
Parallel Asynchronous Modified Newton Methods
for Network Flows

Didier El-Baz, Moussa Elkihel

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Université de Toulouse, LAAS, F-31400 Toulouse, France

Email: elbaz@laas.fr elkihel@laas.fr

Abstract—We consider single commodity strictly convex net-
work flow problems. The dual problem is unconstrained, differen-
tiable and well suited for solution via parallel iterative methods.
We propose and prove convergence of parallel asynchronous
modified Newton algorithms for solving the dual problem. Par-
allel asynchronous Newton multisplitting algorithms are also
considered; their convergence is also shown. A first set of
computational results is presented and analyzed.

Keywords-Network flow problems, Newton method, multisplit-
ting methods, parallel computing, asynchronous iterations.

I. INTRODUCTION

Convex network flow problems occur in many fields like

communication networks, water systems or gas distribution.

Large scale convex network flow problems whose solution is

time consuming occur frequently in real world applications. In

this paper, we concentrate on the dual of the single commodity

strictly convex network flow problem which is unconstrained,

differentiable and well suited for solution via parallel iterative

methods. This problem of great practical interest and has been

studied for a long time, e.g., see [1] and [2].

In [3] and [4], respectively, we have shown that the structure

of the dual problem allows the successful application of paral-

lel asynchronous relaxation and gradient methods, respectively

(see also [5]). In this paper, we present parallel asynchronous

modified Newton methods for solving the dual problem.

Asynchronous iterative methods whereby iterations are car-

ried out by several processors in arbitrary order and without

any synchronization have been specially devised for parallel

or distributed computing systems. The restrictions imposed on

asynchronous iterative methods are very weak: no component

of the iterate vector is abandoned forever and more and more

recent values of the components have to be used as the com-

putation progresses. This contributes to make asynchronous

iterations a general class of parallel iterative methods. The

advantages of asynchronous iterative algorithms are compu-

tation flexibility, fault tolerance and tolerance to problem

data changes. Since there is no synchronization overhead or

idle time due to communication, one may also hope that

parallel asynchronous implementation will be very efficient

and scalable. There are many results in the literature relevant

to the convergence of parallel or distributed asynchronous

iterative methods. In particular, the reader is referred to [3], [4]

and [6], for results in the optimization domain, and to [6], [7],

[8], [9], [10], [11], [12] for results in the numerical simulation

domain. In particular, we note that asynchronous gradient

algorithms for unconstrained optimization are guaranteed to

converge if the Hessian matrix of the cost function satisfies a

diagonal dominance condition (see [6], Section 6.3).

Recently, the concern has risen on convergence rates of

asynchronous iterations, see [13] (see also [14]). It is a chal-

lenging issue to design parallel asynchronous iterative methods

for nonlinear optimization problems that have better conver-

gence rates than parallel gradient algorithms. In this paper,

we propose parallel asynchronous modified Newton methods

and parallel asynchronous Newton multisplitting methods for

convex network flow problems. We show that these methods

converge. We present and analyze a first set of computational

results for parallel asynchronous modified Newton methods

applied to some communication problems and turbulent flow

problems.

Section II deals with background material related to the

convex network flow problem. In Section III, we propose

and show convergence of parallel asynchronous modified

Newton methods and parallel asynchronous Newton multi-

splitting methods. Issues related to initial approximation for

parallel asynchronous modified Newton methods and Newton

multisplitting methods are also presented in Section III. We

present and analyze computational experiments carried out on

a cluster in Section IV. Computational results are displayed

and analyzed in Section IV. A simple termination criteria

for asynchronous iterative methods is also displayed in this

Section. Section V deals with conclusions.

II. BACKGROUND MATERIAL

We present first the mathematical formulation of convex

separable network flow problems (see Fig. 1).

Let G = (N ,A) be a directed graph. N is referred to as

the set of nodes, A ⊂ N × N is referred to as the set of

arcs and the cardinal number of N is denoted by n. Let cij :
R→ (−∞,+∞] be the cost function associated with each arc

(i, j) ∈ A; cij is a function of the flow of the arc (i, j) which

is denoted by fij . Let d be the single destination node for

network traffic, bi ≥ 0 the traffic input at node i ∈ N − {d},
and bd = −

∑
i∈N−{d} bi the traffic output at d. The problem

is to minimize total cost subject to a conservation of flow

constraint at each node.

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.34

1135

Fig. 1. Single destination network flow

min
∑

(i,j)∈A
cij(fij), (1)

subject to ∑
(i,j)∈A

fij −
∑

(m,i)∈A
fmi = bi, ∀i ∈ N .

We assume that problem (1) has a feasible solution. We also

make the following standing assumptions on cij :

• (a) cij is strictly convex, and lower semicontinuous;

• (b) the conjugate convex function of cij , defined by

c∗ij(tij) = sup
fij

{tij .fij − cij(fij)}, (2)

is real valued, i.e. -∞ < c∗ij(tij) < +∞ for all real tij ;

• (c) 0 = arg minfij cij(fij);

Assumption (b) implies that lim|fij |→+∞ cij(fij) = +∞.
Therefore the objective function of problem (1) has bounded

level sets (see [15], Section 8). It follows that there exists an

optimal solution for problem (1) which must be unique in view

of the strict convexity assumed in (a). By the strict convexity

of cij , c
∗
ij is also continuously differentiable and its gradient

denoted by ∇c∗ij(tij) is the unique fij attaining the supremum

in (2) (see [15], pp. 218, 253). We note that assumptions (a),

(b) and (c) are not overly restrictive and are naturally satisfied

in many practical situations. Below are few examples of cost

functions that satisfy assumptions (a), (b) and (c).

