kheddouci4

Accepted: 11 September 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
Circuits in a graph are interesting structures and identifying them is of an important 
relevance for many applications. However, enumerating circuits is known to be a dif-
ficult problem, since their number can grow exponentially. In this paper, we propose 
fast parallel approaches for enumerating elementary circuits of directed graphs based 
on graphics processing unit (GPU). Our algorithms are based on a massive explora-
tion of the graph in a breadth-first search strategy. Algorithm V-FEC explores the 
graph starting from different vertices simultaneously. To further reduce the search 
space, we present T-FEC, another algorithm that uses triplets as an initial set to start 
exploring. To the best of our knowledge, those are the first parallel GPU-based algo-
rithms for finding all circuits of a given graph. In addition, they find circuits of a 
given length and circuits with a specific vertex or edge. The evaluation results show 

 * Amira Benachour 
 abenachour@usthb.dz

 Saïd Yahiaoui 
 syahiaoui@cerist.dz

 Didier El Baz 
 elbaz@laas.fr

 Nadia Nouali-Taboudjemat 
 nnouali@cerist.dz

 Hamamache Kheddouci 
 hamamache.kheddouci@univ-lyon1.fr

1 Department of Computer Science, University of Sciences and Technology Houari Boumediene, 
16111 Bab Ezzouar, Algiers, Algeria

2 CERIST Research Center on Scientific and Technical Information, 16028 Ben Aknoun, Algiers, 
Algeria

3 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
4 Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622 Lyon, France

http://orcid.org/0000-0003-3798-5651
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04835-3&domain=pdf


 A. Benachour et al.

1 3

that the proposed approaches achieve up to 190x speed-up over Johnson’s algorithm, 
one of the most efficient sequential algorithms for finding circuits.

Keywords Finding circuits · Cycles · Directed graph · Parallel processing · GPU.

1 Introduction

The problems of enumerating structures such as circuits, paths, trees and cliques in 
graphs and networks are of fundamental importance. This kind of tasks is usually 
hard to deal with, due to its challenging time/space complexity. Indeed, even a small 
graph may contain a huge number of such structures. In the enumeration process, it 
is important to point that counting and finding are two different processes: Finding 
is the construction of elements, and counting is determining their number. Gener-
ally, knowing the count is rarely useful in finding the objects and even if we are able 
to count the elements in polynomial time, we might not be able to find all of them 
due to an exponential number of elements and huge memory requirements. In the 
following, we will use enumeration and finding interchangeably.

Our interest is in finding the elementary circuits of a directed graph, which is a 
fundamental problem of graph theory. A circuit is a loop through which information 
propagates and it is widely used in real-world applications. For example, circuits 
can reveal money laundering in the financial system [1]. They represent fragile eco-
system dependencies in food webs [2]. Finding circuits is also interesting in fraud 
detection [3]. Circuits serve as a method for social network analysis and modeling 
[4] and are used to evaluate networks balance [5]. Finding circuits is also important 
in biology [6–8], and Internet systems [9].

The first algorithms proposed for finding elementary circuits of a directed graph 
require either a lot of memory or have exponential running time [10, 11]. As a result, 
they become impractical as the graph size increases. The algorithm by Johnson [12] 
is one of the most efficient algorithms for finding elementary circuits. It is still the 
best state of art algorithm, yet it may fail to handle some large graphs. To deal with 
larger graphs, Lu et al. [13] introduce a parallel algorithm based on Johnson’s algo-
rithm aiming to reduce the execution time. Their algorithm is based on first split-
ting the job into small ones and then applying Johnson’s algorithm on each one in 
parallel. Giscard et al. [14] proposed an algorithm that counts the circuits of a graph 
without enumerating them. It gives the number of circuits for a length l, but it is 
tested for a limit of l = 10 . In [15] the authors present an algorithm that deals with 
large graphs but only finds circuits of length less than or equal to k. The limit in their 
tests is k = 6.

In this paper, we present parallel approaches for finding all circuits of a directed 
graph. We first detect whether the graph contains circuits by searching for the 
strongly connected components, then we start exploring the graph to find all the cir-
cuits. Our algorithms proceed by a massive exploration of paths. We present two 
approaches based on the initial set used for exploration: The first uses vertices of the 
graph to which we assign a search area, while the second uses triplets to reduce the 



1 3

Fast parallel algorithms for finding elementary circuits…

search space of exploration. Our algorithms permit to find circuits of a given length 
l and circuits with a specific vertex or edge. We develop a parallel implementation 
of the proposed approaches in a graphics processing unit (GPU) environment that is 
better suited for massive exploration. Our algorithms can find millions of circuits in 
a reduced time. We provide, to the best of our knowledge, the first GPU-based algo-
rithms for finding elementary circuits of directed graphs.

The remaining of this paper is organized as follows. In Sect.  2 we present the 
background and related work. In Sect. 3, we introduce some preliminary definitions. 
The parallel algorithms are explained in Sect. 4. Details of the GPU implementation 
and examples are given in Sect. 5. Section 6 describes the experimental tests and 
results. Conclusion and future work are discussed in Sect. 7.

2  Related work

Finding cyclic structures in a graph has been largely studied in the literature because 
of its many potential application scenarios. Some existing works have been inter-
ested in detecting circuits of directed or undirected graphs [16–19]. Other studies 
focused on finding the shortest circuit [20–22] or the longest circuits of a graph 
[23–26]. In this paper, we are interested in finding all the elementary circuits of a 
directed graph. It is a classical problem whose most efficient solutions date back to 
the 1970s.

Tiernan [10] was the first to propose the idea of blocking visited vertices. The 
algorithm is based on a backtracking procedure. It generates all elementary paths 
p = (v1, v2,… , vk) with v1 < vi for all i ∈ {2,… , k} . Starting from some vertex v1 , it 
chooses an edge to traverse to some vertex v2 such that v2 > v1 and continue this way. 
Whenever no vertex can be reached, the procedure backs up one vertex and chooses 
a different edge to traverse. If v1 is adjacent to vk the algorithm lists an elementary 
circuit (v1, v2,… , vk, v1) . This approach examines more simple paths than necessary, 
making the worst-case time bound exponential in the number of elementary circuits 
and in the graph size.

Tarjan’s algorithm [11] is based on Tiernan’s depth-first method but it is faster. It 
lists all the cycles in O((|V| + |E|)|C|) time. It uses backtracking procedure to avoid 
unnecessary work. Two stacks are needed, the point stack for storing the path cur-
rently being examined, and a Boolean vector called marked stack to indicate whether 
a vertex is used in a path or not. Whenever a new circuit is found, all vertices in the 
current point stack will eventually be unmarked when popped from this stack. If no 
circuit is found involving a vertex, it will be deleted from the point stack, but con-
tinue to be marked. Some of the unnecessary work in Tiernan’s algorithm is avoided 
by the condition that a vertex can be added to the point stack only if it is unmarked.

The algorithm by Weinblatt [27] begins processing the graph by eliminating 
vertices which cannot belong to any circuits. Next, it selects a starting vertex and 
chooses an edge to follow. Circuits are found when a path is cyclic or by combining 
parts of previously discovered circuits with a part of the path that is being processed. 
However, this requires more storage and the time saved by efficient search is lost in 
searching the constructed circuits and paths.



 A. Benachour et al.

1 3

Of all the algorithms analyzed, the algorithm of Johnson [12] is the fastest algo-
rithm having an upper time bound of O((|V| + |E|)|C|) . The success of this back-
track algorithm is due to an effective pruning technique which avoids much of the 
fruitless search present in earlier algorithms. For each start vertex  s, a recursive 
backtracking procedure is invoked and its computation is similar to that of Tarjan’s 
algorithm, except for the marking system, which was considerably enhanced. A ver-
tex is blocked each time it enters the stack. It remains blocked until we backtrack 
from a vertex v that belongs to the last enumerated circuit. The unblock process 
recursively unblocks the vertices that have a path to v.

In 2006, an algorithm by Liu and Wang [28] present a way to enumerate circuits 
in directed and undirected graphs. It uses k − 1 paths to generate k circuits by explor-
ing adjacent vertices of the tail (the last vertex in the path), this way it can enumer-
ate circuits by length. Compared to Johnson’s and Tiernan’s algorithms, their algo-
rithm is slower and not efficient.

In [29], the authors propose a parallelizable algorithm into |V − 1| parts. They 
use a backtracking strategy using pointers allowing to backtrack more than one ver-
tex at a time, jumping directly to the vertex from which further path extensions are 
possible.

The algorithm by Lu et al. [13] is capable of handling large-scale graphs. The 
idea is to split the job into subroutines depending on the number of edges. Then 
apply Johnson’s algorithm to find all elementary circuits including an edge in 
parallel for each subroutine. Every subroutine has a search area that consists of 
the graph after deleting all the edges in inputs for previous subroutines. For this, 
they grade the edges, by estimating the number of all elementary paths from a 
vertex v to a vertex u. The edge with higher Id will have smaller search area. This 
approach is implemented on Hadoop using the MapReduce technique. Compared 
to previous approaches, this algorithm reduces the running time for finding ele-
mentary circuits of a graph but it uses depth-first search (DFS) sequential algo-
rithm of Johnson. Theoretically, DFS has been proven by Reif [30] to be inher-
ently sequential. It is considered to be a challenging problem for parallelization. 
Recently, algorithms that find length-constrained circuits have been proposed. In 
[15], the authors find circuits bounded by length k = 6 . Another work by [31] 
finds bounded circuits from a source vertex s in undirected graphs in parallel, 
with a maximum length of k = 8.

