
Multi GPU Implementation of the Simplex Algorithm

Mohamed Esseghir Lalami, Didier El-Baz, Vincent Boyer

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse France

Email: mlalami, elbaz, vboyer@laas.fr

Abstract—The Simplex algorithm is a well known method
to solve linear programming (LP) problems. In this paper, we
propose an implementation via CUDA of the Simplex method
on a multi GPU architecture. Computational tests have been
carried out on randomly generated instances for non-sparse LP
problems. The tests show a maximum speedup of 24.5 with two
Tesla C2050 boards.

Keywords-hybrid computing; GPU computing; parallel com-
puting; CUDA; Simplex method; linear programming.

I. INTRODUCTION

Initially developed for real time and high-definition 3D

graphic applications, Graphics Processing Units (GPUs)

have gained recently attention for High Performance Com-

puting applications. Indeed, the peak computational capa-

bilities of modern GPUs exceeds the one of top-of-the-line

central processing units (CPUs). GPUs are highly parallel,

multithreaded, manycore units.

In November 2006, NVIDIA introduced, Compute Unified

Device Architecture (CUDA), a technology that enables

users to solve many complex problems on their GPU cards

(see for example [1] - [4]).

Some related works have been presented on the parallel

implementation of algorithms on GPU for linear program-

ming (LP) problems. O’Leary and Jung have proposed in

[5] a combined CPU-GPU implementation of the Interior

Point Method for LP; computational results carried out on

NETLIB LP problems [6] for at most 516 variables and

758 constraints, show that some speedup can be obtained

by using GPU for sufficiently large dense problems.

Spampinato and Elster have proposed in [7] a parallel

implementation of the revised Simplex method for LP on

GPU with NVIDIA CUBLAS [8] and NVIDIA LAPACK

[9] libraries. Tests were carried out on randomly generated

LP problems of at most 2000 variables and 2000 constraints.

The implementation showed a maximum speedup of 2.5
on a NVIDIA GTX 280 GPU as compared with sequential

implementation on CPU with Intel Core2 Quad 2.83 GHz.

Bieling, Peschlow and Martini have proposed in [10] an

other implementation of the revised Simplex method on

GPU. This implementation permits one to speed up solution

with a maximum factor of 18 in single precision on a

NVIDIA GeForce 9600 GT GPU card as compared with

GLPK solver run on Intel Core 2 Duo 3GHz CPU. In [11],

we have presented a parallel implementation via CUDA

of the standard Simplex algorithm on CPU-GPU systems

for dense LP problems. Experiments carried out on a CPU

with 3 Ghz Xeon Quadro INTEL processor and a GTX 260

GPU card have shown substantial speedup of 12.5 in double
precision. The authors have been recently aware of the paper

[12] where the standard simplex method is implemented on

a Tesla S1070 GPU card and CUBLAS library is used in the

pivoting step. This approach differs from our implementation

whereby we have tried to optimize, as much as possible, the

pivoting step with CUDA on two Tesla C2050 GPU boards.

To the best of our knowledge, these are the available ref-

erences on parallel implementations on GPUs of algorithms

for LP.

The revised Simplex method is generally more efficient than

the standard Simplex method for large linear programming

problems (see [13] and [14]), but for dense LP problems,

the two approaches are equivalent (see [15] and [16]).

Dense linear programming problems occur in many im-

portant domains. In particular, some decompositions like

Benders, Dantzig-Wolfe give rise to full dense LP problems.

Reference is made to [17] and [18] for applications leading

to dense LP problems.

In this paper, we propose an original solution based on

multithreading in order to implement via CUDA the standard

Simplex algorithm on multi GPU architectures. This solution

is well suited to the case where CPUs are connected to

several GPUs; it is also particularly efficient. We have been

solving linear programming problems in the context of the

solution of NP-complete combinatorial optimization prob-

lems (see [19]). For example, one has to solve frequently

linear programming problems for bound computation pur-

pose when one uses branch and bound algorithms and it may

happen that some instances give rise to dense LP problems.