• cij(fij) = aij .|fij |+ bij .f
2
ij , with aij ≥ 0 and bij > 0;

• cij(fij) = aij .max{f2
ij , f

4
ij}, with aij > 0;

• cij(fij) = (1
aij−fij

+ bij).fij , if 0 ≤ fij < aij , and

cij(fij) = +∞, if fij < 0 or aij < fij , with aij > 0
and bij ≥ 0.

A dual problem for (1) is given by

min
p∈Rn

q(p), (3)

subject to no constraint on the vector p = {pi/i ∈ N},
where q is the dual functional given by

q(p) =
∑

(i,j)∈A
c∗ij(pi − pj)−

∑
i∈N

bi.pi. (4)

We refer to p as a price vector and its components as prices.

The i-th price, pi, is a Lagrange multiplier associated with

the i-th conservation of flow constraint. The duality between

problems (1) and (3) is explored in great detail in [1]. The nec-

essary and sufficient condition for optimality of a pair (f, p) is

given in [15]. A feasible flow vector f = {fij/(i, j) ∈ A} is

optimal for (1) and a price vector p = {pi/i ∈ N} is optimal

for (3) if and only if for all arcs (i, j) ∈ A,
pi − pj is a subgradient of cij at fij .

An equivalent condition is

fij = ∇c∗ij(pi − pj), ∀(i, j) ∈ A.
Any one of these equivalent relations is referred to as the

complementary slackness condition (see [15] pp. 337-338 and

[3]).

Existence of an optimal solution of the dual problem can

be guaranteed under the following additional regular feasibility

assumption (see [1] p. 360 and p. 329): there exists a feasible

flow vector, f = {fij/(i, j) ∈ A}, such that c′ij−(fij) < +∞
and c′ij+(fij) > −∞, for all (i, j) ∈ A, where c′ij−, respec-

tively c′ij+, denotes the left, respectively the right, derivative

of cij . We note that the regular feasibility assumption is not

overly restrictive. On the other hand the optimal solution of

the dual problem is never unique, since adding the same

constant to all coordinates of a price vector p leaves the dual

cost unaffected. We can remove this degree of freedom by

constraining the price of one node. We constrain the price of

the destination node, pd, to be zero. This choice will have

important consequences in the following. We consider the

reduced dual optimal solution set P ∗ defined by:

P ∗ = {p′/q(p′) = min
p

q(p), p′d = 0}. (5)

Clearly P ∗ is nonempty. From (4), it follows that

∂q

∂pi

∣∣∣∣
p

=
∑

(i,j)∈A
∇c∗ij(pi− pj)−

∑
(m,i)∈A

∇c∗mi(pm− pi)− bi.

(6)

From (2) and assumption (c), it follows that

∇c∗ij(0) = 0. (7)

From (6) and (7), it follows that ∂q
∂pi

∣∣∣
p
= −bi ≤ 0, for all

i ∈ N − {d}, where p denotes the vector of Rn with all

components zero.

We recall that P ∗ is the nonempty set of vectors p ∈ Rn

such that pd = 0 and for all arcs (i, j) ∈ A, pi − pj is a

subgradient of cij at f∗ij , where f∗ = {f∗ij/(i, j) ∈ A} is the

unique primal optimal solution.

Theorem 1: Let assumptions of Section 2 hold. The inter-

section, denoted by I, of P ∗ with the nonnegative orthant is

nonempty.

Proof: (see [4]).

Since I is nonempty and P ∗ is the set of vectors p ∈ Rn

such that pi−pj is a subgradient of cij at f∗ij for all (i, j) ∈ A,

1136

it follows that I is a nonempty polyhedral convex set which

has a minimal element, denoted by p∗, i.e. for all p ∈ I and

all i ∈ N , p∗i ≤ pi.
In the sequel, we will assume that pd is a constant, pd = 0

and p will denote a vector in Rn−1. Throughout the paper the

component-wise partial ordering on Rn−1 will be written as

p∗ ≤ p.
We consider the following nonlinear system of equations.

∇q(p) = 0, (8)

where ∇q(p) = { ∂q
∂pi

∣∣∣
p

, i ∈ N − {d}}. In the following, the

number of arcs incident to node i is denoted by δi.

III. ASYNCHRONOUS MODIFIED NEWTON METHODS

A. Modified Newton methods

In this subsection, we propose a first modified Newton

method. Given a vector p(0) ∈ Rn−1, that is an initial

approximation of the solution, the modified Newton method

generates a sequence of vectors as follows.

p(k + 1) = p(k) + d(k), k = 0, 1, ..., (9)

where d(k) is solution of the system

(H(p(k)) + Δ(p(k)))d(k) = −∇q(p(k)), (10)

H(p) is the Hessian of function q(p) which is defined as

follows.