The algorithms we propose in this paper exploit the massive parallelism of the 
multi-cores GPU by running multiple searches simultaneously which makes it capa-
ble of finding millions of circuits in a short time. The exploration process is based 
on the breadth-first search (BFS) algorithm that is better suited to parallel imple-
mentation. Details are given in the following.



1 3

Fast parallel algorithms for finding elementary circuits…

3  Preliminaries

In this section, we present formal definitions [32] that support our approaches to 
enumerate all elementary circuits of a graph. Let G = (V ,E) be a finite directed sim-
ple graph with vertex set V and edge set E. Let Id(v) denote the number associated 
with the vertex v.

Definition 1 (Elementary path) A simple path p in a graph G = (V ,E) is a 
finite sequence of vertices p = ⟨v1, v2,… , vk⟩ , such that (vi, vi+1) ∈ E for 
i ∈ {1, 2,… , k − 1} . A path is elementary if no vertex appears twice.

Definition 2 (Elementary circuit) A circuit is a path in which the first and the last 
vertices are identical. An elementary circuit is a circuit where no vertex appears 
twice except the first and the last vertices.

Two elementary circuits are distinct if one is not a cyclic permutation of the 
other. Note that, in this paper we represent a circuit as a sequence of vertices 
c = ⟨v1, v2,… , vk⟩ without writing the redundant vertex twice.

Definition 3 (Strongly Connected Component) A strongly connected component 
(SCC) in a directed graph is defined as a subgraph in which every vertex is reachable 
from every other vertex. That is, for any two vertices u and v in a strongly connected 
component, there exists a path from u to v, and a path from v to u.

We define In-edges(v), the set of incoming edges of a vertex v such that:

Similarly, we define Out-edges(v) the set of outgoing edges of v:

We name the destination vertex of the outgoing edge of v the out-neighbor of v. 
Likewise, the origin vertex of the incoming edge of v is called the in-neighbor.

For the sake of introducing the approaches below, we define the set of triplets as 
follows:

Definition 4 (Triplets) We denote by T(G) the set of triplets of G = (V ,E) defined 
as:

In−edges(v) = {(u, v)|(u, v) ∈ E}

Out−edges(v) = {(v, u)|(v, u) ∈ E}



 A. Benachour et al.

1 3

A triplet is a sequence of vertices that initiate a path of length greater than two. 
We name v the source-vertex and x the in-vertex for a triplet ⟨x, v, y⟩ . Using triplets 
allows to find every circuit only once and reduce the search space, as we shall see in 
the sequel.

In the following, we present our algorithms for finding all elementary circuits.

4  Parallel algorithms for finding elementary circuits

We present here our parallel approaches for finding elementary circuits of directed 
graphs. Circuits are constructed starting from a source-vertex s. We build elemen-
tary paths by iteratively exploring adjacent vertices.

To avoid visiting vertices that do not belong to any circuit, we first find all the 
SCCs of the graph as a preprocessing task. Definition 3 shows that an SCC con-
sisting of more than one vertex must contain circuits and that all vertices in any 
circuit should be in the same SCC. Decomposing the graph into SCCs reduces the 
number of initial source vertices and the number of neighbors to be visited. Only 
neighbors that are in the same SCC are considered, hence, reducing the number 
of paths to be explored. In this work, we use the algorithm by Tarjan [33] for 
finding SCCs of the graph. The algorithm’s running time is linear in the number 
of edges and vertices in G, it finds SCCs in O(|V| + |E|) time.

Once the graph has been partitioned into SCCs, we move to the exploration 
phase. A straightforward approach to obtain all circuits is to enumerate all com-
binations of distinct edges and check if the path may construct a circuit. On this 
basis, we propose two algorithms: Vertex-based algorithm for finding elemen-
tary circuits (V-FEC) and triplets-based algorithm for finding elementary circuits 
(T-FEC). Our algorithms are based on a massive exploration of paths. For each 
SCC found, we run a parallel breadth-first search (BFS) starting from a set of ini-
tial source vertices and build exploration trees. The detailed algorithm V-FEC is 
presented in Sect. 4.1.

To reduce the search space and filter out some unnecessary combinations, 
we propose algorithm T-FEC that uses triplets instead of vertices as initial set. 
As with the precedent algorithm, V-FEC, we first find SCCs of the graph. Then, 
we generate the set of initial triplets and begin exploration. The same process of 
exploration is used. It is interesting to note that using triplets helps to balance 
exploration trees. The detailed algorithm is presented in Sect. 4.2.

T(G) = {⟨x, v, y⟩�x, y, v ∈ V with (x, v) ∈ In- edges(v),

(v, y) ∈ Out- edges(v),

Id(v) < Id(x),

Id(v) < Id(y)}



1 3

Fast parallel algorithms for finding elementary circuits…

For the following, C denotes the set of circuits found. Set P is used to contain 
the explored paths.

4.1  A vertex‑based approach V‑FEC

As explained above, the first algorithm is vertex-based. We begin by finding the 
SCCs of the graph. Then, we initialize the set of paths P with vertices of the 
SCCs: P = {⟨s1⟩ , ⟨s2⟩,..., ⟨sk⟩}.

We define the search area (SA) of a vertex s by the subgraph induced 
by s and vertices with Id greater than the Id of s which are in the same SCC: 
SA(s) = {u ∈ V|SCC(u) = SCC(s) and Id(u) > Id(s)} , SCC(v) denotes the identi-
fier of the SCC where vertex v belongs. In other words, for a vertex s we only 
consider vertices in the same SCC with Id greater than Id of s. Comparably, in 
Johnson’s algorithm, we consider vertex s to be the smallest vertex in the SCC. 
When all circuits from s are found, we remove s, In-edges(s) and Out-edges(s), 
and then, we explore the rest of the SCC in a similar manner.

In the exploration phase, for every vertex si in P, we only explore vertices in 
its search area. We start by visiting the out-neighbors of si . Then, we iteratively 
explore the visited vertices until no more vertices can be visited. The above-men-
tioned process is outlined in Algorithm 1.

Algorithm 1 Vertex-based Finding Elementary Circuits V-FEC(G)

Require: Graph G
Ensure: Set C of all elementary circuits of G
1: C ⇐ ∅
2: SCC ⇐ findSCC(G)
3: foreach scc ∈ SCC do
4: foreach s ∈ scc in parallel do
5: C ⇐ exploreV-FEC(s) See Procedure 1

6: return C

4.1.1  Exploration

Now we detail the exploration phase.
Our algorithm is based on running multiple BFS graph exploration simultane-

ously from every initial paths pi ∈ P . (P has been already initialized with vertices of 
the SCCs found.) We construct exploration trees for every source-vertex si of pi by 
visiting the out-neighbors of the last vertex v of path pi . For any neighbor u of v, one 
of the following situations occurs:

• Vertex u is the source-vertex si : pi is an elementary circuit. Add pi to C,



 A. Benachour et al.

1 3

• u is not visited and belongs to the search area of si : pi is extended. We add ⟨pi, u⟩ 
to the set of paths P.

• u is already visited: the path ⟨pi, u⟩ cannot constitute an elementary circuit.

The algorithm proceeds iteratively by visiting the last visited vertex of each result-
ing path until no path can be found (P = ∅) . At the end of the exploration phase, 
we would have listed all the circuits ordered by their length. A pseudo-code of the 
explained process is presented in Procedure 1.

Procedure 1 exploreV-FEC

Require: Vertex s
Ensure: Set of circuits C
1: P s
2: visited(s) ⇐ true
3: while P = ∅ do
4: foreach p ∈ P do
5: v ⇐ lastV ertex(p) returns the last vertex of p
6: foreach u ∈ out-neighbors(v) do
7: if Id(u) = Id(s) then
8: C ⇐ C ∪ {p}
9: else

10: if ¬ visited(u) and u ∈ SA(s) then
11: P ⇐ P p, u
12: visited(u) ⇐ true

13: P ⇐ P − {p}
14: return C

(a) (b)

Fig. 1  Graph decomposition into SCCs 



1 3

Fast parallel algorithms for finding elementary circuits…

Example 1 To better explain the proposed algorithm we run an example on graph 
G = (V ,E) , |V| = 12 and |E| = 22 shown in Fig. 1a. We begin with a search for the 
SCCs of the graph to eliminate unnecessary vertices and edges. Graph G contains 
three strongly connected components, a large SCC: SCC0 and two trivial ones: SCC1 
and SCC2 , illustrated in Fig. 1b. We remove all the trivial SCCs and the edges going 
to or from them and begin processing the remaining graph.

