
A dynamic programming method with dominance technique
for the knapsack sharing problem

V. Boyer∗,1, D. El Baz∗,2, M. Elkihel∗,3
∗CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France
∗Université de Toulouse; UPS; INSA; INP; ISAE; LAAS; F-31077 Toulouse, France
1vboyer@laas.fr,2elbaz@laas.fr,3elkihel@laas.fr

ABSTRACT

In this paper, we propose an original method to solve exactly the knapsack sharing problem (KSP) by using a dynamic
programming with dominance technique. The original problem (KSP) is decomposed in a set of knapsack problems.
Our method is tested on uncorrelated and correlated instances from the literature. Computational experiences show that our
method is able to find an optimal solution of large instances within reasonable computing time.
Keywords: Max-min programming, Knapsack sharing problem, Dynamic programming, Combinatorial optimization.

1. Introduction

The knapsack sharing problem (KSP) is a max-min math-
ematical programming problem with a knapsack constraint
(see [4], [6]). The KSP is NP-hard as it can be formulated
as an extension to the ordinary knapsack problem.

The KSP is composed of n items divided into m different
classes. Each class Ni has a cardinality ni with

∑
i∈M

ni =

n and M = {1, 2, ...,m}. An item j ∈ Ni is associated
with:

• a decision variable xij ∈ {0, 1}

• a profit pij

• a weight wij

We wish to determine a subset of items to be included in the
knapsack, according to its capacity C, so that the minimum
profit associated with the different class is maximised. The
KSP can be formulated as follows:

(KSP)


max min

i∈M

∑
j∈Ni

pij .xij

 = z(KSP)

subject to
∑
i∈M

∑
j∈Ni

wij .xij ≤ C,

xij ∈ {0, 1} for i ∈M and j ∈ Ni.
(1.1)

For i ∈ M and j ∈ Ni, wij , pij , and C are considered as
positive integers and we assume that

∑
i∈M

∑
j∈Ni

wij > C.

A common way to solve the KSP consists in its decom-
position in knapsack problems (see for examples [10] and
[15]). Indeed, for a class i ∈ M, we define the following
problem:

(KPi(Ci))


max

∑
j∈Ni

pij .xij = z(KPi(Ci))

s.t.
∑
j∈Ni

wij .xij ≤ Ci,

xij ∈ {0, 1} j ∈ Ni.

(1.2)

The objective is then to find a set (C∗1 , C∗2 , ..., C∗m) such
that ∑

i∈M
C∗i ≤ C and

min
i∈M
{z(KPi(C∗i))} = z(KSP),

where, for a problem P , z(P) represents its optimal value.
Furthermore an upper bound and a lower bound of z(P)
will be denoted, respectively, by z(P) and z(P).

In this article, we propose a dynamic programming al-
gorithm with dominance technique to solve the knapsack
problems (KPi(Ci)))i∈M while trying to obtain good ap-
proximation of the values of (C∗i)i∈M. Indeed, the algo-
rithm will start by solving the problems (KPi(Ci))i∈M

with, for i ∈ M, Ci ≥ C∗i and
∑
i∈M

C∗i ≥ C, and at each

step of the resolution, we will try to decrease the values of
(Ci)i∈M, toward (C∗i)i∈M.

Without loss of generality, we consider in the sequel the
items in a class i ∈M sorted according to decreasing ratios
pij

wij
, j ∈ Ni:

pi1

wi1
≥ pi2

wi2
≥ ... ≥ pij

wij
≥ ... ≥ pini

wini

, i ∈M.

In the second section, we shall present the dynamic
programming algorithm used to solve the problems
(KPi)i∈M. Section 3 will deal with its application to find
out an optimal solution of (KSP). The methods used to
evaluate the upper and the lower bounds needed during the
resolution will be exposed and we will deal in particular
with the computation of the capacities (C∗i)i∈M. Finally,
in section 4, the performance of the approach is evaluated
through a set of problems from the literature. Some con-
clusions and perspectives are presented in section 5.

978-1-4244-4136-5/09/$25.00©2009IEEE
 348

Additional notations:

Let r ∈ R:

• brc = p such that p ∈ N and p ≤ r < p + 1,

• dre = p such that p ∈ N and p− 1 < r ≤ p,

• |r| is the absolute value of r.