For all i ∈ N − {d},
δ2q

δp2i

∣∣∣∣
p

=
∑

(i,j)∈A
∇2c∗ij(pi − pj) (11)

+
∑

(m,i)∈A
∇2c∗mi(pm − pi),

for all i, j ∈ N − {d},
δ2q

δpiδpj

∣∣∣∣
p

= −∇2c∗ij(pi − pj) if (i, j) ∈ A, (12)

= −∇2c∗ji(pj − pi) if (j, i) ∈ A,
= 0 otherwise.

and Δ(p(k)) is an n − 1 × n − 1 diagonal matrix such

that H(p(k)) + Δ(p(k)) is positive definite (we may have

Δ(p(k)) = 0, whenever H(p(k))−1 exists and H(p(k)) is

positive definite). We note also that most of the time it is suf-

ficient to add a small positive value to the diagonal entries of

matrix H(p(k)) in order to ensure that (H(p(k))+Δ(p(k)))−1

exists and H(p(k)) + Δ(p(k)) is positive definite.

Finally, we note that it follows from the definition of

Δ(p(k)) that (H(p(k)) + Δ(p(k)))−1∇q(p(k)) is always a

descent direction.

In the sequel, we shall use the following notation

H(p) = H(p) + Δ(p). (13)

We define the modified Newton mapping G : Rn−1 →
Rn−1 such that

G(p) = p− (H(p))−1∇q(p). (14)

We note that the solution of the system

H(p(k))d(k) = ∇q(p(k)), (15)

may be particularly prohibitive when n is large. In this

case, one can use an iterative method in order to obtain an

approximate solution of the system (15). Let D be the diagonal

of matrix H(p(k)). We have

H(p(k)) = D −D +H(p(k)). (16)

One can use for example a Jacobi iterative method based on

the splitting (16). The vector d(k) is then approximated by

using the following Jacobi iterative scheme

Dd(k)t+1 = (D −H(p(k)))d(k)t +∇q(p(k)), t = 1, ..., v,
(17)

where v is a given positive integer and d(k)0 = 0.

B. Parallel asynchronous algorithms

In this subsection, we present the solution of the dual

problem via several parallel asynchronous modified Newton

methods. Reference is made to [3], [4], [6], [16], [17], and

[18], for various sequential and parallel iterative methods

applied to equality and interval-constrained problems.

We propose parallel Newton algorithms which use multi-

splitting techniques in order to approximate the solution of

system (15). For more references on mutisplitting techniques

see [19], [20], [21], [22], [23], [24] and the references therein.

Recall that p is a n − 1 dimensional unknown vector. In

the sequel, we will concentrate on a multisplitting whereby

vector p is partitioned into m subvectors. Consider m disjoint

subsets Il of {1, ..., n− 1} where {Il}1≤l≤m is a partition of

{1, ..., n− 1} . Here, m denotes the number of parallel tasks.

A task l consists in computing card(Il) components among

the n− 1 components of vector p.
Define for p ∈ Rn−1, the n− 1× n− 1 matrices Ml(p) as

follows.

(Ml(p))ij = (H(p))ij if i, j ∈ Il,

(Ml(p))ij = (H(p))ij if i ∈ Ir, j ∈ Is, 1 ≤ r < l and

1 ≤ s < l or l < r ≤ m and l < s ≤ m,
(Ml(p))ij = 0 elsewhere.

Remark 1: The matrices Ml(p) are block-diagonal matrices

with nonnull entries equal to the entries of matrix H(p). They

can be represented according to the following two patterns

(Ml(p))=

pattern1︷ ︸︸ ︷(H11(p) 0
0 H22(p)

)
or

pattern2︷ ︸︸ ︷⎛
⎝ H11(p) 0 0

0 H22(p) 0
0 0 H33(p)

⎞
⎠

(18)

where pattern 1 is relative to the case where l = 1 or l = m
and pattern 2 corresponds to the case where 1 < l < m.

1137

Consider first pattern 1. Note that in the case where

l = 1, H11(p) is the card(I1) × card(I1) submatrix

of H(p) such that H11
ij (p) = Hij(p) and H22(p) is the

n− 1− card(I1)×n− 1− card(I1) submatrix of H(p) such

that H22
ij (p) = H(p)card(I1)+i,card(I1)+j . In the case where

l = m, H11(p) is the n− 1− card(Im)× n− 1− card(Im)
submatrix of H(p) such that H11

ij (p) = Hij(p) and H22

is the card(Im) × card(Im) submatrix of H(p) such that

H22
ij (p) = H(p)n−1−card(Im)+i,n−1−card(Im)+j .

Consider now Pattern 2, i.e. 1 < l < m. In this case,

H22(p) is the card(Il) × card(Il) submatrix of H(p) such

that H22
ij (p) = H(p)∑l−1

t=1 card(It)+i,
∑l−1

t=1 card(It)+j . Similarly,

H11(p) is the
∑l−1

t=1 card(It(p)) × ∑l−1
t=1 card(It(p))

submatrix of H(p) such that H11
ij (p) = Hij(p). The matrix

H33(p) is defined accordingly.