We initialize the set P of paths with the vertices of SCC0 (l = 0 in Fig. 2). Then 
we start constructing exploration trees for each source-vertex s. We visit out-neigh-
bors of s that are in its search area. We recall that a vertex u is in the search area of 
vertex s if the two vertices are in the same SCC and Id(u) > Id(s) . Consider vertex 
s, Id(s) = 1 . Vertex s has three out-neighbors: vertex 0, 2 and 4. Vertex 0 is not in 
SA(s) since 0 < 1. In this case, vertex 0 is not considered. If a vertex has no visited 
neighbors, the path is removed, e.g., paths: ⟨8⟩ and ⟨9⟩ have no visited neighbors, so 
they are removed. (l = 0 in Fig. 2).

Fig. 2  Exploration trees from different source vertices: V-FEC approach



 A. Benachour et al.

1 3

4.2  A triplets approach T‑FEC

We aim to reduce the search space for the exploration phase by generating triplets 
using direct neighbors of each vertex. The idea is to construct what can constitute 
potential circuits by joining incoming and outgoing edges of a given vertex. We 
divide the process into two stages and define a parallel algorithm for each one of 
them. As a first step, (1) we generate the set of triplets T(G), and then, (2) we run 
a parallel breadth-first search (BFS) for each resulting triplet in a likewise strat-
egy as in the V-FEC approach. Algorithm 2 outlines the proposed approach.

Algorithm 2 Triplet-based Finding Elementary Circuits T-FEC(G)

Require: Graph G
Ensure: Set C of all elementary circuits of G
1: C ⇐ ∅
2: T ⇐ ∅
3: SCC ⇐ findSCC(G)
4: foreach scc ∈ SCC do
5: foreach v ∈ scc in parallel do
6: T ⇐ generateTriplets(v) See Procedure 2

7: foreach t ∈ T in parallel do
8: C ⇐ exploreT-FEC(t) See Procedure 3

9: return C

4.2.1  Triplets generation

The idea of using triplets to begin exploration helps reducing the search space 
and avoids redundant circuits. Triplets also permit to have more balanced explo-
ration trees, thus, a more balanced work charge. We build the set of triplets by 
making every possible combination ⟨x, v, y⟩ of the in-neighbors and out-neighbors 
of vertex v such as:

• x is the in-neighbor of v with x ∈ SA(v) , i.e., Id(v) < Id(x) and v and x are in the 
same SCC.

• Similarly, y is the out-neighbor of v with y ∈ SA(v).

If x = y , c = ⟨v, y⟩ is a 2-length circuit. The generation process is presented in 
Procedure 2.



1 3

Fast parallel algorithms for finding elementary circuits…

Procedure 2 generateTriplets

Require: Vertex v
Ensure: Set T of initial triplets
1: foreach x ∈ in-neighbors(v) do
2: foreach y ∈ out-neighbors(v) do
3: if x = y then
4: C ⇐ C x, v
5: else
6: if x ∈ SA(v) and y ∈ SA(v) then
7: T ⇐ T x, v, y
8: visited(x) ⇐ true
9: visited(v) ⇐ true

10: visited(y) ⇐ true

11: return T

4.2.2  Exploration

The exploration phase for algorithm T-FEC is similar to the exploration in algorithm 
V-FEC. Initially we visit the out-neighbors of y for every triplet ⟨x, v, y⟩ ∈ T  . Only 
neighbors in SA(v) are considered. Then, we iteratively visit the out-neighbors of 
the last visited vertex vk of every path pi ∈ P . We recall that for a triplet ⟨x, v, y⟩ , v 
denote the source-vertex and x is the in-vertex. For any neighbor u of vertex vk , the 
exploration goes as follows:

• u is the in-vertex ( u = x ): pi is an elementary circuit. Add pi to C,
• u is not visited and u ∈ SA(v) : pi is extended, its an elementary path. We add 

⟨pi, u⟩ to P.
• u is already visited: ⟨pi, u⟩ is not an elementary path.

The exploration is over when no path can be expanded (P = ∅) . The exploration 
process is described in Procedure 3.



 A. Benachour et al.

1 3

Procedure 3 exploreT-FEC

Require: Triplet t x, v, y
Ensure: Set of circuits C
1: P ⇐ {t}
2: while P = ∅ do
3: foreach p ∈ P do
4: vk = lastV ertex(p)
5: foreach u ∈ out-neighbors(vk) do
6: if u = x then
7: C ⇐ C ∪ {p}
8: else
9: if ¬ visited(u) and u ∈ SA(v) then

10: P ⇐ P p, u
11: visited(u) ⇐ true

12: P ⇐ P − {p}
13: return C

4.3  Proof of correctness

In the following, we will prove that Algorithms V-FEC and T-FEC find every 
elementary circuit of a graph exactly once.

We start by showing that both algorithms find only elementary circuits of a 
graph.

Lemma 1 Algorithms V-FEC and T-FEC find elementary circuits only.

Proof In algorithm V-FEC, every vertex in a path is marked as visited and a new 
vertex is added to a path if it is not already visited. If a vertex is visited we do not 
visit it again (line 10 of Procedure 1). Hence, a path cannot contain redundant ver-
tices. Let a path p = ⟨v1,… , vi,… , vk⟩ to be expanded, and let vertices vl and vi be 
in out-neighbors of vertex vk . Suppose that vertex vl is not visited yet. If vl ∈ SA(v1) , 
it will be added to p and marked as visited. However, since vertex vi is previously 
visited, it will not be explored again. This confirms that algorithm V-FEC finds only 
elementary circuits.

Similarly, for algorithm T-FEC, in Procedure 3 exploreT-FEC, in line 9, visited 
vertices are not explored again, thus, the resulting circuits are elementary.   ◻

Theorem  1 Algorithms V-FEC and T-FEC find all the elementary circuits of a 
graph exactly once.



1 3

Fast parallel algorithms for finding elementary circuits…

Proof The correctness of this lemma can be verified by the following: (1)  Algo-
rithms V-FEC and T-FEC find any elementary circuit exactly once, (2) all the ele-
mentary circuits of the graph are found.

To prove the first property, we suppose a circuit is found more than once. Let 
⟨v1, vi,… , vl⟩ be a circuit, such that Id(vi) = i , ∀vi ∈ V  , and vertex v1 has the small-
est Id. Many permutations of the same circuit can be found by starting from different 
source vertices. A circuit can be expressed in a permuted form as many times as the 
number of vertices it has: ⟨v1, vi,… , vl⟩ , ⟨vi,… , vl, v1⟩ , … , ⟨vl, v1, vi,… ⟩.

In algorithm V-FEC, during the exploration phase every vertex of each SCC starts 
building its exploration tree by visiting its out-neighbors. A new vertex is added to 
a path if its Id is greater than the Id of the source-vertex (line 10 in Procedure 1: see 
the definition of SA(s) in Sect. 4.1). As a consequence, the first vertex in a path is 
always the vertex with the smallest Id.

Consider a circuit c = ⟨v1, vi,… , vl⟩ and two cyclic permutations of c: 
c� = ⟨vi,… vl, v1⟩ and c�� = ⟨vl, v1, vi,… ⟩ . Following Procedure 1 exploreV-FEC, we 
try to construct circuit c and its permutations starting from different source vertices 
v1 , vi,..., and vl . Each time we visit a neighbor we check if its Id is greater than the 
Id of the source-vertex of the path. Since Id(v1) < Id(vi) and Id(v1) < Id(vl) , in both 
cases, ⟨vi,… vl, v1⟩ and ⟨vl, v1, vi,… ⟩ , vertex v1 is not explored, thus, circuits c′ and 
c′′ cannot be constructed. Hence, no circuit can be found more than once.

In a similar way, when generating triplets for a vertex v in algorithm T-FEC, we 
only consider neighbors that have Ids greater than Id(v), and likewise for the explo-
ration phase, this guarantees that circuits are not duplicated. We come to the conclu-
sion that both algorithms find each circuit exactly once.

Now we prove the second property: Algorithms V-FEC and T-FEC find all the 
elementary circuits of a graph. We know from the definition of SCC that every SCC 
with more than one vertex must have circuits, and that all vertices in any circuit 
belong to the same SCC. Finding all elementary circuits of a graph is equivalent to 
finding all elementary circuits starting from a vertex, for every vertex of the graph.

In algorithm V-FEC, Procedure exploreV-FEC finds for a vertex s all the elemen-
tary circuits starting from s such that Id(s) is the smallest, by visiting every neighbor 
of every vertex within SA(s) not visited yet in the same SCC, making every pos-
sible combination of possible paths (follows directly from Lemma 1 and the proof 
of property(1)). Thus, for every elementary circuit of the graph, with all vertices in 
SA(s), its cyclic permutation starting by vertex s is returned at the end of the algo-
rithm. Since Procedure exploreV-FEC, is called for every vertex of every SCC of the 
graph, every elementary circuit is found.