The present work is part of a study on the parallelization of

optimization methods (see also [1],[2] and [11]).

The paper is structured as follows. Section 2 deals with

the Simplex method. The multi GPU implementation of the

Simplex algorithm is presented in Section 3. The Section

4 is devoted to presentation and analysis of computational

results for randomly generated instances. Finally, in Section

5, we give some conclusions and perspectives.

2011 IEEE International Conference on High Performance Computing and Communications

978-0-7695-4538-7/11 $26.00 © 2011 IEEE

DOI 10.1109/HPCC.2011.32

179

II. MATHEMATICAL BACKGROUND ON SIMPLEX

METHOD

Linear programming (LP) problems consist in maximizing

(or minimizing) a linear objective function subject to a set of

linear constraints. More formally, we consider the following

problem :
maxx0 = cx

′
,

s.t : A
′
x

′ ≤ b
′
,

x
′ ≥ 0,

(1)

with

c
′
= (c1, c2, ..., cn) ∈ Rn,

A
′
=

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠ ∈ Rm×n,

and

x
′
= (x1, x2, ..., xn)

T ,

n and m are the number of variables and constraints,

respectively.

Inequality constraints can be written as equality constraints

by introducing m new variables xn+l named slack variables,

so that:

al1x1 + al2x2 + ...+ alnxn +xn+l = bl, l ∈ {1, 2, . . . ,m},
with xn+l ≥ 0 and cn+l = 0. Then, the standard form of

linear programming problem can be written as follows:

maxx0 = cx,
s.t : Ax = b,

x ≥ 0,
(2)

with

c = (c
′
, 0, ..., 0) ∈ R(n+m),

A =
(
A

′
, Im

) ∈ Rm×(n+m),

Im is the m × m identity matrix and x =
(x

′
, xn+1, xn+2, . . . , xn+m)T .

In 1947, George Dantzig proposed the Simplex algorithm
for solving linear programming problems (see [13]). The

Simplex algorithm is a pivoting method that proceeds

from a first feasible extreme point solution of a LP

problem to another feasible solution, by using matrix

manipulations, the so-called pivoting operations, in such

a way as to continually increase the objective value.

Different versions of this method have been proposed. In

this paper, we consider the method proposed by Garfinkel

and Nemhauser in [21] which improves the algorithm of

Dantzig by reducing the number of operations and the

memory occupancy.

We suppose that the columns of A are permuted so that

A = (B,N), where B is an m×m nonsingular matrix. B

is so-called basic matrix for the LP problem. We denote by

xB the sub-vector of x of dimension m of basic variables

associated to matrix B and xN the sub-vector of x of

dimension n of nonbasic variables associated to N .

The problem can then be written as follows:[
x0

xB

]
=

[
cBB

−1b
B−1b

]
−

[
cBB

−1N − cN
B−1N

]
xN . (3)

Simplex tableau

We introduce now the following notations:

•

⎡
⎢⎢⎢⎣

s0,0
s1,0
...

sm,0

⎤
⎥⎥⎥⎦ ≡

[
cBB

−1b
B−1b

]

•

⎡
⎢⎢⎢⎣

s0,1 s0,2 · · · s0,n
s1,1 s1,2 · · · s1,n
...

...
. . .

...

sm,1 sm,2 · · · sm,n

⎤
⎥⎥⎥⎦ ≡

[
cBB

−1N − cN
B−1N

]

Then (3) can be written as follows:⎡
⎢⎢⎢⎣

x0

xB1

...

xBm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s0,0
s1,0
...

sm,0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

s0,1 s0,2 · · · s0,n
s1,1 s1,2 · · · s1,n
...

...
. . .