Define also matrices Nl(p) such that Nl(p) = Ml(p) −
H(p), 1 ≤ l ≤ m. Then we have a family of splittings

H(p) =Ml(p)−Nl(p), 1 ≤ l ≤ m. (19)

Define now diagonal nonnegative weighting matrices El(p),
1 ≤ l ≤ m, such that

(El(p))ii = 1 for all i ∈ Il, (El(p))ii = 0 elsewhere. (20)

Since {Il}1≤l≤m is a partition of {1, ..., n− 1} , we have

m∑
l=1

El(p) = I, (21)

where I denotes the identity matrix. In this way, for each

p, the familly of splittings {Ml(p), Nl(p), El(p)}ml=1 is a

multisplitting of H(p).
The solution of system (15) is approximated by performing

v iterations of the multisplitting method starting from an initial

approximation d(k)0 = 0. Thus, we have

d(k)1 =

m∑
l=1

El(p(k))Ml(p(k))
−1∇q(p(k)), (22)

d(k)2 =
m∑
l=1

El(p(k))Ml(p(k))
−1Nl(p(k))d(k)

1 (23)

+ Ml(p(k))
−1∇q(p(k))),

and so on. With this particular multisplitting, the l-th parallel

task only needs to compute the value of the components of

the l-th subvector of p.
The parallel modified Newton multisplitting method can be

defined recursively as follows.

p(k + 1) = G(p(k)), (24)

where

G(p) = p−A(p)∇q(p), (25)

and

A(p) =

m∑
l=1

El(p)
v−1∑
j=0

(Ml(p)
−1Nl(p))

jMl(p)
−1, (26)

is obtained by a simple calculus relative to the multisplitting

scheme starting with d0 = 0. We have also

A(p) = A(p)H(p))H(p))−1. (27)

It follows from (27), (19) and (26) that

A(p) =

m∑
l=1

El(p)
v−1∑
j=0

(Ml(p)
−1Nl(p))

jH(p))−1 (28)

−
m∑
l=1

El(p)
v∑

j=1

(Ml(p)
−1Nl(p))

jH(p))−1.

Thus, we have

A(p) =
m∑
l=1

El(p)(Ml(p)
−1Nl(p))

0H(p))−1 (29)

−
m∑
l=1

El(p)(Ml(p)
−1Nl(p))

vH(p))−1.

and

A(p) =

m∑
l=1

El(p)(I − (Ml(p)
−1Nl(p))

v(H(p))−1. (30)

We assume now that there exist a unique solution p∗ ∈ P ∗.
For example, there exists a unique solution if the cost functions

cij are continuously differentiable for all (i, j) ∈ A (see[25]).

Theorem 2: Let assumptions of Section 2 hold and assume

that there exists a unique optimal solution p∗. Then, there

exists a ball B(p∗, r) of center p∗ and radius r, such that the

parallel Newton multisplitting methods defined by (24), (25),

(30) and starting from an estimate p(0) ∈ B(p∗, r), converge

to p∗.
Proof: It follows from (11), (12), (13) and the definition

of Δ(p) that the matrices H(p) are M-matrices. Thus, for

all p ∈ Rn−1 there exists a positive vector u ∈ Rn−1
+

such that H(p)u > 0. By definition of the multisplitting

{Ml(p), Nl(p), El(p)}ml=1, we have clearly Ml(p)u > 0,
l = 1, ...,m. Thus, the matrices Ml(p), l = 1, ...,m are

M-matrices and as a consequence we have M−1
l (p) > 0,

l = 1, ...,m. Moreover, by construction of the multisplitting

{Ml(p), Nl(p), El(p)}ml=1, the matrices Nl(p) are positive. It

follows that the splittings Ml(p) − Nl(p), l = 1, ...,m are

regular splittings (see [20] and [23]) and the result follows

from Theorem 3 in [19].

We consider now parallel asynchronous iterative algorithms

(see [6] Section 6.1). In brief, a parallel asynchronous iterative

algorithm relative to the solution of the fixed point problem

p = G(p) (where G is a mapping from Rn−1 onto itself) is a

sequence {p(k)} of vectors of Rn−1 defined as follows.

Let the iterate vector p be decomposed into m subvectors

pl, l = 1, ...,m, where pl will denote in the remaining of

this Section the subvector relative to the subset Il, i.e. the

subvector with components associated with elements of Il.

1138

Assume that there is a set of times T = {0, 1, 2, ...} at which

the components of one or several subvectors of the iterate

vector are updated by some processor. Let T l be the subset

of times at which the components of the l-th subvector are

updated. We have for each l ∈ {1, ...,m},
pl(k + 1) = Gl(p1(τ

l
1(k)), ..., pm(τ

l
m(k))), ∀k ∈ T l, (31)

pl(k + 1) = pl(k), ∀k
∈ T l,
where Gl is the l-th block-component of the mapping G and

for each l ∈ {1, ...,m},
• (d) the set T l is infinite,

• (e) 0 ≤ τ lj(k) ≤ k, j ∈ {1, ...,m}, ∀k ∈ T l,
• (f) if {kt} is a sequence of elements of T l that tends

to infinity, then limt→∞ τ lj(kt) = +∞, for every l ∈
{1, ...,m}.