Similarly for T-FEC, in the triplets generation phase, we consider all neighbors of 
vertex v having Id greater than Id(v). Procedure exploreT-FEC visits every neighbor 
of every vertex within SA(v) not visited yet in the same SCC. It finds for a triplet 
⟨x, v, y⟩ all the elementary circuits starting from v and including vertices x and y, 
such that Id(v) is the smallest. The procedure is called for every generated triplet; 
thus, every elementary circuit is found. We conclude that the proposed algorithms 
find all the elementary circuits of a graph exactly once. This completes the proof.  
 ◻



 A. Benachour et al.

1 3

4.4  Circuits and paths given a source vertex

For some applications, we are interested in the enumeration of circuits that goes 
through a certain vertex v. The proposed approaches can be easily adapted to only 
find circuits that contains vertex v.

To achieve this, we make an adjustment in the initialization phase. In the ver-
tex-based approach, we initialize the set of paths to v and then call Procedure  1 
exploreV-FEC, which only runs for vertex v. For the triplets approach, we gener-
ate triplets for vertex v by calling Procedure 2 generateTriplets and omit the condi-
tion about considering only vertices greater than v, which was mainly put to avoid 
enumerating circuits that are enumerated in the exploration process of other verti-
ces. Since we just list circuits of v, circuits containing vertices of inferior Id are not 
found if we do not consider all vertices of the graph. That means, the set of triplets is 
generated using all of v’s neighbors and there will be no redundant circuits. For both 
approaches, the exploration procedure remains the same, except for the condition 
about vertices Ids for the same reason explained above. In this case, the entire graph 
is considered.

In a similar manner, we can find circuits with a given edge (u,  v) by initializ-
ing Paths to ⟨u, v⟩ in the vertex based approach. Or by generating triplets of form 
⟨xi, u, v⟩ with xi ∈ in-neighbors of u, for the triplet based approach. It is also possible 
to enumerate existing paths from a given source vertex s to a destination vertex d 
by searching circuits containing the edge (d, s) or Using triplets ⟨d, s, yi⟩ where yi ∈ 
out-neighbors of s.

5  GPU implementation

A GPU is a highly parallel architecture that adopts the single instruction multiple 
data (SIMD) processing model. A GPU program consists of sequential segments 
and parallel segments of codes. The sequential codes run on the CPU, and the paral-
lel codes, called kernels, run on the GPU. When a kernel is invoked, a large num-
ber of threads are launched to exploit data parallelism. Threads are grouped into 
blocks and blocks can be grouped into a grid. Thus, the kernel configuration has a 
significant effect on the degree of parallelism and hence influences the computing 
efficiency.

In this section, we present a GPU implementation of the proposed approaches. 
We proceed in parallel, multiple BFS explorations. This model fits the multi-
threaded GPU architecture.

The SCC decomposition algorithm was not parallelized due to the low impact in 
the processing time of the algorithm. A GPU-kernel is used to implement the explo-
ration phase of the vertex-based version. For T-FEC two kernels are used: The first 
kernel generates the set of initial triplets, the second one explores the graph.

Developing efficient graph processing algorithms in GPU is a challenging task. A 
GPU has limitations such as a relatively small memory size. Thus, the choice of data 
structures and strategies employed to take advantage of the characteristics of the dif-
ferent types of GPU memories is important to overcome these limitations. In our 



1 3

Fast parallel algorithms for finding elementary circuits…

implementation, we use data structures that are best suited to the GPU. We also take 
advantage of the GPU global, local and shared memories.

In the following we discuss our choices for data structures and detail the imple-
mentation of our algorithms.

5.1  Data structures

5.1.1  Graph representation

Compressed adjacency list is the most common data structure for graph repre-
sentation in GPU. It provides compact storage for large sparse graphs and regular 
memory access. It uses two arrays to store the graph G = (V ,E) and only requires 
O(|V| + |E|) memory space. Adjacency lists of all vertices are packed into a sin-
gle large array that we name the edge array. We store the starting position of the 
adjacency list in the edge array for each vertex [34]. When outgoing edges are used 
in the edge array, we name this adjacency list format, the compressed sparse row 
(CSR). If incoming edges are used in the edge array, it is called compressed sparse 
column (CSC) [35]. To generate triplets both CSR and CSC representations are 
used, since we need to access both incoming and outgoing edges of each vertex. 
Once the triplets are generated we no longer need the incoming edges, CSC arrays 
are deleted. An example of the CSR and CSC representations of the graph in Fig. 1a 
is represented in Fig. 3.

5.1.2  Intermediate data storage and results

When searching for circuits, a number of paths is generated in every iteration. We 
keep track of them by using a global integer array. Initially, it contains the initial 
vertices or generated triplets. Another array stores the circuits. Since the GPU do 
not allow dynamic memory allocation, every memory that becomes necessary must 
be previously allocated. We declare two static structures Circuits and Paths larger 
enough for the purpose they were intended to.

During exploration, previously visited vertices in a path must not be visited again. 
This guarantees that circuits found are elementary. A single bit indicating whether 
or not the vertex is in the path is sufficient. Accordingly, a bitmap (bit array) Vis-
ited is employed to mark the already visited vertices. This map is defined by a bi-
dimensional matrix that contains a row for each path and |V| columns of bits, one 
for each vertex of the graph. In terms of bytes, the number of columns is ⌈ �V�

8
⌉ , e.g., 

Fig. 3  Data structure for graph representation



 A. Benachour et al.

1 3

in a graph G with |V| = 12 a path storage occupy only 2 bytes. A Vertex vj belongs 
to path i if and only if, bit j of row i is set to 1. Figure 4 shows an example of these 
arrays. The Paths matrix stores the vertices of an explored path in the order in which 
they are discovered. In the Visited matrix, each row contains a combination of bits 
that corresponds to the visited vertices of a path.

In addition to the small occupied space, adding a vertex or checking if it is 
already in the solution is done using a simple logical operation in the desired posi-
tion. Because the bit-level operations are among the least computationally expen-
sive, this method of storage contributes to improve the algorithm running time.

5.2  Parallel implementation

Now we detail the parallel implementations of V-FEC and T-FEC algorithms. We 
first describe the triplets generation process for T-FEC; then, we detail the explora-
tion phase for both V-FEC and T-FEC.

5.2.1  Triplets generation

We begin by creating the set T(G) of initial triplets ⟨x, v, y⟩ . Such a set is created by 
selecting vertex v ∈ V  and analyzing all pairs of its adjacent vertices: x in the in-
neighbors of v and y in out-neighbors of v. Procedure 2 generateTriplets describes 
the process of generating triplets. We launch a kernel generateTriplets and we assign 
a thread to every vertex v in the SCC. Each thread takes a vertex x from the edge 
array Ein and another vertex y from the edge array Eout and verify that they are in 
SA(x). When this condition is satisfied the thread adds the combination ⟨x, v, y⟩ to the 
set of triplets. Another pair of neighbors is analyzed until all neighbors are checked. 

Fig. 4  A schema for paths exploration process



1 3

Fast parallel algorithms for finding elementary circuits…

In the case where vertex x equals vertex y, ⟨x, v⟩ is a 2-length circuit and is added to 
the set C.

At the end of the triplets generation phase, the set of incoming edges is no longer 
needed. We free memory used by deleting Vin and Ein arrays. We only keep the set of 
outgoing edges: Vout and Eout arrays, for the graph representation.

5.2.2  Exploration

The exploration kernels, exploreV-FEC and exploreT-FEC, are quite similar. Kernel 
exploreV-FEC launches a number of threads equal to the number of initial vertices. 
Kernel exploreT-FEC launches a number of threads equal to the number of gener-
ated triplets. Each thread is assigned a vertex/triplet and starts exploring. During 
exploration, it is important to save:

• for V-FEC: the source-vertex and the last visited vertex.
• for T-FEC: the source-vertex, the in-vertex and the last visited vertex of a path.

These data are essential for exploration. The last visited vertex of a path permits 
to expand the set of paths with new paths. At each iteration, a thread visits the 
out-neighbors of the last visited vertex of the path it is assigned to. In V-FEC, the 
source-vertex determines when a circuit is found. If the new vertex is the source-
vertex, it is a circuit. For T-FEC, it is the in-vertex that determines a circuit. We 
use an atomic operation to add the discovered circuits by copying the current path 
to Circuits. If the new vertex do not constitute a circuit, the path can be expanded 
when the two following conditions are met: we first check if the explored vertex is 
not visited using a simple bit-wise operation, then, we check if the vertex is in the 
search area of the source-vertex. Considering these data are used by a thread for as 
many out-neighbors there is to explore, it is more appropriate to copy data to shared 
memory because it is faster. In V-FEC, we use two vectors Vsource and Vlast to store 
the source-vertex and the last visited vertex of a path, respectively. Another vectors 
Vin , that stores in-vertices, is necessary for the triplet based approach. The number 
of copied paths equals the number of threads per block. Chunks of the Visited array 
corresponding to copied paths are also transferred to shared memory.