2. Dynamic programming

In order to solve the problems (KPi(Ci))i∈M, we use a
dynamic programming algorithm with dominance (see [1],
[2], [3], [7]). The method used to compute the (Ci)i∈M
will be exposed in the next section.

In the sequel i will denote the ith class of (KSP) (i ∈M).

A list Lik is associated with each step k ∈ Ni:

Lik =

(w, p) | w =
k∑

j=1

wij .xij ≤ Ci and

p =
k∑

j=1

pij .xij , with xij ∈ {0, 1}, j ∈ {1, 2, ..., k}


(2.1)

The states (w, p) in a list are sorted according to the de-
creasing value of p.

It follows from the dynamic programming principle that
suppression of dominated states permits one to reduce dras-
tically the size of lists Lik.

Definition: (Dominated states)
Let (w, p) be a pair of weight and profit, i.e. a state of the
problem. If ∃ (w′, p′) such that w′ ≤ w and p′ ≥ p, then
state (w, p) is dominated by (w′, p′).

2.1. Computing the lists

The algorithm is initialized with the list Li0 = {(0, 0)},
and at a step k ∈ Ni the new list Lik is obtained as follows:

Lik = L′ik −Dik,

with,

L′ik = Li(k−1) ⊕ {(wik, pik)}
= Li(k−1) ∪

{
(w + wik, p + pik) | (w, p) ∈ Li(k−1)

and w + wik ≤ Ci}
Dik : the list of dominated states in L′ik

This procedure is called NextList and is detailled in Alg. 1.

2.2. Eliminating states via upper bounds

In order to shrink a list Lik, k ∈ Ni, an upper bound asso-
ciated with a state (w, p) ∈ Lik, z(w, p), is calculated. In
this purpose, we solve exactly the following linear contin-
uous knapsack problem (see [8]):

Alg. 1: NextList

Procedure: NextList
Input: A knapsack problem (KPi)

A list Li(k−1)

Output: The next list Lik

L′ik := Li(k−1) ⊕ {(wik, pik)}
Lik := L′ik −Dik.
where Dik represents the list of dominated states in
L′ik.

(LP
(w,p)
i (Ci))



max p +
ni∑

j=k+1

pij .xij

s.t.

ni∑
j=k+1

wij .xij ≤ Ci − w,

xij ∈ [0, 1] j ∈ {k + 1, ..., ni}.
(2.2)

And we have z(w, p) =
⌊
z(LP

(w,p)
i (Ci))

⌋
. Furthermore,

if z(w, p) ≤ z(KSP), then the states (w, p) can be elimi-
nated.

2.3. Fixing variables

Two methods are used to fix variables of the problem
(KPi).

First, an upper bound, z(KSP) of (KSP), is evaluated
once in the beginning of the procedure. Indeed, we solve
exactly the corresponding continuous KSP described bel-
low (see [12]):

(CKSP)


max min

i∈M

∑
j∈Ni

pij .xij


s.t.

∑
i∈M

∑
j∈Ni

wij .xij ≤ C,

xij ∈ [0, 1] for i ∈M and j ∈ Ni.
(2.3)

Then z(KSP) = bz(CKSP)c.

Reducing variables 1
Let i ∈M, k ∈ Ni and (w, p) ∈ Lik.

If p > z(KSP), then all free variables xij , j ∈ {k +
1, ..., ni}, can be fixed at 0 for the state (w, p).

Indeed, as z(KSP) ≤ z(KSP), when p > z(KSP) we
can stop the exploration of this state because it will not give
a better optimal value for (KSP).

The second method to fix variables uses information pro-
vided by the solution of (LP

(w,p)
i (Ci)) associated to a state

(w, p) ∈ Lik, k ∈ Ni. We use the following rule to fix the
free variables of a state (w, p):

 349

Alg. 2: GreedyKSP

Procedure: GreedyKSP
Input: A problem (KSP)
Output: z

For i from 1 to m do
pi := 0, wi := 0 and ki := 1

end do

STOP:=0
while STOP=0 do

d := argmin{p1, p2, ..., pm}
if kd ≤ nd then

if wd + wdkd
≤ C, then

xdkd
is fixed to 1

pd := pd + pdkd

wd := wd + wdkd

end if
kd := kd + 1

else
STOP:=1

end if
end while

z = min{p1, p2, ..., pm}.

