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The flexible flow shop scheduling problem is an NP-hard problem and it requires significant resolution time to find optimal or even
adequate solutions when dealing with large size instances. Thus, this paper proposes a dual island genetic algorithm consisting
of a parallel cellular model and a parallel pseudo-model. This is a two-level parallelization highly consistent with the underlying
architectures and iswell suited for parallelizing inside or betweenGPUs and amulticore CPU.At the higher level, the efficiency of the
island GA is improved by exploring new regions within the search space utilizing different methods. In the meantime, the cellular
model keeps the population diversity by decentralization and the pseudo-model enhances the search ability by the complementary
parent strategy at the lower level. To encourage the information sharing between islands, a penetration inspired migration policy is
designed which sets the topology, the rate, the interval, and the strategy adaptively. Finally, the proposed method is tested on some
large size flexible flow shop scheduling instances in comparison with other parallel algorithms.The computational results show that
it not only can obtain competitive results but also reduces execution time.

1. Introduction

The flexible flow shop (FFS) scheduling problem focuses
on improving machine utilization and reducing makespan.
Some works on solving small size FFS are concerned on
exact methods [1, 2] to find the optimal solution. However,
conventional optimization techniques always fail in industry
application as the problem sizes in the real world are much
bigger and the computational cost is increased. Therefore,
there is a growing interest in developing heuristic methods
to solve large complex FFS problems [3, 4]. Although these
approaches cannot guarantee finding the optimal solution,
there is a sizable probability that an adequate solution is found
in a reasonable time.

The genetic algorithm (GA) is one of the most widely
known heuristic methods and is one of the best approaches
in solving FFS problems. But when GAs are applied to large
or complex problems, there is a conflict between searching
better solutions and decreasing execution time. In contrast to

classical GAs, the island GA [5] divides the population into a
few relatively large subpopulations. Each of them works as an
island and is free to converge towards its own suboptimum.
At some points, a migration operator is utilized to exchange
individuals among islands. This design imitates the nature in
a better way which increases the search diversification [6].
Furthermore, it is one of the most famous models to exploit
parallelism in GAs. Nevertheless, due to the finite island
size and the same genetic operator configuration in each
island, island GAs are apt to yield premature convergence
[7]. Meanwhile, this design has to be carried out with high
respect to the underlying architectures for parallelization
implementations.

With the unprecedented evolution ofGPUs andmulticore
CPUs, almost all modern computers are equipped with
both. Some comparisons between their performances for GA
applications were discussed [8], but the cooperation between
the two in this domain was rarely concerned. These facts
have motivated the design of a heterogeneous island GA
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that keeps better population diversity and is well suited for
parallelization on GPUs and a multicore CPU. In this paper,
we seek to address it and its application to solve large size
FFS problems. Specially, the contributions of our work are
summarized as follows:

(1) Adual heterogeneous islandmodel is proposedwhere
the 2D variable space of the cellular GA and the
complementary parent strategy of the pseudo-GA
keep the population diversity.

(2) A two-level parallelization highly consistent with the
underlying architecture is implemented which is well
suited for parallelizing inside or between GPUs and a
multicore CPU.

(3) A penetration inspired migration policy is designed
so that it can share good individuals effectively by
setting the topology, the rate, the interval and the
strategy adaptively.

The remaining sections of this paper are organized as follows.
Section 2 introduces related works. Section 3 describes the
research problem. Section 4 presents the design of the dual
heterogeneous island GA on hybrid multicore CPU and
GPUplatforms. Section 5displays the numerical experiments
and the analysis of the results. Finally, Section 6 states the
conclusions.