...

sm,1 sm,2 · · · sm,n

⎤
⎥⎥⎥⎦xN . (4)

From (4), we construct the so called Simplex tableau as

shown in Table I.

x0 s0,0 s0,1 s0,2 · · · s0,n
xB1

s1,0 s1,1 s1,2 · · · s1,n
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
xBm sm,0 sm,1 sm,2 · · · sm,n

Table I
SIMPLEX TABLEAU

By adding the slack variables in LP problem (see 2) and

setting N = A
′
, B = Im ⇒ B−1 = Im a first solution can

be written as follows:

xN = x
′
= (0, 0, ..., 0) ∈ Rn and xB = B−1b = b.

Furthermore, if xB ≥ 0 this solution is named a first feasible

basic solution.

At each iteration of the Simplex algorithm, we try to replace

a basic variable, the so-called leaving variable, by a nonbasic

variable, the so-called entering variable, so that the objective

function is increased. Then, a better feasible solution is

yielded by updating the Simplex tableau. More formally,

the Simplex algorithm implements iteratively the following

steps:

• Step 1: Compute the index k of the smallest negative

value of the first line of the Simplex tableau, i.e.

k = arg min
j=1,2,...,n

{s0,j | s0,j < 0}.

180

The variable xk is the entering variable. If no such

index is found, then the current solution is optimal,

else we go to the next step.

• Step 2: Compute the ratio θi,k = si,0/si,k, i =
1, 2, · · · ,m then compute index r as:

r = arg min
i=1,2,···,m

{θi,k | si,k > 0}.

The variable xBr
is the leaving variable. If no such

index is found, then the algorithm stops and the

problem is unbounded, else the algorithm continues to

the last step.

• Step 3: Yield a new feasible solution by updating the

previous basis. The variable xBr
will leave the basis

and variable xk will enter into the basis. More formally,

we start by saving the kth column which becomes the

so-called ‘old’ kth column, then the Simplex tableau

is updated as follows:

1 - Divide the rth row by the pivot element sr,k:

sr,j :=
sr,j
sr,k

, j = 0, 1, · · · , n.

2 - Multiply the new rth row by si,k and subtract it

from the ith row, i = 0, 1, · · · ,m, i �= r:

si,j := si,j − sr,jsi,k, j = 0, 1, · · · , n.
3 - Replace in the Simplex tableau, the old kth column

by its negative divided by sr,k except for the pivot

element sr,k which is replaced by 1/sr,k:

si,k := − si,k
sr,k

, i = 0, 1, · · · ,m , i �= r,

and

sr,k becomes
1

sr,k
.

This step of the Simplex algorithm is the most costly

in terms of processing time.

Then return to the step 1.

The Simplex algorithm finishes in 2 cases:

• when the optimal solution is reached (then the LP

problem is solved).

• when the LP problem is unbounded (then no solution

can be found).

The Simplex algorithm described by Garfinkel and

Nemhauser is interesting in the case of dense LP problems

since the size of the manipulated matrix (Simplex tableau)

is (m+ 1)× (n+ 1) instead of (m+ 1)× (n+m+ 1) in

the case of the standard Simplex method of Dantzig. This

decreases the memory occupancy and processing time, and

permits one to test larger instances.

In the sequel, we present the parallelization of this algorithm

on multi GPU architecture.

III. SIMPLEX ON MULTI GPU SYSTEM

This section deals with the multi GPU implementation

of the Simplex algorithm via CUDA. For that, a brief

description of the GPU architecture is given in the following

subsection.

A. NVIDIA GPU architecture

Figure 1. Thread and memory hierarchy in GPUs.

NVIDIA’s GPUs are SIMT (single-instruction, multiple-

threads) architectures, i.e. the same instruction is executed

simultaneously on many data elements by the different

threads. They are especially well-suited to address problems

that can be expressed as data-parallel computations.

As shown in Figure 1, a grid represents a set of blocks

where each block contains up to 1024 threads. A grid is

launched via a single CUDA program, the so-called kernel.