Reducing variables 2
Let i ∈M, k ∈ Ni and (w, p) ∈ Lik.

Let d be the index of the critical variable of (LP
(w,p)
i (Ci)),

i.e.:
d−1∑

j=k+1

wij ≤ Ci − w and

d∑
j=k+1

wij > Ci − w

If for j ∈ {k + 1, ...d− 1, d + 1, ..., ni},⌊
z(LP

(w,p)
i (Ci))−

∣∣∣∣pij − wij .
pid

wid

∣∣∣∣⌋ ≤ z(KSP),

then xij can be fixed to 1 if j < d and to 0 otherwise.

3. Solving the KSP with dynamic programming

In the above section, we can see that the efficiency of
the method will depend of the evaluation of the capacities
(Ci)i∈M and of the lower bounds z(KSP). In this sec-
tion, we will see how these values are calculated and how
dynamic programming described below is used to find an
optimal solution of (KSP).

For simplicity of the notation, z will denoted z(KSP).

3.1. The main procedure DPKSP

Dynamic programming is used to solve all the problems
(KPi(Ci))i∈M. A first lower bound of (KSP), z, is com-
pute with the greedy heuristics GreedyKSP (see Alg. 2).
During the resolution, we try to improve the values of z
and (Ci)i∈M and ,in the end , the last lists (Lini

)i∈M is
used to construct an optimal solution for (KSP).

Alg. 3: DPKSP

Procedure: DPKSP
Input: A problem (KSP)
Output: z(KSP)

Initialisation:
z := z(KSP) := GreedyKSP (KSP)
z(KSP) := z∗(CKSP)
For i from 1 to m do
Li0 := {(0, 0)}

end for
k := 1
(Ci)i∈M := UpdateC(z, (Li0)i∈M)

Dynamic programming:
STOP:=0
while STOP=0 do

STOP:=1
For i from 1 to m do

If(k ≤ ni)
STOP:=0;
Lik := NextList(KPi,Li(k−1))
For each states (w, p) ∈ Lik do

If(z(w, p) ≤ z then
Lik := Lik − {(w, p)}

Else
Try to fix the free variables

end if
end for

end if
end for
z := UpdateZ (z, (Ci)i∈M, (Lik)i∈M)
(Ci)i∈M := UpdateC(z, (Lik)i∈M)
k := k + 1

end while

Finding z∗:
z(KSP) := FindOptimalV alue (z, (Lini)i∈M)

The main procedure, DPKSP, to solve the KSP is given in
Alg. 3. The procedures UpdateZ, UpdateC and FindOpti-
malValue is detailed in the next sub-sections.

3.2. The procedure UpdateC

In this section, we present how the values of (Ci)i∈M are
initialized and update through DPKSP.

For i ∈M, and k ∈ Ni∪{0}, the following linear problem
is associated to a state (w, p) ∈ Lik:

(minWi((w, p), z))



min w +
ni∑

j=k+1

wij .xij

s.t. p +
ni∑

j=k+1

pij .xij ≥ z + 1,

xij ∈ [0, 1] j ∈ {k + 1, ..., ni}.
(3.1)

Let us define:

minCi(Lik, z)) = min
(w,p)∈Lik

{z(minWi((w, p), z))}

 350

Alg. 4: UpdateC

Procedure: UpdateC
Input: z(KSP)

the lists (Lik)i∈M)
Output: the capacities (Ci)i∈M)

For i from 1 to m do
Ci := C −

∑
i′∈M−{i}

minCi′(Li′k, z(KSP)))

end for
(see section 3.2 for details)

.

If we want to improve the current lower bound, z, then we
must have, for i ∈M:∑

j∈Ni

wij .xij ≤ C −
∑

i′∈M−{i}

minCi′(Li′k, z))

with xij ∈ {0, 1}, for j ∈ Ni.