The above conditions ensure respectively that no component

of the iterate vector is abandoned forever during the updating

process and old values of the components of the iterate vector

are replaced by new updates as the computation goes on.

For further details about asynchronous iterative algorithms the

reader is referred to [3], [6], [7], [8], [9], [10] and [26].

Theorem 3: Let assumptions of Section 2 hold and assume

that P ∗ has a unique optimal solution p∗. Then, there exists

a ball B(p∗, r) of center p∗ and radius r, such that for all

initial estimate p(0) ∈ B(p∗, r), asynchronous Newton multi-

splitting algorithms defined by (25), (30), (31) and satifying

assumptions (d), (e) and (f) converge to p∗.
Proof: It follows from (25) and ∇q(p∗) = 0 that we have

G′(p∗) = I −A(p∗)H(p∗). (32)

Moreover, it follows from (30) that we have

G′(p∗) = I −
m∑
l=1

El(p
∗)(I − (Ml(p

∗)−1Nl(p
∗))v. (33)

It results from the definition of the weighting matrices that

G′(p∗) =
m∑
l=1

El(p
∗)(Ml(p

∗)−1Nl(p
∗))v. (34)

As shown in the proof of Theorem 2, the splittings Ml(p
∗)−

Nl(p
∗), l = 1, ...,m are regular splittings (see [20]). Con-

sider now the Jacobi matrix of H(p∗) which is denoted by

M ′−1(p∗)N ′(p∗) where the matrix M ′(p∗) is a diagonal

matrix with diagonal entries equal to the diagonal entries of

matrix H(p∗). We have

ρ{M ′−1(p∗)N ′(p∗)} < 1, (35)

since H(p∗) is an M-matrix. The splitting M ′(p∗)−N ′(p∗) is

also clearly a regular splitting. Moreover, if A is an M-matrix

and if A = B1 − C1 = B2 − C2 are two regular splittings of

A, then (see [27]))

C2 ≤ C1 ⇒ ρ
(
B−1

2 C2

) ≤ ρ
(
B−1

1 C1

)
,

the strict inequality holds if C2
= C1and B−1
1 C1 is irre-

ducible. Thus, if we compare the family of splittings Ml(p
∗)−

Nl(p
∗), l = 1, ...,m to M ′(p∗) − N ′(p∗) i.e. the splitting

relative to the Jacobi method, we obtain by construction of

the multisplitting {Ml(p
∗), Nl(p

∗), El(p
∗)}ml=1, and by using

the above result

ρ{M−1
l (p∗)Nl(p

∗)} < 1, l = 1, ...,m. (36)

It follows from (34), (36) and Proposition 3.2 in [20] that we

have

ρ{G′(p∗)} ≤ max
l=1,...,m

ρ{(M−1
l (p∗)Nl(p

∗))v} < 1. (37)

Thus, there exists a neighborhood of p∗, denoted by V (p∗),
where the modified Newton multisplitting mapping G is P -

contracting in p∗. We consider the ball of center p∗ and radius

r, denoted by B(p∗, r) such that B(p∗, r) ⊂ V (p∗) and the

result follows from (37) and Theorem 3.11 in [28] (see also

[22], Theorem 4.4).

Remark 2: The choice of Ml(p) to be the diagonal elements

of H(p), i.e. typically the Jacobi method, would be the worse

choice in term of number of iterations. We see also that if

M l(p) ≥ Ml(p), then the splitting {M l(p), N l(p), El(p)} is

better than the splitting {Ml(p), Nl(p), El(p)}, the condition

M l(p) ≥ Ml(p) implies that the iterations are more implicit,

thus the solution of the corresponding linear system requires

more time. So, in order to have better performance, one has to

choose block-multisplittings which make a good compromise

between the number of iterations and the duration of a typical

iteration.

We conclude this subsection with some results concerning

parallel asynchronous modified Newton methods whereby the

fixed point mapping G is defined by (14). We assume that

there exists a unique solution p∗ ∈ P ∗. In this case, we have

G′(p∗) = −∇q(p∗)H′(p∗)
H(p∗)2 = 0. (38)

Thus, we have

ρ{M(G′(p∗))} = 0 < 1. (39)

Then, there exists a neighborhood of p∗, denoted by V (p∗)
where the modified Newton mapping G is P -contracting in p∗.
We consider also the ball of center p∗ and radius r, denoted

by B(p∗, r) such that B(p∗, r) ⊂ Np∗ . We have the following

local convergence result for asynchronous modified Newton

algorithms.

Theorem 4: Let assumptions of Section 2 hold and assume

that P ∗ has a unique optimal solution p∗. Then, there exists a

ball B(p∗, r) of center p∗ and radius r, such that for all initial

estimate p(0) ∈ B(p∗, r), asynchronous modified Newton

algorithms defined by (31), where the fixed point mapping G is

the modified Newton mapping defined by (14), and satifying

assumptions (d), (e) and (f) converge to the unique optimal

solution p∗.
Proof: The proof follows from (39) and Theorem 3.11 in

[28].