The execution starts with a host (CPU) execution. When

a kernel function is invoked, the execution is moved to

a device (GPU). When all threads of a kernel complete

their execution, the corresponding grid terminates, the

execution continues on the host until another kernel is

invoked. When a kernel is launched, each multiprocessor

processes one block by executing threads in group of

32 parallel threads named warps. Threads composing a

warp start together at the same program address, they are

nevertheless free to branch and execute independently. As

thread blocks terminate, new blocks are launched on the

idle multiprocessors. With CUDA 3.0, threads of different

blocks cannot communicate with each other explicitly but

can share their results by means of a global memory.

Remark: If threads of a warp diverge when executing

a data-dependent conditional branch, then the warp serially

181

executes each branch path. This leads to poor efficiency.

Threads have access to data from multiple memory

spaces (see Figure 1). We can distinguish two principal

types of memory spaces:

• Read-only memories: the constant memory for constant

data used by the process and texture memory optimized

for 2D spatial locality. These two memories are acces-

sible by all threads.

• Read and write memories: the global memory space

accessible by all threads, the shared memory spaces

accessible only by threads in the same blocks with a

high bandwidth, and finally each thread accesses to his

own registers and private local memory space.

In order to have a maximum bandwidth for the global

memory, memory accesses have to be coalesced. Indeed,

the global memory access by all threads within a half-warp

(a group of 16 threads) is done in one or two transactions

if:

• the size of the words accessed by the threads is 4, 8,

or 16 bytes,

• all 16 words lie:

– in the same 64-byte segment, for words of 4 bytes,

– in the same 128-byte segment, for words of 8

bytes,

– in the same 128-byte segment for the first 8 words

and in the following 128-byte segment for the last

8 words, for words of 16 bytes;

• threads access the words in sequence (the kth thread

in the half-warp accesses the kth word).

Otherwise, a separate memory transaction is issued for each

thread, which degrades significantly the overall processing

time. For further details on the NVIDIA cards architecture

and how to optimize the code, reference is made to [20].

In [11], we have studied the parallel implementation via

CUDA of the simplex method on a CPU/GPU system with

a 3 GHz Xeon Quadro Intel processor and a GTX 260 GPU

card. In this paper, we study the parallel implementation

of the simplex method on a multi GPU architecture, i.e. a

DELL Precision T7500 Westmere based on Quad-Core Intel

Xeon E5640 2.66 GHz with 12 GB of main memory and

two NVIDIA Tesla C2050 GPUs. The Tesla C2050 GPU,

wich is based on the new-generation CUDA architecture

codenamed Fermi, has 3 GB DDR5 of memory and 448
streaming processor cores (1.15 GHz) what delivers a peak

performance of 515 Gigaflops in double precision floating

point. The interconnection between the host and the two

GPUs is done via a PCI-Express Gen2 interface.

B. Parallel algorithm

Principle

We denote by I the number of available GPUs. When

Figure 2. SimplexTableau decomposition and memory access of CPU
threads.

implementing the Simplex method, most of the time is spent

in pivoting operations. This step involves (m+1)× (n+1)
double precision multiplications and (m + 1) × (n + 1)
double precision subtractions that can be parallelized on I
GPUs.

For that purpose, the SimplexTableau is decomposed

Figure 3. Allocation on GPU of a SimplexTableauPart .

into I parts (see Figure 2) so that each GPU updates one

part at every iteration. The proposed implementation is

based on the concurrent implementation of I identical CPU

threads so that each GPU i is managed by its own CPU

thread i, i = 1, ..., I . Hence, the CPU thread l is composed

of 4 kernels required by the Simplex algorithm and these 4

kernels are executed on the part i of the SimplexTableau
by the i− th GPU. This approach permits one to maintain

the context of each CPU thread all along the application,

i.e. CPU threads are not killed at the end of each Simplex

182

algorithm iteration. As a consequence, communications are

minimized.