2. Related Works

When the population size is p and there are q islands, only p/q
individuals work with GA operators in one island. Extremely,
each island may have only 2 individuals [9, 10]. The selection
and the elitist strategy in GAs decrease the subpopulation
diversity in one island after several generations. Although the
migration at some points can help to create new individuals,
this influence is restricted. What is worse, an inappropriate
implementation of migration mechanism may cause genetic
drift and leads to converging towards a local optimum. One
approach for dealing with this problem is the heterogeneous
island GA which makes distinction among subpopulations
by different configurations. Herrera et al. [11] presented the
gradual distributed real-coded GA that applied different
crossover operators to different subpopulations. Alba et al.
[12] encompassed the actual parallelization of the gradual
distributed real-coded GA on a cluster of 8 homogeneous
PCs. In [13], Miki et al. designed a parallel GA using nCUBE-
2E where different islands had different parameter settings.
Although these heterogeneous algorithms have improved the
solutions’ quality, their implementations are usually executed
on homogeneous architectures or even on a monoprocessor.
In these cases, different islands can work in parallel but GA
operations inside one island are executed in a sequential
way. In addition to proposed heterogeneous island GAs,
some works were carried out to evaluate the performance
of heterogeneous computing architectures for island GAs. In
[14], a homogenous island GA was run at the same time
on different types of machines which obtained superlinear
speedup. Garcı́a-Sánchez et al. [15] studied benefits from

setting the subpopulation sizes according to each hetero-
geneous node’s computational power. Garcı́a-Valdez et al.
[16] tested the randomized parameter setting strategy for
heterogeneous workers in pool-based GAs. Despite promis-
ing results from leveraging computational capabilities of
a heterogeneous cluster, these methods must face some
common challenges such as lost connections, low bandwidth,
abandoned work, security, and privacy. Moreover, the above-
mentioned designs generally are hard to profit the compu-
tation capability from GPUs or heterogeneous environment
mixed with multicore processors and many-core processors.

In the last decade, Graphics Processing Units (GPUs)
have gained widespread popularity as computing accelera-
tors for computational intelligence. Langdon [17] surveyed
genetic programming use with GPU and showed the fastest
genetic programming is based on an interpreter rather than
compilation. Krömer et al. [18] provided a brief overview
of the latest research on the design, implementation, and
applications of parallel nature-inspired metaheuristics-based
methods on the GPUs. In [19], a systolic genetic search was
designed to explicitly exploit the high degree of parallelism
available in GPU architectures while a cellular evolutionary
algorithm framework implemented on GPUs [20] was pre-
sented by Soca et al. Since the cooperation between GPUs
and a multicore CPU is stable and secure, some efforts
have considered to utilize both and enjoy their compute
capabilities maximally. Dabah et al. [21] proposed 5 acceler-
ated branch and bound algorithms for solving the blocking
job shop scheduling problem where two of them presented
hybridization between the multicore CPU approach and
the GPUs-based parallelization approach. Benner et al. [22]
discussed a hybrid Lyapunov solver where the intensive
parts of the computation were accelerated using GPUs while
executing the remaining operations on a multicore CPU.
In [23], Bilel et al. introduced a CPU-GPU cosimulation
framework where synchronization and experiment design
were performed on CPU and node’s processes were executed
in parallel onGPUs.These studies have confirmed the interest
to design a scheme that exploits GPUs and a multicore CPU
in efficient ways. However, simultaneous parallelization on
two sides and its implementation for island GAs are not yet
concerned.

Several researches have tried island GAs to solve shop
scheduling problems. On one hand, some works consider
the improvement for solutions’ quality. Kurdi [24] studied an
island GA to solve job shop scheduling problems where three
islands worked with different mutation operators and worst
individuals adapting to their environment migrated first. In
[25], Defersha et al. considered an island GA with a k-way
tournament selection, five kinds of crossover, and six kinds
of mutation applied by different probabilities for a flexible job
shop scheduling problem with lot streaming. On the other
hand, the rest applications imposed parallelization to island
GAs and analyzed the speedup. Zajicek et al. [26] proposed
an accelerated island GA for solving a flow shop scheduling
where all computations were carried out on GPUs. Huang
et al. discussed a flow shop scheduling problem with fuzzy
processing times and fuzzy due dates in [27] and its imple-
mentation onCUDA. But none of themhave so far, to the best
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Figure 1: A flexible flow shop layout.

of our knowledge, tried to solve shop scheduling problems
by heterogeneous island GAs parallelized on GPUs and a
multicore CPU. All the above-mentioned efforts provide us
with a starting point for designing a dual heterogeneous
island GA that keeps a better population diversity and that is
well suited for parallelization on hybrid multicore CPU and
GPU platforms. This implementation will help to find a good
solution for large size FFS problems in the real world within
a short response time.