1139

C. Initial approximation

In subsection III-B, we have shown the local convergence of

parallel asynchronous modified Newton methods and parallel

asynchronous Newton multisplitting methods. In this subsec-

tion, we recall some results that permit one to generate good

initial approximations for parallel modified Newton methods

and parallel Newton multisplitting methods. In particular, we

note that the parallel Newton methods quoted above can

be combined with parallel gradient algorithms. In that case,

parallel asynchronous (or synchronous) gradient algorithms

start with an initial approximation of the solution that can

be far from the solution and deliver an approximation of the

solution in the domain of convergence of asynchronous (or

synchronous) modified Newton methods and asynchronous (or

synchronous) Newton multisplitting methods. Nevertheless,

the following assumption must be added (see [4]).

• (g) there exists a constant β ≥ 0, such that for all (i, j) ∈
A and all (ξ, η), (ξ′, η′) ∈ Γij with ξ′ < ξ, we have :

η − η′ ≥ 1

β
.(ξ − ξ′),

where Γij = {(ξ, η) ∈ R2/c′ij−(ξ) ≤ η ≤ c′ij+(ξ)} is the

characteristic curve associated with cij (see [1] p. 320).

The gradient iteration is defined by

p(k + 1) = p(k)− 1

α
.∇q(p(k)), k = 0, 1, ..., (40)

where α = β.maxi∈N δi. and δi is the degree of node i. The

gradient mapping F : Rn−1 → Rn−1 is given by

F (p) = p− 1

α
.∇q(p). (41)

Theorem 5: Under the hypotheses of Section 2 and assump-

tion (g), there exists a constant α = β.maxi∈N δi such that

for all p, p′′ ∈ Rn−1, with p′′ ≤ p, we have

∇q(p)−∇q(p′′) ≤ α.(p− p′′). (42)

Proof: See [4].

It follows clearly from the above theorem that F is isotone

on Rn−1 (i.e. whatever p, p′ ∈ Rn−1, p′ ≤ p implies

F (p′) ≤ F (p)). Since for all (i, j) ∈ A, c∗ij is real valued

and continuously differentiable, it follows from (6) that for all

i ∈ N − {d}, ∂q
∂pi

is continuous on Rn−1. Hence, ∇q and F

are also continuous on Rn−1.

The gradient algorithm lends itself very well to parallel

or distributed synchronous and asynchronous implementation.

We consider now asynchronous gradient algorithms (see [4])

according to model (31) where we substitute G for F, Then

we have the following result.

Theorem 6: Let assumptions of Section 2 hold. Asyn-

chronous gradient algorithms defined by (31), (41) that sat-

isfies assumptions (d), (e) and (f) and start from an estimate

p(0) ∈ P = {p ∈ Rn/p ≤ p ≤ p∗} converge to p∗.
Proof: See [4].

IV. COMPUTATIONAL EXPERIENCE

Computational tests have been carried out on a cluster

with 16 processors. Parallel synchronous and asynchronous

modified Newton methods relative to fixed point mapping (14)

that start with an initial approximation generated via parallel

synchronous and asynchronous gradient methods, respectively,

were implemented on up to 16 processors.

A. Parallel implementation
4.1.1. Synchronous case

In the synchronous case, updating and data exchanges are

performed sequentially. Processors communicate the updates

at the end of each updating phase. Processors are synchronized

by message exchanges. Communications are implemented via

the MPI Library. More precisely, each processor sequentially

sends prices value by using the MPI-Isend() function and

receive data by using MPI-Recv() function. We note that the

function MPI-Isend() is nonblocking and that synchronization

is realized via the MPI-Recv() function which is blocking.
4.1.2. Asynchronous case

Asynchronous implementation was mainly achieved by us-

ing the put() function of the SHMEM library. The put()

function permits one processor (the source) to make a copy

from a part of its own memory in the memory of a target

processor. We note that the put() function allows to cover

communications by computations since processors are not

blocked till the completion of the communication.

B. Problems
The problems considered in the computational tests are

network flow problems with 96 nodes and 144 nodes. The

network flow problems have been decomposed so as to balance

the computational load as fairly as possible amongst the

different processors. This was performed by equilibrating the

number of nodes in the network on the different processors.

For a given size of problems, we have also studied cases with

various topologies. We have concentrated on cases where the

maximum degree of a node can be equal to 4, 12, and 22,

respectively. These cases correspond to contexts that generate

different task granularities and permit one to study the impact

of task granularity on the efficiency of parallel methods.
We have considered communication problems with cost

functions given as follows:
cij(fij) = (1

1−fij
).fij , if 0 ≤ fij < 1, and cij(fij) =

+∞, if fij < 0 or 1 ≤ fij .
In that case we have
∇c∗ij(pi− pj) = 1− (1

pi−pj
)

1
2 , if pi− pj ≥ 1, and ∇c∗ij(pi−

pj) = 0 if pi − pj ≤ 1.
This type of cost function satisfies assumptions (a), (b), (c) in

Section II and assumption (g) in Section III (see [4]).
We have also considered hydraulic network flow problems

with the following cost functions:

cij(fij) = |fij |
1+b
b .