According to this, for i ∈ M, Ci will be initialized with
Ci = C −

∑
i′∈M−{i}

minCi′(Li′0, z)) and at each step k

of DPKSP, we will try to improve the value of Ci with
Ci = C −

∑
i′∈M−{i}

minCi′(Li′k, z))(see Alg. 4).

3.3. The procedure UpdateZ

Instead of updating the lower bound, z, with the heuristics
GreedyKSP, which is time consuming, we use all the lists
(Lik)i∈M at the step k to try to improve more efficiency
this bound.

Indeed, for each states in the list, a local greedy heuristics is
used in order to select a particular state. The selected state
of each list is combined with the others to try to improve z.
The details of the heuristics is given in procedure UpdateZ
(see Alg. 5).

3.4. The procedure FindOptimalValue

In the end of the dynamic programming step, the lists
(Lini

)i∈M, with no dominated states, are acquired. In
this section, we will see how these lists are combined in

O
(

max
i∈M
{Ci}

)
time to find the optimal value of (KSP).

The states (w, p) in a list have been sorted according to
their decreasing value of p. Due to the dominance princi-
ple, they are also sorted according to their decreasing value
of w. Thus, if we want to check if a given bound z ≥ z is
feasible we have to take in each list Lini ,i ∈ M, the state
(wi, pi) which realize:

wi = min {w | p ≥ z, (w, p) ∈ Lini
} (3.2)

If
∑
i∈M

wi ≤ C then we found a better feasible bound for

(KSP), i.e. z′ = min
i∈M
{pi} ≥ z ≥ z. Furthermore, all the

states (w, p) ∈ Lini such that p < pi can be eliminated.

Alg. 5: UpdateZ

Procedure: UpdateZ
Input: z(KSP)

the capacities (Ci)i∈M)
the lists (Lik)i∈M

Output: an update value of z(KSP)

For i ∈M do L′ik = ∅

Greedy like step:
For i form 1 to m do

For (w, p) ∈ Lik do
W := w and P := p
For j from k + 1 to ni do

If P ≥ z(KSP) + 1 then
exit the loop for

end if
If W + wij ≤ Ci then

W := W + wij and P := P + pij

end if
end for
If P ≥ z(KSP) + 1 then
L′ik := L′ik ∪ {(W, P)}

end if
end for

end for

Selected states:
For i from 1 to m do

Choose (Wi, Pi) ∈ L′ik such that
Wi := min

(W,P)∈L′
ik

{W}

end for

Updating z(KSP):
If
∑
i∈M

Wi ≤ C then

z(KSP) := min
i∈M
{Pi}

end if

 351

Alg. 6: FindOptimalValue

Procedure: FindOptimalValue
Input: z(KSP)

the lists (Lini)i∈M
Output: the optimal value z(KSP)

Initialization:
For i from 1 to n do

Let (wi, pi) be the first states in Lini

end do
z := min

i∈M
{pi}

z(KSP) := z(KSP)

Checking feasibility:
While z > z(KSP) do

For i from 1 to n do
Find (wi, pi) ∈ Lini such that
wi := min {w | p ≥ z, (w, p) ∈ Lini

}
end for
If
∑
i∈M

wi ≤ C then

z(KSP) := z
Exit the procedure

Else
For i from 1 to m do
Lini

:= Lini
−{(w, p) ∈ Lini

| p > pi}
end for
z := min

i∈M
max

(w,p)∈Lini

{p | p < z}

end if
end while

Otherwise, if
∑
i∈M

wi > C, all the states (w, p) ∈ Lini

such that p > pi (and so w > wi) can be eliminated as they
will not provide a better solution. Indeed, in this case, we
have the following inequalities for the the optimal value:

z(KSP) < z ≤ pi, i ∈M
. Therefore, we have to decrease the value of the bound z
and checked if this new bound is feasible.

In the procedure FindOptimalValue, the state (wi, pi), i ∈
M, is initialized with the first state in Lini

, and the first
bound to check will be z = min

i∈M
{pi}. Then, the states

(wi, pi), i ∈ M, are updated according to equation (3.2)
and all the states in Lini

with a higher profit p are elimi-
nated. If z is feasible, we find the optimal bound and the
procedure is stopped, otherwise, z is updated to:

z = min
i∈M

max
(w,p)∈Lini

{p | p < z},

and the procedure restart until a better feasible bound is
found or z ≤ z.