We chose to split horizontally the SimplexTableau since

this decomposition permits one to process the ratio column
θ and the entering variable column in parallel between all

GPUs. The leaving variable line is computed by only one

GPU at each iteration.

Initialisation:

The SimplexTableau of size (m + 1) × (n + 1) that is

available first on the CPU, is split into I parts , called

SimplexTableauPart. Each SimplexTableauPart
of size mi × (n + 1) where mi = �(m+ 1)/I	, is

allocated to the Global Memory of one GPU. This requires

communications between the CPU and the GPUs. The

pivoting operations will be carried out by the GPUs.

The SimplexTableauPart is decomposed into h × w
blocks in the GPU with :

h = �mi/6	
w = �(n+ 1)/32	

Each block is relative to a submatrix with 6 lines and

32 columns; this corresponds to a block of 192 threads

(the optimal number of GPU threads per block that

minimize processing time). The grid of blocks covers

all the SimplexTableauPart and each GPU thread is

associated to a given entry of the tableau (see Figure 3).

Thread processing:

The procedure carried out by the CPU in one iteration is

described in the Simplex Thread Algorithm .

Algorithm Simplex Thread (ith processing thread on CPU):

/* Shared data between CPU Threads */

Min[I], k, r, wp, LinerCPU [n+ 1], Sharedrow[I][mi],
/* Local CPU Thread data */

SimplexTableauPart[mi][n+ 1],
Columnk[mi], Liner[n+ 1],
begin Procedure
/* Computing entering variable index */

if i = 0 do
GPU to CPU com(SimplexTableauPart[0], Sharedrow),

end if

Synchronize()

Min[i] := Find min(Sharedrow[i]),
Synchronize()

k :=Find min(Min),

/* Computing leaving variable index */

Kernel1(),

GPU to CPU com(θ, Sharedrow[i]),
Min[i] := Find min(Sharedrow[i]),

Synchronize()

r :=Find min(Min),

/* Updating basis parts */

id := Find GPUid pivot(),

if i = id
wp := Get pivot GPU to CPU(),

Kernel2(),

GPU to CPU com(Liner, LinerCPU),

Set pivot line to 0(),

end if

CPU to GPU com(LinerCPU,Liner),

Kernel3(),

Kernel4(),

end Procedure.

We can distinguish in the Algorithm Simplex Thread two

types of data: shared and local data.

• Shared data:
k, r and wp are, respectively, the entering index, the

leaving index and pivot element.

Sharedrow[I][mi], a row of size I × mi, is used to

receive the first line of the SimplexTableau and the

ratio column θ in order to process, respectively, k and

r.

LinerCPU [n + 1] receive the line r of the

SimplexTableau from the GPU which hosts the pivot
line.

These datas are stored in the CPU memory see (Figure

2), exactly in a page-locked host memory.

• Local data:
Stored in the global memory of the GPUs, these datas

are used by the GPUs kernels of the Simplex Thread
Algorithm.

The function Synchronize() performs a global synchroniza-

tion of all CPU threads in order to insure data consistency.

GPU data exchanges are made via the following two func-

tions:

• GPU to CPU com(source, destination): whereby

each GPU writes in the CPU (destination) values

contained in source.

• CPU to GPU com(source, destination): whereby

each GPU reads values in the CPU (source).

Computing the entering and leaving variables:

Finding the entering or leaving variables results in

finding a minimum within a set of values. In reference [11],

we explained that it is better to do this step in CPU. Thus,

the CPU function Find min() is used by the CPU thread i
to find the local minimum Min[i] index in Sharedrow[i].
Thereafter a global minimum index is computed in the row

Min of I values and communicated to the GPUs.

In step 1 of the Simplex algorithm, the first line of the

Simplex tableau is simply communicated to the CPU in

183

Sharedrow by the GPU 0. However, the step 2 requires

the processing of a column of ratios. This is done in parallel

by Kernel 1 and the ratio column θ is communicated to the

CPU. Since step 3 requires the column k, the column of

entering variable of the Simplex tableau, Kernel 1 is also

used to get the “old” Columnk and to store it in the device

memory in order to avoid the case of memory conflict.