3. Problem Definition

The FFS is a multistage production process as illustrated in
Figure 1. An instance of the FFS problem considers a set of J
jobs (1 ≤ j ≤ J). Each of them consists of a set of S stages
(2 ≤ s ≤ S). At every stage, there is a set of Ms machines
(1 ≤ m ≤ Ms) and at least one stage has more than one
machine. All jobs need to go through all stages in the same
order and only one machine is selected for processing on
each stage. There is no precedence between operations of
different jobs, but there is precedence among operations due
to the jobs’ processing cycles. Preemptive operations are not
allowed. A feasible solution is described by jobs’ sequence on
target machines Mjs. The processing time of job j at stage s
on machine m is abbreviated as Pjsm. Usually, it is known
with the release time Rj and the due time Dj. The objective
function to minimize the total tardiness and the makespan
is represented by WT ∗ ∑Tj + Cmax using the classification
scheme of Bruzzone et al. [28], where WT indicates the
priority of the first objective. As a minimization problem,
the fitness function of an individual is transferred from the
objective function by max(Emax − (WT ∗ ∑Tj + Cmax, 0),
where Emax is the estimated maximum value of the objective
function. The FFS problem is NP-hard in essence [29]. When
dealing with large size instances, it requires huge resolution
time to find optimal or even adequate solutions.

4. Dual Heterogeneous Island
Genetic Algorithm on Hybrid Multicore
CPU and GPU Platforms

4.1. Dual Heterogeneous Island Strategy. The general frame-
work of the proposed dual heterogeneous island strategy is
shown in Figure 2. There is the same number of individuals

on each island where island Aworks with the cellular GA [30]
and island B works with the pseudo-GA [31]. As two islands
are exploring new regions within the search space utilizing
different methods, it helps enlarge the scope of the search
process and increase the chances of avoiding premature con-
vergence. Moreover, individuals from heterogeneous islands
have obtained different characters during the independent
evolution procedure. In this case, the benefit of migration is
increased. At the software level, three sublevels are considered
according to the source of the heterogeneity:

(i) Genotype level: as a feasible solution is described by
jobs’ sequence on target machines, the chromosome
is displayed by a string of length J × S and is indexed
from 0 to J×S−1.The i-th gene states the index of the
target machine for job ⌊i/S⌋ + 1 at stage {i/S} + 1 and
each gene has two layers. The upper layer is designed
for the cellular GA where the i-th gene is presented
by an integer number. At the lower layer, the i-th
gene is expressed by binary numbers to work with the
complementary parent strategy of the pseudo-GA.

(ii) Operator level: the cellular GA starts with random
initialization and maps individuals on a 2D grid. An
individual is limited to communicate with individuals
from the nearby area and use them for crossover
and mutation. The neighborhoods overlapping
makes good solutions disseminate through the entire
population. This design allows a better exploration of
the search space with respect to decentralization. The
pseudo-GA has a similar process with the standard
GA, but implements no selection and no mutation.
The dynamic complementary strategy [31] initializes
all bits of one parent randomly with a binary value
of either 0 or 1. Meanwhile, the bit located at the
same position of the other parent is assigned with
the opposite binary value. The crossover is executed
between the fixed pair of individuals to make their
offspring always complementary to each other.
In this case, the search ability is enhanced since
higher population diversity is got without gene loss
and the maximum Hamming distance is kept all
long.

(iii) Parameter level: the execution of the crossover
operator and the mutation operator are determined
by the crossover rate and the mutation rate. Their
values for the cellular GA and the pseudo-GA on
different islands are set differently.

4.2. Parallelization on Hybrid Multicore CPU and GPU Plat-
forms. As far as the hardware level is concerned, there are
two obvious advantages to parallelize the dual heterogeneous
island GA on hybrid multicore CPU and GPU platforms:

(i) Widespread HPC resources: nowadays, almost all
modern computers are equipped with GPUs and
a multicore CPU. The cooperation between them
is through their inner connections which is stable
and secure. With the development of CUDA [32],
it is convenient to use enabled GPUs for general
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Figure 2: The general framework of the dual heterogeneous island GA.

purpose processing. On the other hand, concurrency
platforms allowing the coordination of multicore
resources facilitate programming onmulticore CPUs.
Moreover, in addition to the parallelization on GPUs
or on a multicore CPU at the lower level, the GPUs
and the multicore CPU can work concurrently at the
higher level to maximally use computing resources.