Thus, all the lists will be looked through only once. The
algorithm of FindOptimalValue is given in Alg. 6.

4. Computational experiences

The procedure DPKSP has been writen in C and computa-
tional experiences have been carried out using an Intel Core

Table 1: Uncorrelated instances

Group n m Instances 1 ≤ x ≤ 4
Am.x 1000 2 to 50 A02.x, A05.x, A10.x, A20.x,

A30.x, A40.x, A50.x
Bm.x 2500 2 to 50 B02.x, B05.x, B10.x, B20.x,

B30.x, B40.x, B50.x
Cm.x 5000 2 to 50 C02.x, C05.x, C10.x, C20.x,

C30.x, C40.x, C50.x
Dm.x 7500 2 to 50 D02.x, D05.x, D10.x, D20.x,

D30.x, D40.x, D50.x
Em.x 10000 2 to 50 E02.x, E05.x, E10.x, E20.x,

E30.x, E40.x, E50.x
Fm.x 20000 2 to 50 F02.x, F05.x, F10.x, C20.x,

F30.x, F40.x, F50.x

Table 2: Correlated instances

Group n m Instances 1 ≤ x ≤ 4
AmC.x 1000 2 to 10 A02C.x, A05C.x, A10C.x
BmC.x 2500 2 to 10 B02C.x, B05C.x, B10C.x
CmC.x 5000 2 to 10 C02C.x, C05C.x, C10C.x
DmC.x 7500 2 to 10 D02C.x, D05C.x, D10C.x
EmC.x 10000 2 to 10 E02C.x, E05C.x, E10C.x
FmC.x 20000 2 to 10 F02C.x, F05C.x, F10C.x

2 Duo T7500 (2.2 GHz).

We used the set of instances of Hifi (ftp:// cermsem.univ-
paris1.fr / pub / CERMSEM / hifi / KSP) which gives 168
uncorrelated instances and 72 strongly correlated instances
(see [10] for further details). All the optimal values are
known for these instances. They are detailed in tables 1 and
2 where each group of problems contains four instances.

The average processing time on the four instances of each
group of problems is given in tables 3 and 4. These tables
show that DPKSP is able to solve large instances (up to
20000 variables) within reasonable computing time. With
the correlated instances an optimal solution is obtain in less
than 13 minutes and with the uncorrelated instances the
time processing is less than 1.5 minutes.

We can remark, in particular with the first instances Am.x,
Bm.x, Cm.x, and Dm.x, that our method is more efficient
when the number m of classes is low (less than 2 or 5) or
high (over 30). This could be explained as in the first case
we have only 2 or 5 knapsack problems to solve, and in
the second case the capacities (Ci)i∈M and (ni)i∈M de-
crease when m increases and the resulting knapsack prob-
lems (KPi(Ci))i∈M are easier to solve.

If we compare our results with those of Hifi and al. (see
[10] and [11]), it seems that PDKSP gives better results on
the set of problem A, B and C and when the number of
class is low (below 5).

5. Conclusion

In this paper, we have proposed a method to solve the
KSP with dynamic programming and lists. The use of this
method allows us to apply dominance technique and reduc-
ing variables rules in order to improve efficiency.

 352

Table 3: Uncorrelated instances: time processing

Inst. t. (s.) Inst. t. (s.) Inst. t. (s.)
A02.x 0.02 C02.x 0.21 E02.x 3.02
A05.x 0.15 C05.x 1.96 E05.x 5.55
A10.x 0.14 C10.x 4.02 E10.x 15.24
A20.x 0.06 C20.x 4.55 E20.x 18.38
A30.x 0.01 C30.x 2.53 E30.x 13.27
A40.x 0.00 C40.x 0.85 E40.x 13.24
A50.x 0.01 C50.x 0.66 E50.x 15.26
B02.x 0.16 D02.x 0.66 F02.x 3.00
B05.x 0.69 D05.x 4.39 F05.x 35.16
B10.x 1.20 D10.x 6.94 F10.x 46.31
B20.x 0.69 D20.x 10.83 F20.x 68.89
B30.x 0.01 D30.x 8.22 F30.x 67.21
B40.x 0.01 D40.x 7.02 F40.x 78.46
B50.x 0.01 D50.x 4.02 F50.x 78.86