We have taken b = 1.85; this case corresponds to turbulent

flow in pipes (see [29], [30] and [31]). In that case, we have

1140

∇c∗ij(pi − pj) = sign(pi − pj) |pi − pj |1.85 .
This cost function satisfies also assumptions (a), (b), (c) and

assumption (g) on a bounded subdomain (see [18]).

For communication problems, the traffic input is given by

bi ≥ 0.01 for all i ∈ N − {d} and bd = −
∑

i∈N−{d} bi. For

turbulent flow problems, we have considered the case where

there are only two nonzero traffic input, say b1 = 1 and bd =
−b1 = −1.

For all problems and methods, the initial approximation is

pi = 0, for all i ∈ N .
The stepsize of the gradient methods is given by α =

β.maxi∈N δi, where δi denotes the degree of node i and β
is chosen in order to satisfy assumption (d); β = 0.5 in the

case of communication problems and β = 0.73 in the case of

turbulent flows.

Computations of the gradient methods are stopped when
∂q
∂pd

≤ ε = 10−4. We have shown in Proposition 4.2 of [18]

that the sum of the absolute values of the partial derivatives

of the dual functional over all nodes but the destination are

less than ε if this termination test is satisfied. Thus, this

termination criterion can be used to detect global termination

of sequential and parallel iterative algorithms (this remark

is valid in the asynchronous context). Moreover, this termi-

nation test presents the advantage to give a measure of the

feasibility of the solution since the partial derivatives of the

dual functional are directly related to the conservation of

flow constraints. The computational experiments have shown

that the absolute values of the partial derivatives of the dual

functional are in general very small as compared with ε.
Computations of the modified Newton methods are stopped

when ∂q
∂pd

≤ ε′ = 10−13.

C. Computational results

The efficiencies of parallel synchronous and asynchronous

modified Newton methods are displayed in Figs 2 to 5

where async.-22 is the efficiency of parallel asynchronous

modified Newton methods for problems with maximum node

degree equal to 22 and sync.-22 is the efficiency of parallel

synchronous modified Newton methods for problems with

maximum node degree equal to 22. Figs 2 to 5 show that

the greater the size of the problem and the maximum degree

of nodes, i.e., the greater the task granularity, the better is the

efficiency. Figs 2 to 5 show also that asynchronous modified

Newton methods are more efficient than synchronous modified

Newton methods. Finally, we note that parallel modified

Newton methods, lead to deterministic load balancing since

we have considered very regular network topologies that give

rise to fair partitioning, whereby nodes are equitably assigned

to the different processors.

Computational results clearly show the interest of parallel

asynchronous modified Newton methods. As an example,

turbulent flow problems with size 144 and maximum node

degree equal to 22 have been solved via parallel asynchronous

modified Newton methods in less than 30 seconds on a

Fig. 2. Efficiency of synchronous and asynchronous Newton multisplitting
methods in function of the number of processors for communication problems
with size 96 and maximum node degree equal to 4, 12 and 22.

cluster with 16 processors (the sum of the absolute values

of the deficits at each node but the destination, i.e., the

errors on the conservation of flow constraints, is less than

ε′ = 10−13). Experimental results also show the impact of

task granularity on the efficiency of the parallel methods. As

a consequence, large scale network flow problems can be

solved via parallel asynchronous modified Newton methods

with satisfactory efficiency.

V. CONCLUSIONS

In this paper, we have proposed to solve the dual of a

strictly convex network flow problem via original parallel

asynchronous modified Newton methods and Newton multi-

splitting methods. We have shown the local convergence of

these methods. We have also presented a stopping criteria

specially designed for convex network flow problems.

We have presented and analyzed computational results for

parallel synchronous and asynchronous iterative schemes of

computation. Computational results show the interest of paral-

lel asynchronous modified Newton methods. In general, paral-

lel asynchronous modified Newton methods are more efficient

than synchronous modified Newton methods. Computational

results have also shown the impact of task granularity on the

efficiency of the considered iterative schemes.

Clearly, parallel asynchronous modified Newton methods

converge faster than gradient methods or relaxation methods

that were previously considered in the literature for the solu-

tion of convex network flow problems. These methods are well

suited to large scale problems; they are also scalable provided

a minimum task granularity is considered.

REFERENCES

[1] R. Rockafellar, Network Flows and Monotropic Optimization. John
Wiley Sons, New York, 1984.

[2] D. Bertsekas, Network Optimization continuous and discrete models.
Athena Scientific, Belmont Massachusetts, 1998.

[3] D. Bertsekas and D. El Baz, “Distributed asynchronous relaxation
methods for convex network flow problems,” SIAM J. on Control and
Optimization, vol. 25, pp. 74–85, 1987.

1141

Fig. 3. Efficiency of synchronous and asynchronous Newton multisplitting
methods in function of the number of processors for communication problems
with size 144 and maximum node degree equal to 4, 12 and 22.

Fig. 4. Efficiency of synchronous and asynchronous Newton multisplitting
methods in function of the number of processors for turbulent flow problems
with size 96 and maximum node degree equal to 4, 12 and 22.