(ii) High consistency with the proposed GA: the cellular
GAmaps individuals on a 2D grid and GA operations

are designedwith respect to this structure.TheCUDA
threads are grouped into 2D blocks that are organized
in a 2D grid [33].Thus, the cellular GA can be entirely
parallelized on GPUs with the absolutely matching
architectures. On the other hand, only the crossover,
the fitness evaluation, and the replacement are kept in
the pseudo-GA. The crossover is performed between
fixed complementary parents. The fitness evaluations
of individuals are independent. Since no global infor-
mation is required, all four loops in the above two
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steps can be easily handled on a multicore CPU in
parallel.

There are four types of memory in CUDA and their hierarchy
is shown in Figure 3. Each CUDA thread handles one cellule
of the cellular GA with GA operators on the 2D grid as
illustrated in Figure 4. As the texture memory of CUDA is
designed to gain an increase in performance for accelerating
access patterns with spatial locality [34], we design the
neighborhood area of the cellular GA as to be surrounded by
the dashed lines in Figure 4. Firstly, the algorithm recombines
two individuals selected from the nearby area to generate
a new one. Afterwards, this new individual undertakes the
mutation and replaces the original individual if its solution
is better. Then, all individuals are sorted according to their

fitness values using the Bitonic-Merge sort [35], if the cellular
GA meets the island termination criterion but not the final
termination criterion. During the full procedure, individu-
als’ information is placed in the global memory while the
neighbors’ information is stored in the texture memory. The
selection, the crossover, the replacement, and the Bitonic-
Merge sort are executed through the global memory while
the fitness evaluation and the mutation are handled via the
local memory.

When the GPUs are occupied by executing the cellu-
lar GA, the pseudo-GA is run on a multicore CPU by
OpenMP [36] which is an API supporting multiplatform
shared memory multiprocessing programming. In this case,
the GA operators on two heterogeneous islands are working
in parallel on the host (a multicore CPU) and the device
(GPUs) simultaneously. At the end, the Bitonic-Merge sort
[35] is accomplished by the OpenMP-based code in a similar
way as the cellular GA on CUDA.

4.3. Migration Policy. The migration between islands is con-
trolled by the topology, the rate, the interval, and the strategy.
To decrease the number of parameters that need to be set
manually, we develop a migration policy inspired by the
penetration theory [37] where a migration threshold value 𝜃
is set (0 ≤ 𝜃 ≤ 1). The execution of migration is decided by
this value and there is more likely for individuals to migrate
when 𝜃 = 1.Moreover, themigration rate𝛼 and themigration
direction indicator 𝛽 are formulated as in

𝛼 =
{
{
{

1 − 𝛽 1 − 𝛽 < 𝜃

0 1 − 𝛽 ≥ 𝜃
(1)
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Table 1: The experimental relative data of the large FFS problem.

WT 100
Pjsm U[1, 5]
Rj U[0,P], where P = ∑j ∑s(∑m Pjsm/Ms)
Dj Rj + Pj(1 + 𝜎), where 𝜎 = U[0, 2] and Pj = ∑s(∑m Pjsm/Ms)

Table 2: Wilcoxon signed ranks test results.

Comparison Generations Job number = 100 Job number = 200 Job number = 300
R+ R− p-value R+ R− p-value R+ R− p-value

heterogeneous GA
versus
cellular GA

500 0.00 1275.00 0.000 0.00 1275.00 0.000 0.00 1275.00 0.000
1000 1103.00 172.00 0.000 1051.00 224.00 0.000 728.00 574.00 0.382
1500 1257.00 18.00 0.000 1272.00 3.00 0.000 1275.00 0.00 0.000
2000 1263.00 12.00 0.000 1275.00 0.00 0.000 1275.00 0.00 0.000

heterogeneous GA
versus
pseudo GA

500 1275.00 0.00 0.000 1275.00 0.00 0.000 1275.00 0.00 0.000
1000 1275.00 0.00 0.000 1275.00 0.00 0.000 1275.00 0.00 0.000
1500 1275.00 0.00 0.000 1275.00 0.00 0.000 1275.00 0.00 0.000
2000 1088.00 187.00 0.000 1274.00 1.00 0.000 1275.00 0.00 0.000