Kernel 1: The GPU Kernel for processing ratio column θ
and getting the “old” column Columnk of entering index

k.

global void Kernel1(double ∗ θ,
double ∗ Columnk, int k,

double SimplexTableauPart[ml][n+1])
{
int idx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
double w = SimplexTableau[idx][k];
/*Copy the weights of entering index k*/

Columnk[idx] = w;
θ[idx] = SimplexTableau[idx][1]/w;
}

Updating the basis:

In the sequel, we use the standard CUDA notation

whereby x, y denote the column and the row, respectively.

Step 3 is entirely carried out on GPUs.

The thread function Find GPUid pivot() is used to find the

index of the GPU which host the line of the Simplex tableau

relative to the index of the leaving variable r. This line

Liner is processed by the Kernel 2 as follows: The GPU

thread x of block X processes the element Liner[x+32×X]
with x = 0, · · · , 31 and X = 0, · · · , w − 1. The pivot

element wp := SimplexTableau[r][k] obtained from the

old Columnk[r], is shared between all GPU threads.

The Liner and wp are sent to the CPU memory and

thereafter stored in device memory of all GPUs. In

order to avoid the addition of branching condition

like if(jdx == r) return; in Kernel 3, the

SimplexTableau[r] line and Columnk[r] value are

set to , respectively, 0 and −1.

The remaining part of the Simplex tableau is updated by

the Kernel 3. Indeed, for each block of dimension 6 × 32,

a column of 6 element of leaving index k is loaded in a

shared memory. Then blocks process the corresponding

part of SimplexTableauPart independently (in parallel)

such as GPU thread (x, y) of the block (X,Y) processes

the element SimplexTableauPart[y+6×Y][x+32×X]
with x = 0, · · · , 31, y = 0, · · · , 5 and X = 0, · · · , w − 1,

Y = 1, · · · , h− 1 (see Figure 4).

Updating the column k of Simplex tableau requires the old

Columnk and in order to avoid the addition of branching

condition like if(idx == k) return; in Kernel 3, which

results in a divergent branch, we use kernel 4 to update

separately the column k.

Thus, step 3 requires the three following kernels:

Kernel 2: The GPU Kernel for processing the line relative

to the index of the leaving variable r.

global void Kernel2(double wp, int k, int r,
double ∗Columnk, double ∗Liner,

double SimplexTableauPart[ml][n+1])
{
int idx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
/*Set the rth element of the Columnk to -1 */

if(threadIdx.x == 0) Columnk[r] = −1;
syncthreads();

/*Update the line of leaving index r*/

Liner[idx] = SimplexTableauPart[r][idx]/wp;
}

Kernel 3: The GPU Kernel for Updating the basis.

global void Kernel3(int r, int k, int r,
double ∗Columnk, double ∗Liner,

double SimplexTableauPart[ml][n+1])
{
int idx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
int jdx = blockIdx.y ∗ blockDim.y + threadIdx.y;
double s = SimplexTableauPart[jdx][idx];

shared double w[6];
/*Get the column of entering index k in shared memory */

if(threadIdx.y == 0 && threadIdx.x < 6)
{
w[threadIdx.x] = Columnk[blockIdx.y ∗ blockDim.y +
threadIdx.x];
}
syncthreads();

/*Update the basis part */

SimplexTableauPart[jdx][idx]=s − w[threadIdx.y] ∗
Liner[idx];
}

Kernel 4: The GPU Kernel for processing the column of

entering index k.

global void Kernel4(double ∗ Columnk, double wp,
double SimplexTableauPart[ml][n+1])

{
int jdx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
/*Update the column of the entering index k*/

SimplexTableauPart[jdx][k] = −Columnk[jdx]/wp;

184

Figure 4. Matrix manipulation and memory management in kernel 3.