Each thread uses a local array called frontier array to store the newly visited ver-
tices to be copied back in global memory as new paths for the next iteration. We use 
a shared array frontierOffsets, set to 0, to compute the number of new paths. Each 
thread increments the value corresponding to its Id when it founds a new path. These 
values are used to copy the results of each thread in parallel to global memory. We 
first compute offsets for each thread on a block level by applying a parallel scan [34] 
on the frontierOffsets array. We use another array blockOffsets array to store the off-
sets of the blocks. Since there is no synchronization between blocks of threads, we 
use atomic operations to calculate the offsets of blocks. These two indices (frontier-
Offsets and blockOffsets) are used to compute the global memory address for each 
thread to copy its result. The schema represented in Fig. 4 encapsulates the process.

Compared to the V-FEC algorithm, the exploration process in T-FEC requires 
less iterations considering that two vertices are already explored for each path, when 



 A. Benachour et al.

1 3

generating triplets. Moreover, the triplets approach exposes more parallelism in 
early iterations, since there is more initial triplets than initial vertices which results 
in more thread occupancy.

Example 2 (Using triplets) Consider the same graph G = (V ,E) in Fig.  1a. In the 
T-FEC algorithm we start by initializing triplets and its corresponding Visited bit-
map. A thread is mapped to a vertex, e.g., thread 2 generates triplets corresponding 
to vertex 2. We generate combinations of in-neighbors and out-neighbors of vertex 
2. The in-neighbors of vertex 2 are vertex 1 and vertex 3. Vertex 1 is not considered 
since 1 < 2 . For vertex 3, 3 > 2 , so vertex 3 is considered. The out-neighbors of 
vertex 2 are vertex 0 and 9. 0 < 2 vertex 0 is not considered as well. We are left with 
two valid vertices: vertex 3 as in-neighbor and vertex 9 as out-neighbor. As a result 
the triplet ⟨3, 2, 9⟩ is generated. Triplets from all SCCs are generated before starting 
exploration. The visited vertices of each triplet are marked as visited in the Visited 
array. Array Visited is an array of bytes (unsigned integers of length = 8 bits), we 
only use one bit to mark the visited vertices. Thus, ⌈ n

8
⌉ columns are needed. In this 

example n = 12 , as a consequence, Visited is a two columns array. During explora-
tion, if a circuit is found, it is added to the Circuits array next to the circuits already 
found at earlier iterations. We take as an example triplet ⟨2, 0, 1⟩ , vertex 2 is the in-
vertex, vertex 0 is the source-vertex and vertex 1 is the last vertex of the path. We 
explore out-neighbors of vertex 1 that are vertices 0, 2 and 4. Vertex 0 is already vis-
ited so it is not added to Paths. Vertex 2 is the in-vertex, path ⟨2, 0, 1, 2⟩ is a circuit, 
we add it to Circuits. Circuits = Circuits ∪ {⟨2, 0, 1⟩} . Vertex 4 is not visited and is 
in SA(0): the new path ⟨2, 0, 1, 4⟩ is added to Paths.

6  Experimental results

In this section, we present the results obtained by the CUDA implementation of 
the two proposed algorithms and the CPU multi-core implementation of algorithm 
V-FEC using Posix Threads library in C++. We compare the results to those of 
Johnson’s algorithm. We use the Python implementation of Johnson’s algorithm in 
the NetworkX package1.

6.1  Experiment settings

Experiments were conducted on a GPU station with 32 GB RAM, with an Intel 
Xeon Silver 4216 2.10GHz CPU. The GPU card is an Nvidia GeForce RTX 2080 Ti 
with 11GB of GDDR6 VRAM and 4,352 CUDA cores, CUDA Version 11.0.

1 https:// netwo rkx. org/.

https://networkx.org/


1 3

Fast parallel algorithms for finding elementary circuits…

6.2  Results

We use two sets of data. The first set contains synthetic graphs generated using 
the R3MAT graph generator [36]. It generates graphs that resemble the properties 
observed in real-world graphs following a power law distribution. The description 
of these graphs and the execution times of our implementation compared with the 
execution times of Johnson’s algorithm and the parallel multi-core implementa-
tion of V-FEC are presented in Table 1.

Column |C| represents the number of elementary circuits found by the com-
pared algorithms. For each graph, we ran the algorithms 20 times and calculate 
the average time taken. The execution times are presented in milliseconds.

For the graph "graph-80-1-1-0," algorithm T-FEC could not enumerate all cir-
cuits of the graph. This is due to the large number of intermediate results (paths) 
that could not fit in the GPU memory. As an alternative, we succeeded to list all 
the circuits of size equal or less than 16.

For some graphs, where the number of circuits is very important, it is not pos-
sible to enumerate all the circuits, due to memory limitations. The search for ele-
mentary circuits with Johnson’s algorithm for these graphs result in an out of 
memory error (OOM). On the other hand, our algorithms proceed by levels. At 
each iteration, circuits of length l are found. This gives the possibility to enumer-
ate circuits of a given length without having to enumerate all the circuits of the 
graph. For such graphs it is possible to proceed by enumerating the circuits until 
a maximum depth is reached. Table 3 shows these results.

In addition to the synthetic graphs generated by the R3MAT model [36], we 
use real-world datasets from four different sources: Konect [37] (moreno_taro, 
moreno_sheep), SNAP Library [38] (p2p-Gnutella04, p2p-Gnutella08 and 

Table 1  Experimental comparison of V-FEC, T-FEC, mCore-V-FEC (using 8 CPU cores) and the algo-
rithm by Johnson for synthetic graphs

The bold that indicates that the values is the best execution times

Graph |V| |E| |C| Execution time (ms)

V-FEC T-FEC mCore-V-FEC Johnson

Graph-40-1-1-1 40 113 54121 24.66 19.72 244,98 1140.63
Graph-40-1-1-0 40 70 1676 9.83 10.54 12,099 85.68
Graph-50-1-1-1 50 149 120519 40.21 28.71 404,36 2779.66
Graph-50-1-1-0 50 93 5767 11.86 18.31 33,66 176.45
Graph-60-1-1-1 60 186 4942125 1547.52 1161.07 21520,82 121862.10
Graph-60-1-1-0 60 120 164783 76.65 386.73 791,39 8398.95
Graph-70-1-1-1 70 225 281100 209.36 129.30 2349,22 7143.13
Graph-70-1-1-0 70 147 1820687 764.34 3712.17 8873,87 96148.63
Graph-80-1-1-1 80 264 329844 124.04 93.69 1485,44 7043.80
Graph-80-1-1-0 80 174 56067879 18200.95 – 224751,33 3462429.93
Graph-90-1-1-1 90 304 8257415 2730.90 2105.35 39822,1 206860.77
Graph-100-1-1-1 100 345 46865151 10839.7 8891.98 171796,33 1186575.70



 A. Benachour et al.

1 3

email-Eu-core), networkrepository [39] (EPA) and Pajek [40] (Baywet). Charac-
teristics of these graphs are given in Table 2.

We adapt our algorithms to count circuits without enumerating them. This sig-
nificantly reduces the memory storage needed since we do not keep track of all the 
visited vertices. The Paths matrix is replaced by vectors that stores the source-vertex 
and the last vertex for each path (in addition to the in-vertex in the triplets approach). 
This permits to explore larger graphs and to explore more levels as shown in Table 3.

6.3  Analysis

The results presented in Tables 1, 2, and 3 show that our algorithms can significantly 
reduce the running time to find all elementary circuits compared to Johnson’s algo-
rithm and the multi-core implementation of V-FEC. The speed-ups over the algo-
rithm of Johnson vary from 8.13 (graph-40-1-1-0), to 190.23 (graph-80-1-1-0), and 
increase with the number of circuits. The recorded speed-ups for the parallel multi-
core implementation are between 1.15 (graph-40-1-1-0) and 19.32 (graph-100-1-1-
1). Figure 5 shows the speed-ups achieved by V-FEC and T-FEC compared to the 
algorithm by Johnson.