Fig. 5. Efficiency of synchronous and asynchronous Newton multisplitting
methods in function of the number of processors for turbulent flow problems
with size 144 and maximum node degree equal to 4, 12 and 22.

[4] D. El Baz, “Asynchronous gradient algorithms for a class of convex
separable network flow problems,” Computational Optimization and
Applications, 5, pp. 187–205, 1996.

[5] ——, “A computational experience with distributed asynchronous itera-
tive methods for convex network flow problems,” in Proceedings of the
28th IEEE Conference on Decision and Control, 1989, pp. 590—591.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
(republished in 1997 by Athena Scientific), 1989.

[7] A. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra
Applications, pp. 437–449, 1969.

[8] J.-C. Miellou, “Algorithmes de relaxation chaotique à retards,” RAIRO,
R1, pp. 55–82, 1975.

[9] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,” J.
Assoc. Comput. Mach., 2, pp. 226–244, 1978.

[10] D. El Baz, “M-functions and parallel asynchronous algorithms,” SIAM
Journal on Numerical Analysis, 27, pp. 136–140, 1990.

[11] J.-C. Miellou, D. El Baz, and P. Spiteri, “A new class of asynchronous
iterative algorithms with order intervals,” Mathematics of Computation,
Vol. 67, n. 221, pp. 237–255, 1998.

[12] P. Spiteri, J.-C. Miellou, and D. El Baz, “Perturbation of parallel
asynchronous linear iterations by floating point errors,” Electronic Trans-
actions on Numerical Analysis, Vol. 13, pp. 38–55, 2002.

[13] R. Feyzmahdavian and M. Johansson, “On the convergence rates of
asynchronous iterations,” in Proceedings of the 53rd IEEE Conference
on Decision and Control, 2014.

[14] M. Tutunov, R.and Zargham and A. Jadbabaie, “On convergence rate of
accelerated dual descent algorithm,” in Proceedings of the 53rd IEEE
Conference on Decision and Control, 2014, pp. 179–184.

[15] R. Rockafellar, Convex Analysis. Princeton University Press, Princeton
New Jersey, 1970.

[16] D. P. Bertsekas, P. Hossein, and P. Tseng, “Relaxation methods for
network flow problems with convex arc cost,” SIAM Journal on Control
and Optimization, Vol. 25, Issue 5, pp. 1219–1243, 1987.

[17] Y. Censor and A. Lent, “An iterative row-action method for interval con-
vex programming,” Journal of Optimization Theory and Applications,
34, pp. 321–353, 1981.

[18] D. El Baz, P. Spiteri, J.-C. Miellou, and D. Gazen, “Asynchronous
iterative algorithms with flexible communication for nonlinear network
flow problems,” Journal of Parallel and Distributed Computing, 38, pp.
136–140, 1996.

[19] J. Arnal, V. Migallon, and J. Penadés, “Nonstationary parallel Newton
iterative methods for nonlinear problems,” in Lectures Notes in Comput.
Science, VECPAR’2000, 2001, pp. 380—394.

[20] J. Bahi, J. C. Miellou, and K. Rhofir, “Asynchronous multisplitting
methods for nonlinear fixed point problems,” Numerical Algorithms, Vol.
15, n. 3, pp. 315–345, 1997.

[21] J. Bahi, K. Rhofir, and J. C. Miellou, “Parallel solution of linear DAEs
by mutisplitting waveform relaxation methods,” Linear Algebra and
applications, Vol. 332-334, pp. 181–196, 2001.

[22] A. Frommer and D. Szyld, “On asynchronous iterations,” Journal of
Computational and Applied Mathematics, pp. 237–255, 2000.

[23] D. O’Leary and R. White, “Multi-splittings of matrices and parallel
solution of linear systems,” SIAM Journal on algebraic discrete methods,
6, pp. 630–640, 1985.

[24] P. Spiteri, J.-C. Miellou, and D. El Baz, “Parallel asynchronous Schwarz
and multisplitting methods for nonlinear diffusion problems,” Numerical
Algorithms, pp. 437–449, 1995.

[25] D. El Baz, “Asynchronous iterative algorithms for convex network flow
problems,” in Proceedings of the first European Control Conference,
Grenoble, France, 1991, pp. 2397—2402.

[26] D. Bertsekas, “Distributed asynchronous computation of fixed points,”
Mathematical Programming, 27, pp. 107–120, 1983.

[27] J. M. Ortega and W. C. Rheinbold, Iterative solutions of nonlinear
equations in several variables. Academic Press, New York, 1970.

[28] M. N. El Tarazi, “Some convergence results for asynchronous algo-
rithms, 39,” Num. Math., pp. 325–340, 1982.

[29] G. Birkhoff and J. B. Diaz, “Nonlinear network problems,” Quart. Appl.
Math. 13, pp. 431–443, 1965.

[30] T. Porshing, “Jacobi and Gauss-Seidel methods for nonlinear network
problems,” SIAM J. Numer. Anal., 6, pp. 437–449, 1969.

[31] W. Rheinboldt, “On M-functions and their application to nonlinear
Gauss-Seidel iterations and to network flows,” Mathematical Analysis
and Applications, 32, pp. 274–307, 1970.

1142