IV. COMPUTATIONAL EXPERIMENTS

We present now computational results obtained with one

CPU, a system with one CPU and one GPU and a system

with one CPU and two GPUs, respectively. We have used a

CPU with Intel Xeon E5640 2.66 GHz and a two NVIDIA

Tesla C2050 GPUs.We recall that we have used CUDA 3.2

for the parallel code and gcc for the serial one.

We have considered randomly generated LP problems where

aij , bi, cj , i ∈ {1, ...,m} and j ∈ {1, ..., n}, are integer vari-

ables that are uniformly distributed over the integer[1, 1000].
We note that the generated matrix A is a non-sparse matrix.

We have been using double precision in order to ensure a

good precision of the solution. Processing times are given for

5 instances and the resulting speedups have been computed

as follows:

speedup1 =
processing time on CPU (s.)

processing time on system with one GPU (s.)

speedup2 =
processing time on system with one GPU (s.)

processing time on system with two GPUs (s.)

We note that processing time on CPU corresponds to the

time obtained with the sequential version of the same

Simplex algorithm implemented on the CPU. speedup1 is

the obtained speedup between CPU and system with one

GPU. speedup2 is the obtained speedup between one GPU

and system with two GPUs.

Figure 5 displays processing times for the different sizes of

LP problems and for both sequential and parallel algorithms.

We can see that the parallel algorithms (with one and two

GPUs) are always faster than the sequential algorithm. In

the sequential case and for problems of size 8000 × 8000,

we note that the processing time exceeds the time limit of

16 hours that we have imposed.

Table II shows that both speedup1 and speedup2 in-

crease with the size of problems. For small size prob-

lems e.g. 1000 × 1000, the speedup1 is relatively small

Figure 5. Elapsed time (simplex on CPU, one GPU and two GPUs).

(average speedup = 2.93) since the real power of the GPU

is slightly exploited. We note that an average speedup of 12.7
is obtained with one GPU. For large instances, speedup2
increases and meets a level around 1.93. This shows that

the use of two GPUs leads to a very small lost of efficiency

for large problems. This gives a speedup of 24.5 between

CPU and two GPU implementations. We note also that, large

instances, i.e 19000× 19000 on system with one GPU and

27000× 27000 on system with two GPUs, have been tested

without exceeding the memory occupancy of GPU cards.

This confirms the interest of the proposed approach since the

use of several GPUs permits one to solve efficiently larger

problems within reasonable processing time.

Finally we note that our experimental results can hardly be

compared with the one in [11] where we have used a CPU

twice as slow as the CPU used here.

m× n speedup1 speedup2
1000× 1000 2.93 0.43
2000× 2000 10.62 1.02
3000× 3000 12.24 1.38
4000× 4000 12.73 1.59
5000× 5000 12.71 1.71
6000× 6000 12.74 1.76
7000× 7000 12.72 1.82
8000× 8000 12.74 1.85
9000× 9000 / 1.86

10000× 10000 / 1.88
12000× 12000 / 1.91
15000× 15000 / 1.93

Table II
AVERAGE SPEEDUPS: speedup1 (ONE CPU/ ONE GPU) AND speedup2

(ONE GPU/ TWO GPUS).

V. CONCLUSION AND FUTURE WORK

In this paper we have proposed a multi GPU parallel

implementation in double precision of the Simplex method

for solving linear programming problems with CUDA. The

185

parallel implementation has been performed by optimizing

the different steps of the Simplex algorithm. Computational

results show that our multi GPU implementation in dou-

ble precision is efficient since for large non-sparse linear

programming problems, we have obtained stable speedups

around 24.5. Our approach permits one also to solve prob-

lems of size 15000× 15000 without exceeding the memory

occupancy of the GPUs.

In future work, we plan to test larger LP problems with more

GPUs.