We analyze the effect of the SCC decomposition phase on the overall process-
ing time by comparing the execution time of both approaches with and without 
decomposing the graph into SCCs. Detailed results for V-FEC and T-FEC algo-
rithms are listed in Tables  4 and 5. V-FEC + SCC and T-FEC + SCC present 
execution times of V-FEC and T-FEC using SCC decomposition, while V-FEC - 
SCC and T-FEC - SCC present the execution times of the algorithms without the 
SCC decomposition phase. The results show that the decomposition of the graph 
into SCCs can reduce processing time compared to when the graph is not decom-
posed into SCCs. In fact, finding the SCCs of the graph can reduce the number of 

Table 2  Experimental comparison of V-FEC, T-FEC and the algorithm by Johnson for real-world graphs

The bold that indicates that the values is the best execution times

Graph |V| |E| |C| Count circuits Enumerate circuits

V-FEC T-FEC V-FEC T-FEC Johnson

Moreno_taro 22 78 21671 50.66 35.83 51.52 36.24 1618.73
Moreno_

sheep
28 250 19727891 27740.69 27450.56 26723.50 26982.67 703917.13

EPA 4772 8965 142 6.91 7.48 7.14 7.38 48.20
p2p-Gnu-

tella04
10879 39994 l = 6: 1768 452.17 l = 5 483.95 l = 5 OOM

p2p-Gnu-
tella08

6301 20777 l = 7: 15732 379.44 l = 6 371.91 l = 6 OOM

Email-Eu-
core

1005 24929 l = 3: 124765 154.11 213.42 166.26 214.28 OOM

Baywet 128 2106 l = 8: 
7322229

l = 6 2673.55 l = 6 l = 7 OOM



1 3

Fast parallel algorithms for finding elementary circuits…

Ta
bl

e 
3 

 T
he

 re
su

lts
 p

er
 le

ve
l s

ho
w

in
g 

th
e 

m
ax

im
um

 d
ep

th
 fo

r e
ac

h 
al

go
rit

hm
, t

he
 m

ax
im

um
 n

um
be

r o
f c

irc
ui

ts
 a

nd
 th

e 
nu

m
be

r o
f c

irc
ui

ts
 fo

r e
ac

h 
le

ve
l

Th
e 

bo
ld

 th
at

 in
di

ca
te

s t
ha

t t
he

 v
al

ue
s i

s t
he

 b
es

t e
xe

cu
tio

n 
tim

es

G
ra

ph
|V

|
|E
|

M
ax

 c
irc

ui
ts

C
ou

nt
 c

irc
ui

ts
En

um
er

at
e 

ci
rc

ui
ts

Ex
ec

ut
io

n 
tim

e 
/ C

irc
ui

ts

V-
FE

C
T-

FE
C

V-
FE

C
T-

FE
C

G
ra

ph
-9

0-
1-

1-
0

90
20

3
86

53
30

17
l =

 1
6

l =
 1

4
l =

 1
3

l =
 1

2
T
=

 4
01

91
.5

6 
   
C
=
{  2

6 
73

 3
16

 1
20

3 
44

57
 1

53
07

 4
98

49
 1

50
78

5 
42

44
16

 1
10

62
50

 
26

67
81

9 
59

45
51

1 
12

23
41

20
 2

32
30

60
0 

40
70

22
85

 }
G

ra
ph

-1
00

-1
-1

-0
10

0
23

5
32

89
08

43
2

l =
 1

9
l =

 1
3

l =
 1

4
l =

 1
2

T
=

 9
79

80
.3

7 
   
C
=
{  2

5 
10

4 
41

5 
15

64
 5

83
7 

20
23

6 
64

94
9 

19
39

05
 5

36
57

7 
13

65
89

1 
31

95
80

4 
68

59
24

2 
13

47
85

97
 2

42
01

00
6 

39
64

73
43

 5
91

91
87

4 
80

49
28

14
 9

96
52

24
9}

G
ra

ph
-2

00
-1

-0
-0

20
0

52
6

27
46

02
2

l =
 1

7
l =

 1
6

l =
 1

5
l =

 1
5

T
=

 1
58

29
.1

4 
   
C
=
{  2

 7
 2

6 
57

 9
8 

26
1 

64
4 

14
82

 3
51

1 
86

00
 2

07
90

 5
08

82
 1

20
27

2 
28

61
70

 6
72

47
5 

15
80

74
5 
}

G
ra

ph
-3

00
-1

-0
-0

30
0

12
56

50
12

59
l =

 1
3

l =
 1

3
l =

 1
2

l =
 1

2
T
=

 4
93

7.
91

   
 C

=
{  5

 1
3 

36
 9

0 
20

4 
60

7 
16

71
 4

77
3 

13
96

9 
40

08
0 

11
40

02
 3

25
80

9 
}



 A. Benachour et al.

1 3

Fig. 5  Experimental comparison of Johnson’s algorithm and mCore-V-FEC with V-FEC and T-FEC 
algorithms

Table 4  Experimental results for the impact of the SCC graph decomposition in V-FEC

The bold that indicates that the values is the best execution times

Graph |V| |SCC| Time (ms) V-FEC + SCC Time (ms) V-FEC 
- SCC

SCC Exploration Total Exploration Total

p2p-Gnutella04 10879 4317 3.409 419.01 448.18 1609.35 1834.1
p2p-Gnutella08 6301 2068 1.819 351.33 369.19 804.23 859.62
Email-Eu-core 1005 803 1.082 130.93 163.44 133.67 150.84
Baywet 128 103 0.100 494.69 508.25 1381.08 1487.08
EPA 4772 {2,11,3,10,4,2,5,2,2,6,3,2, 

2,2,2,3,6,2,4,2,2,2,2,2,2,2}
0.990 5.08 6.99 48.54 52.35

Moreno_taro 22 22 0.015 51.91 53.31 51.18 52.48
Moreno_sheep 28 {2, 22} 0.024 26778.5 26927.6 – –
Graph-40-1-1-1 40 12 0.019 23.61 24.72 23.98 24.90
Graph-40-1-1-0 40 17 0.019 9.14 9.83 10.26 11.06
Graph-50-1-1-1 50 14 0.022 40.13 41.79 41.26 42.71
Graph-50-1-1-0 50 23 0.020 10.51 11.29 11.37 12.09
Graph-60-1-1-1 60 18 0.021 1474.35 1502.46 1522.29 1551.51
Graph-60-1-1-0 60 30 0.022 74.70 77.08 92.35 94.63
Graph-70-1-1-1 70 16 0.05 204.70 207.88 208.76 211.74
Graph-70-1-1-0 70 30 0.025 722.09 739.82 1116.81 1135.71
Graph-80-1-1-1 80 13 0.027 125.01 127.63 122.39 124.85
Graph-80-1-1-0 80 36 0.058 16656.3 17507.3 29613 30959.6
G_02_03_02_1 64 51 0.025 3350.25 3365.48 4698.41 4723.84
G_02_03_02_3 64 52 0.024 3216.52 3232.97 4753.63 4779.21
G_06_01_015_1 64 32 0.025 1430.28 1463.19 2307.59 2348.33
G_06_01_015_2 64 33 0.026 984.37 1003.3 1507.08 1527.84
G_01_02_03_5 64 38 0.027 1593.95 1601.35 6859.72 6883.79



1 3

Fast parallel algorithms for finding elementary circuits…

vertices to be explored and avoid fruitless paths, thus, minimizing the time of the 
exploration phase, which justify the use of the preprocessing phase in our algo-
rithms. Experiments demonstrate that time achieved by the decomposition phase 
is negligible compared to the overall running time, as presented in Fig. 6.

We note that while V-FEC algorithm performs better in some graphs, T-FEC 
gives better results in others. In an attempt to identify what variables affect the 
results, we run a series of experiments on synthetic graphs, using the R-Mat graph 
generator model [41]. The generator takes as an input |V| , |E| and the parameters a 
b c and d which represents the probabilities of an edge falling into partitions. We 
fix |V| = 64 and vary |E| and the values of a, b, c and d and observe the behavior 
of both V-FEC and T-FEC approaches. The results are presented in Table 6. We 
observe that the degree distribution of the graph is a relevant parameter in the 
algorithms’ performance. We divide Table 6 into three sets based on the degree 
distribution. We represent the execution times of both approaches on these graphs 
in Fig. 7. The second set in the table represent graphs where the degrees of ver-
tices are almost uniform. For these graphs, we remark that V-FEC and T-FEC 

Table 5  Experimental results for the impact of the SCC graph decomposition in T-FEC

The bold that indicates that the values is the best execution times

Time (ms) T-FEC + SCC Time (ms) T-FEC - SCC

Graph Triplets SCC T-time Exploration Total Triplets T-time Exploration Total

p2p-Gnutella04 29576 3.511 0.807 220.87 230.42 69411 0.95 466.27 476.12
p2p-Gnutella08 17656 1.963 0.932 336.11 346.54 41752 – – –
Email-Eu-core 585882 1.133 37.954 156.36 212.24 609644 39.535 160.07 215.75
Baywet 1928 0.108 0.346 424.99 439.27 2547 0.397 1128.53 1142.53
EPA 126 1.014 0.027 4.27 7.39 6467 2.243 21.22 24.24
Moreno_taro 54 0.019 0.028 35.43 36.58 54 0.029 36.34 37.21
Moreno_sheep 323 0.026 0.114 26629.4 26758.8 497 – – –
Graph-40-1-1-1 131 0.020 0.051 18.64 19.87 131 0.049 18.59 19.62
Graph-40-1-1-0 85 0.019 0.045 9.69 10.59 128 0.053 13.77 14.51
Graph-50-1-1-1 125 0.023 0.063 26.90 28.52 125 0.061 27.68 29.04
Graph-50-1-1-0 152 0.022 0.079 16.83 17.79 223 0.089 25.39 26.26
Graph-60-1-1-1 179 0.026 0.088 1137.43 1163.57 179 0.085 1155.23 1180.97
Graph-60-1-1-0 220 0.025 0.070 374.19 377.08 272 0.073 465.84 468.48
Graph-70-1-1-1 156 0.028 0.052 138.01 141.21 156 0.051 132.68 134.97
Graph-70-1-1-0 297 0.027 0.091 3665.96 3684.68 388 0.132 6509.8 6528.48
Graph-80-1-1-1 183 0.032 0.055 91.48 93.93 183 0.053 90.86 93.07
Graph-80-1-1-0 427 0.032 0.195 16791.4 16939.6 598 – – –
G_02_03_02_1 107 0.028 0.034 3200.82 3212.58 127 0.029 4679.11 4691.74
G_02_03_02_3 110 0.027 0.025 2551.72 2563.72 122 0.027 4413.85 4427.28
G_06_01_015_1 280 0.032 0.079 4770.51 4797.8 351 0.086 7998.3 8029.54
G_06_01_015_2 252 0.032 0.075 3290.73 3307.99 305 0.102 5596.88 5624.02
G_01_02_03_6 135 0.027 0.031 24933.2 25784.7 139 0.038 33428.3 34310.3
G_01_02_03_5 102 0.033 0.031 723.22 726.70 135 0.038 3059.05 3063.8