Table 4: Correlated instances: time processing

Inst. t. (s.) Inst. t. (s.) Inst. t. (s.)
A02C.x 1.18 C02C.x 18.48 E02C.x 59.44
A05C.x 1.32 C05C.x 26.25 E05C.x 149.29
A10C.x 1.72 C10C.x 33.28 E10C.x 164.33
B02C.x 9.61 D02C.x 53.40 F02C.x 642.84
B05C.x 10.08 D05C.x 53.61 F05C.x 724.81
B10C.x 9.63 D10C.x 98.14 F10C.x 598.05

The original problem (KSP) is decomposed in a set of
knapsack problems and these problems are solved via dy-
namic programming. Their capacities are initialized with
overestimation values which are updated and decreased
through out the resolution.

Computational experiences show that DPKSP is able to
solve large instances within reasonable computing time.
However, in order to decrease the processing time, it will
be interesting to test different sorting methods of variables
and to improve the computation of the capacities used to
solve the set of knapsack problems.

References

[1] R. Bellman, ”Dynamic Programming”, Princeton Uni-
versity Press, Princeton, NJ, 1957.

[2] V. Boyer, D. El Baz & M. Elkihel, ”A heuris-
tic for the 0-1 multidimensional knapsack pro-
blem”, European Journal of Operational Research, doi
:10.1016/j.ejor.2007.06.068, 2008.

[3] V. Boyer, D. El Baz & M. Elkihel,”An exact cooper-
ative method for solving the 0-1 multi- dimensional
knapsack problem”, MOSIM’08, Vol. 2, pp927-934,
2008.

[4] J.R. Brown, ”Bounded knapsack sharing”, Mathemati-
cal Programming, Vol. 67, pp343-382, 1994.

[5] J.R. Brown, ”Solving knapsack sharing with general
tradeoff functions”, Mathematical Programming, Vol.
51, pp55-73, 1991.

[6] J.R. Brown, ”The knapsack sharing”, Operations Re-
search, Vol. 27, pp341-355, 1979.

[7] D. El Baz & M. Elkihel, ”Load balancing methods and
parallel dynamic programming algorithm using domi-
nance technique applied to the 0-1 knapsack problem”,

Journal of Parallel and Distributed Computing, Vol. 65,
pp74-84, 2005.

[8] G.B. Dantzig, ”Discrete variable extrenum problems”,
Operations Research, Vol. 5, pp266-277, 1957.

[9] P.C. Gilmore & R.E. Gomory, ”The theory and com-
putation of knapsack functions”, Operations Research,
Vol. 13, pp879-919, 1966.

[10] M. Hifi & S. Sadfi, ”The Knapsack Sharing Problem:
An Exact Algorithm”, Journal of Combinatorial Opti-
mization, Vol. 6, pp35-54, 2002.

[11] M. Hifi, H. M’Halla & S. Sadfi, ”An exact algorithm
for the knapsack sharing problem: ”, Computers and
Operations Research, Vol. 32, pp1311-1324, 2005.

[12] T. Kuno, H. Konno &E. Zemel, ”A linear-time algo-
rithm for solving continuous maximin knapsack prob-
lems”, Operations Research Letters, Vol. 10, pp23-26,
1991.

[13] S. Martello & P. Toth, ”Knapsack Problems: Algo-
rithms and Computer Implementation”, John Wiley &
Sons, New York, 1990.

[14] G.L. Nemhauser, L.A. Wolsey, ”Integer and Combi-
natorial Optimization”, Wiley, New York, 1988.

[15] T. Yamada, M. Futakawa & S. Kataoka, ”Some ex-
act algorithms for the knapsack sharing problem”, Eu-
ropean Journal of Operational Research, Vol. 106,
pp177-183, 1998.

[16] T. Yamada & M. Futakawa, ”Heuristic and reduction
algorithms for the knapsack sharing problem”, Com-
puters and Operations Research, Vol. 24, pp961-967,
1997.

 353