VI. ACKNOWLEDGMENT

Dr Didier El Baz thanks NVIDIA for support through

Academic Partnership.
REFERENCES

[1] V. Boyer, D. El Baz, M. Elkihel, “Solving knapsack problems
on GPU,” in Computers & Operations Research.

[2] V. Boyer, D. El Baz, M. Elkihel, “Dense dynamic programming
on multi GPU,” to appear in Proc. of the 19th International
Conference on Parallel Distributed and networked-based Pro-
cessing, PDP 2011, Ayia Napa, Cyprus, 545–551, February
2011.

[3] Y. Zhang, J. Cohen, J. D. Owens, “Fast tridiagonal solvers on
the GPU,” in Proc. of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, (PPoPP
2010):127–136, Bangalore, India, January 2010.

[4] V. Vineet, P. J. Narayanan, “CUDA cuts: fast graph cuts on
the GPU,” in Workshop on Visual Computer Vision on GPU’s,
2008.

[5] D. P. O’Leary, J. H. Jung, “Implementing an interior point
method for linear programs on a CPU-GPU system,” Electronic
Transactions on Numerical Analysis, 28:879–899, May 2008.

[6] NETLIB, http://www.netlib.org/

[7] D. G. Spampinato, A. C. Elster, “Linear optimization on mod-
ern GPUs,” in Proc. of the 23rd IEEE International Parallel
and Distributed Processing Symposium, (IPDPS 2009), Rome,
Italy, May 2009.

[8] CUDA - CUBLAS Library 2.0, NVIDIA Corporation,

[9] LAPACK Library, http://www.culatools.com/

[10] J. Bieling, P. Peschlow, P. Martini, “An efficient GPU im-
plementation of the revised Simplex method,” in Proc. of the
24th IEEE International Parallel and Distributed Processing
Symposium, (IPDPS 2010), Atlanta, USA, April 2010.

[11] M. E. Lalami, V. Boyer, D. El Baz, “Efficient Implementation
of the Simplex Method on a CPU-GPU System,” in Proceed-
ings of the Symposium IEEE IPDPS 2011, Anchorage USA,
May 2011.

[12] X. Meyer, P. Albuquerque, B. Chopard “A multi-GPU im-
plementation and performance model for the standard simplex
method” submitted to the 17th International European Con-
ference on Parallel and Distributed Computing, 2011.

[13] G. B. Dantzig, Linear Programming and Extensions, Prince-
ton University Press and the RAND Corporation, 1963.

[14] G. B. Dantzig, M. N. Thapa, Linear Programming 2: Theory
and Extensions, Springer-Verlag, 2003.

[15] S. S. Morgan, A Comparison of Simplex Method Algorithms,
Master’s thesis, Univ. of Florida, Jan. 1997.

[16] G. Yarmish, “The simplex method applied to wavelet decom-
position,” in Proc. of the International Conference on Applied
Mathematics, Dallas, USA, 226–228, November 2006.

[17] J. Eckstein, I. Bodurglu, L. Polymenakos, and D. Goldfarb,
“Data-Parallel Implementations of Dense Simplex Methods on
the Connection Machine CM-2,” ORSA Journal on Comput-
ing,vol. 7,4:434–449, 2010.

[18] S. P. Bradley, U. M. Fayyad, and O. L. Mangasarian, “Math-
ematical Programming for Data Mining: Formulations and
Challenges,” INFORMS Journal on Computing, vol. 11,3:217–
238, 1999.

[19] V. Boyer, D. El Baz, M. Elkihel, “Solution of multidi-
mensional knapsack problems via cooperation of dynamic
programming and branch and bound,” European J. Industrial
Engineering, 4,4:434–449, 2010.

[20] NVIDIA, Cuda 2.0 programming guide, http:// devel-
oper.download.nvidia.com/compute/cuda/2 0/docs/NVIDIA
CUDA Programming Guide 2.0.pdf (2009)

[21] R. S. Garfinkel, D. L. Nemhauser, Integer Programming,
Wiley-Interscience, 1972.

186