 A. Benachour et al.

1 3

Table 6  Results of the impact of the graph degree distribution on execution time

The bold that indicates that the values is the best execution times

Graph |V| |E| |C| V-FEC Count circuits time 
(ms)

Triplets T-FEC

G_02_02_045_2 64 147 816347 1827.96 65 2102.32
G_01_02_03_4 64 179 29404 342.46 88 331.87
G_01_02_03_5 64 179 255064 1708.35 102 748.35
G_01_02_03_6 64 179 22280272 67482.4 135 26221.7
G_02_02_045_3 64 179 3558059 13296.96 102 8240.42
G_02_02_045_4 64 230 6903928 (l = 16) 31656.84 175 14577.16
G_02_03_02_1 64 147 770263 3503.28 107 3298.44
G_02_03_02_3 64 147 783545 3415.25 110 2675.1
G_035_015_035_2 64 147 938758 4067.80 91 4123.50
G_025_025_025_2 64 147 2873222 8648.52 99 8105
G_02_03_02_4 64 179 32980789 (l = 25) 78766.44 157 79135.08
G_02_03_02_5 64 179 11348731 28826.70 127 25192.58
G_02_03_02_6 64 179 37618516 (l = 28) 68731.56 159 87724.42
G_025_025_025_3 64 179 17920050 (l = 25) 81767.37 118 43598.87
G_035_015_035_3 64 179 22603921 (l = 26) 88475.50 134 72638.87
G_025_025_025_4 64 230 6669043 (l = 15) 15742.1 277 15594.58
G_035_015_035_4 64 230 4563399 (l = 16) 12570.66 215 14345.82
G_05_02_015_2 64 147 988967 503.95 241 2354.7
G_06_01_015_1 64 147 3180582 1536.35 280 5055.02
G_06_01_015_2 64 147 1766087 1060.39 252 3434.8
G_06_01_015_3 64 147 419801 806.74 172 748.73
G_05_02_015_3 64 179 42767911 (l = 21) 17457.02 289 84379.7
G_06_01_015_4 64 179 48576117 (l = 19) 24837.16 451 72551.22
G_06_01_015_5 64 179 35867587 22945.82 345 56180.6
G_06_01_015_6 64 179 16792958 10489.28 324 20738
G_05_02_015_4 64 230 13016638 (l = 13) 4715.12 506 17352.32

(a) (b)

Fig. 6  Experimental results for the impact of the SCC graph decomposition



1 3

Fast parallel algorithms for finding elementary circuits…

algorithms are equivalent (Fig. 7c). The first and the third set are graphs with few 
vertices having higher degree than other vertices with a difference in the ordering 
of these vertices. In the first set the high degree vertices are processed in the end, 
while in the last set they are processed in the beginning. We observe that V-FEC 
algorithm outperforms the T-FEC algorithm for the graphs in the last set of the 
table (Fig. 8b). In this case, the number of triplets that are generated is important 
for those vertices with high degree. Indeed, a lot of combinations are generated, 
which means more paths to be explored and some of them are fruitless. On the 
contrary, the triplets approach outperforms the vertex-based one for the first set of 
graphs (Fig. 7a).

To further analyze the impact of the distribution order of the vertices’ degree, 
we use a graph labeling function based on the in and out degrees of the vertices 
of the graph. We know that the more in-neighbors and out-neighbors a vertex has 
the more probable it is to belong to circuits. Based on that, we order the vertices 
according to the product of their in and out degrees. We use two graph labeling 
functions: the first one lAsc organizes the vertices in an increasing order of in-
degree * out-degree. The second function lDesc , lists the vertices in a decreasing 
order of the vertices’ in-degree * out-degree. We apply this labeling to some of 

(a) (b)

(c)

Fig. 7  Results of the impact of the graph degree distribution



 A. Benachour et al.

1 3

the graphs in Table 6 and run algorithm V-FEC. We compare the results with and 
without the labeling functions. The results are represented in Fig. 8. We observe 
that algorithm V-FEC gives better results when the ldesc label is applied. Indeed, 
by visiting vertices with more neighbors in early iterations we have higher prob-
ability to find circuits earlier and without exploring much of the fruitless paths. 
Experimentally observing, we can tell that the degree distribution order is a cru-
cial parameter in the algorithm execution.

7  Conclusion

In this paper, we proposed parallel algorithms for enumerating all elementary cir-
cuits of a directed graph. Algorithms V-FEC and T-FEC first detect whether a cir-
cuit exists, by searching for strongly connected components, then, explore possible 
paths in parallel to find elementary circuits. In addition, they enumerate circuits of a 
given length and circuits going through a given vertex. We have provided theoretical 
guarantees on the correctness of V-FEC and T-FEC. The presented algorithms were 
implemented and tested in a GPU environment. To the best of our knowledge, these 
are the first parallel GPU-based algorithms for finding all the elementary circuits 
of a graph. Conducted experiments showed a significant improvement in execution 
times of V-FEC and T-FEC compared with the algorithm by Johnson, due to the 

Fig. 8  Results of the impact of the degree distribution order



1 3

Fast parallel algorithms for finding elementary circuits…

massive parallelism offered by the GPU. The speed-up over the sequential algorithm 
was from ≈ 8 to 190 times.

We should note that the size of the GPU memory can be a limiting factor that 
prevents from handling large graphs with millions of circuits. For future work, we 
intend to scale to larger graphs by working on multi-GPU approaches and parallel 
strategies on cluster of GPUs.

Acknowledgements This work was partly supported by the Franco-Algerian program PHC Tassili 
BiGreen n ◦ 18 MDU 111. The experiments were conducted using the GPU station YUVA II provided by 
the Research Center on Scientific and Technical Information CERIST (Algeria).

Data availability All data generated or analyzed during this study have been deposited in the Open Sci-
ence Framework repository (OSF) (https://osf.io/74dve/?view_only=a5291e6e898843c48686b06d49c0
3ed5).

References

 1. Fronzetti Colladon A, Remondi E (2017) Using social network analysis to prevent money laun-
dering. Expert Syst Appl 67:49–58. https:// doi. org/ 10. 1016/j. eswa. 2016. 09. 029

 2. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food 
webs: robustness increases with connectance. Ecol Lett 5(4):558–567. https:// doi. org/ 10. 1046/j. 
1461- 0248. 2002. 00354.x

 3. Bodaghi A, Teimourpour B (2018) Automobile insurance fraud detection using social network 
analysis. Applications of data management and analysis case studies in social networks and 
beyond. Springer, Berlin, pp 11–16. https:// doi. org/ 10. 1007/ 978-3- 319- 95810-1_2

 4. Safar M, Mahdi K, Kassem A (2009) Universal cycles distribution function of social networks. 
In: 2009 First International Conference on Networked Digital Technologies, pp 354–359. https:// 
doi. org/ 10. 1109/ NDT. 2009. 52728 05

 5. Giscard P-L, Rochet P, Wilson RC (2017) Evaluating balance on social networks from their sim-
ple cycles. J Complex Netw 5(5):750–775. https:// doi. org/ 10. 1093/ comnet/ cnx005

 6. Kwon Y-K, Cho K-H (2007) Analysis of feedback loops and robustness in network evolution 
based on boolean models. BMC Bioinform 8(1):1–9. https:// doi. org/ 10. 1186/ 1471- 2105-8- 430

 7. Klamt S, von Kamp A (2009) Computing paths and cycles in biological interaction graphs. BMC 
Bioinform 10(1):1–11. https:// doi. org/ 10. 1186/ 1471- 2105- 10- 181

 8. Chitturi B, Bein D, Grishin NV (2010) Complete enumeration of compact structural motifs in 
proteins. In: Proceedings of the International Symposium on Biocomputing, pp 1–8. Association 
for Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 17220 24. 17220 47

 9. Parasar M, Farrokhbakht H, Enright Jerger N, Gratz PV, Krishna T, San Miguel J (2020) Drain: 
deadlock removal for arbitrary irregular networks. In: 2020 IEEE International Symposium on 
High Performance Computer Architecture (HPCA), pp 447–460. https:// doi. org/ 10. 1109/ HPCA4 
7549. 2020. 00044

 10. Tiernan JC (1970) An efficient search algorithm to find the elementary circuits of a graph. Com-
mun ACM 13(12):722–726. https:// doi. org/ 10. 1145/ 362814. 362819

 11. Tarjan R (1973) Enumeration of the elementary circuits of a directed graph. SIAM J Comput 
2(3):211–216. https:// doi. org/ 10. 1137/ 02020 17

 12. Johnson DB (1975) Finding all the elementary circuits of a directed graph. SIAM J Comput 
4(1):77–84. https:// doi. org/ 10. 1137/ 02040 07

 13. Lu W, Zhao Q, Zhou C (2018) A parallel algorithm for finding all elementary circuits of a 
directed graph. In: 2018 37th Chinese Control Conference (CCC), pp 3156–3161. https:// doi. org/ 
10. 23919/ ChiCC. 2018. 84828 57. IEEE

https://doi.org/10.1016/j.eswa.2016.09.029
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1046/j.1461-0248.2002.00354.x
https://doi.org/10.1007/978-3-319-95810-1_2
https://doi.org/10.1109/NDT.2009.5272805
https://doi.org/10.1109/NDT.2009.5272805
https://doi.org/10.1093/comnet/cnx005
https://doi.org/10.1186/1471-2105-8-430
https://doi.org/10.1186/1471-2105-10-181
https://doi.org/10.1145/1722024.1722047
https://doi.org/10.1109/HPCA47549.2020.00044
https://doi.org/10.1109/HPCA47549.2020.00044
https://doi.org/10.1145/362814.362819
https://doi.org/10.1137/0202017
https://doi.org/10.1137/0204007
https://doi.org/10.23919/ChiCC.2018.8482857
https://doi.org/10.23919/ChiCC.2018.8482857


 A. Benachour et al.

1 3

 14. Giscard P-L, Kriege N, Wilson RC (2019) A general purpose algorithm for counting simple 
cycles and simple paths of any length. Algorithmica 81(7):2716–2737. https:// doi. org/ 10. 1007/ 
s00453- 019- 00552-1

 15. Gupta A, Suzumura T (2021) Finding all bounded-length simple cycles in a directed graph. 
CoRR. https:// doi. org/ 10. 48550/ ARXIV. 2105. 10094

 16. Mahdi F, Safar M, Mahdi K (2011) Detecting cycles in graphs using parallel capabilities of gpu. 
In: International Conference on Digital Information and Communication Technology and Its 
Applications, pp 193–205. Springer

 17. Rungta S, Srivastava S, Yadav US, Rastogi R (2014) A comparative analysis of new approach 
with an existing algorithm to detect cycles in a directed graph. In: ICT and Critical Infrastruc-
ture: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, Springer, 
pp 37–47

 18. Rocha RC, Thatte BD (2015) Distributed cycle detection in large-scale sparse graphs. In: Pro-
ceedings of Simpósio Brasileiro de Pesquisa Operacional (SBPO’15), pp 1–11

 19. Cui H, Niu J, Zhou C, Shu M (2017) A multi-threading algorithm to detect and remove cycles in 
vertex-and arc-weighted digraph. Algorithms 10(4):115

 20. Xu-guang L, Da-ming Z (2010) An approximation algorithm for the shortest cycle in an undi-
rected unweighted graph. In: 2010 International Conference on Computer, Mechatronics, Control 
and Electronic Engineering, vol. 1, pp 297–300. IEEE

 21. Yuster R (2011) A shortest cycle for each vertex of a graph. Inf Process Lett 
111(21–22):1057–1061

 22. Karimi M, Banihashemi AH (2012) Message-passing algorithms for counting short cycles in a 
graph. IEEE Trans Commun 61(2):485–495

 23. Paulusma D, Yoshimito K (2007) Cycles through specified vertices in triangle-free graphs. Dis-
cuss Math Graph Theory 27(1):179–191

 24. Li B, Zhang S (2011) Heavy subgraph conditions for longest cycles to be heavy in graphs. arXiv 
preprint arXiv: 1109. 4675

 25. Li B, Xiong L, Yin J (2016) Large degree vertices in longest cycles of graphs, i. Discuss Math 
Graph Theory 36(2)

 26. Li B, Xiong L, Yin J (2019) Large degree vertices in longest cycles of graphs, ii. Electron J 
Graph Theory Appl (EJGTA) 7(2):277–299

 27. Weinblatt H (1972) A new search algorithm for finding the simple cycles of a finite directed 
graph. J ACM 19(1):43–56. https:// doi. org/ 10. 1145/ 321679. 321684

 28. Liu H, Wang J (2006) A new way to enumerate cycles in graph. In: Advanced Int’l Conference 
on Telecommunications and Int’l Conference on Internet and Web Applications and Services 
(AICT-ICIW’06), pp 57–57. https:// doi. org/ 10. 1109/ AICT- ICIW. 2006. 22. IEEE

 29. Sankar K, Sarad A (2007) A time and memory efficient way to enumerate cycles in a graph. In: 
2007 International Conference on Intelligent and Advanced Systems, pp 498–500. https:// doi. 
org/ 10. 1109/ ICIAS. 2007. 46584 38. IEEE

 30. Reif JH (1985) Depth-first search is inherently sequential. Inf Process Lett 20(5):229–234. 
https:// doi. org/ 10. 1016/ 0020- 0190(85) 90024-9

 31. Qing Z., Yuan L, Chen Z, Lin J, Ma G (2020) Efficient parallel cycle search in large graphs. In: 
International Conference on Database Systems for Advanced Applications. Springer, pp 349–367

 32. Williamson, EABSG. Lists, Decisions and Graphs. S. Gill Williamson. https:// books. google. dz/ 
books? id= vaXv_ yhefG 8C

 33. Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1(2):146–160. 
https:// doi. org/ 10. 1137/ 02010 10

 34. Harris M, Sengupta S, Owens JD (2007) Parallel prefix sum (scan) with cuda. GPU Gems 
3(39):851–876

 35. Gui C-Y, Zheng L, He B, Liu C, Chen X-Y, Liao X-F, Jin H (2019) A survey on graph processing 
accelerators: challenges and opportunities. J Comput Sci Technol 34(2):339–371. https:// doi. org/ 
10. 1007/ s11390- 019- 1914-z

 36. Angles R, Paredes R, García R (2020) R3MAT: a rapid and robust graph generator. IEEE Access 
8:130048–130065. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30095 77

 37. Kunegis J (2013) KONECT – The Koblenz Network Collection. http:// konect. cc/ netwo rks/
 38. Leskovec J, Krevl A (2014) SNAP Datasets: stanford large network dataset collection. http:// 

snap. stanf ord. edu/ data

https://doi.org/10.1007/s00453-019-00552-1
https://doi.org/10.1007/s00453-019-00552-1
https://doi.org/10.48550/ARXIV.2105.10094
http://arxiv.org/abs/1109.4675
https://doi.org/10.1145/321679.321684
https://doi.org/10.1109/AICT-ICIW.2006.22
https://doi.org/10.1109/ICIAS.2007.4658438
https://doi.org/10.1109/ICIAS.2007.4658438
https://doi.org/10.1016/0020-0190(85)90024-9
https://books.google.dz/books?id=vaXv_yhefG8C
https://books.google.dz/books?id=vaXv_yhefG8C
https://doi.org/10.1137/0201010
https://doi.org/10.1007/s11390-019-1914-z
https://doi.org/10.1007/s11390-019-1914-z
https://doi.org/10.1109/ACCESS.2020.3009577
http://konect.cc/networks/
http://snap.stanford.edu/data
http://snap.stanford.edu/data


1 3

Fast parallel algorithms for finding elementary circuits…

 39. Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and 
visualization. http:// netwo rkrep osito ry. com

 40. Batagelj V, Mrvar A (2006) Pajek datasets. http:// vlado. fmf. uni- lj. si/ pub/ netwo rks/ data/
 41. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-mat: a recursive model for graph mining. In: 

Proceedings of the 2004 SIAM International Conference on Data Mining (SDM), pp 442–446. 
https:// doi. org/ 10. 1137/1. 97816 11972 740. 43. SIAM

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and applicable law.

http://networkrepository.com
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://doi.org/10.1137/1.9781611972740.43

	Fast parallel algorithms for finding elementary circuits of a directed graph: a GPU-based approach
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Parallel algorithms for finding elementary circuits
	4.1 A vertex-based approach V-FEC
	4.1.1 Exploration

	4.2 A triplets approach T-FEC
	4.2.1 Triplets generation
	4.2.2 Exploration

	4.3 Proof of correctness
	4.4 Circuits and paths given a source vertex

	5 GPU implementation
	5.1 Data structures
	5.1.1 Graph representation
	5.1.2 Intermediate data storage and results

	5.2 Parallel implementation
	5.2.1 Triplets generation
	5.2.2 Exploration


	6 Experimental results
	6.1 Experiment settings
	6.2 Results
	6.3 Analysis

	7 Conclusion
	Acknowledgements 
	References