𝛽 =
{{{
{{{
{

fitA
fitB

fitA < fitB
fitB
fitA

fitA > fitB
(2)

Here, fitA and fitB are the best individual’s fitness value of
subpopulation A on island A and subpopulation B on island
B. In a certain generation, we calculate the above functions
and carry out three steps as follows:

(i) If 1 − 𝛽 < 𝜃, the migration is executed. Otherwise, do
nothing.

(ii) The topology of migration is determined by the ratio
of fitA to fitB. If fitA/fitB > 1, the migration is from
subpopulation A to subpopulation B. If fitA/fitB < 1,
the migration direction is reversed. If fitA/fitB = 1, no
migration is implemented.

(iii) When the migration is carried, 𝛼× p individuals with
best fitness values in the emigrant subpopulation are
selected to replace 𝛼×p individuals with worst fitness
values in the immigrant subpopulation.

The migration policy is executed by the CPU where results
of the cellular GA on GPUs are sent back to the CPU at
this moment. With this design, the topology, the rate, the
interval, and the strategy no longer need to be considered
manually. New merged individuals with good genes can
be transited quickly and the execution time is saved by
preventing ineffective information sharing.

5. Numerical Experiments

To analyze the performance of the proposed algorithm,
we compare its solutions’ quality and execution time with
the parallel cellular GA and the parallel pseudo-GA. The
population size is kept as 512 for all tested GAs while the
subpopulation size for each island of the heterogeneous GA

is 256.The crossover rate and themutation rate of the cellular
GA are set as 1.00 and 0.05, respectively [30], while the
crossover rate of the pseudo-GA is equal to 0.75 [31]. The
cellular GA from the dual heterogeneous GA keeps the same
crossover rate and mutation rate as the cellular GA. Similarly,
the pseudo-GA from the dual heterogeneous GA keeps the
same crossover rate as the pseudo-GA. Moreover, to better
check the influence of the migration, the migration threshold
is fixed as 1.00. As large size FFS problems are concerned
in this paper, the analyzed instances are characterized by
300 jobs with 4 stages and there are 2 available machines at
each stage. Other experimental relative data are defined in
Table 1. All parameters settings will be employed throughout
the study, unless a particular case is stated explicitly.

The experimental platform is based on the Intel Xeon
E5640 CPU with 2.67GHz clock speed and four cores. The
GPU code implementation is carried out using CUDA 8.0 on
NVIDIA Tesla K40, with 2880 cores at 0.745 GHz and 12 GB
GDDR5 globalmemory. All programs arewritten inC, except
for the GPU kernels in CUDA C. Tables 2–4 and Figures 5–9
display results of 2000 generations and they are average values
of 50 runs.

5.1. Test on the Migration Policy Execution Gap. Even the
topology, the rate, the interval, and the strategy are set
adaptively when the migration policy is carried in a certain
generation. We still need to test when to execute it since
the migration policy needs call back results on GPUs and
too frequent data exchange between the device and the host
may weaken the performance of the proposed method. As
it is displayed in Figure 5, the migration policy execution
gap is increased from 10 generations to 800 generations
and the island GA has a risk to fall in a local optimum
if this value is either too small or too big. As a result,
it finds that an inappropriate migration can also lead to
the premature convergence, besides homogeneous genetic
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Table 4: Solutions comparison among different GAs with different settings of island size.

Island amount
(Island size)

Generations=500 Generations=1000 Generations=1500 Generations=2000
Avg. Best Avg. Best Avg. Best Avg. Best

Island cellular
GA

2 (256) 332343.94 328144.34 332343.94 328144.34 332343.94 328144.34 332343.94 328144.34
8 (64) 350598.23 346120.12 344591.80 339518.22 340262.62 333733.62 336830.04 332179.34
32 (16) 363540.32 360575.00 359771.15 359697.66 356632.84 352502.31 354473.03 351107.38

Island pseudo
GA
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32 (16) 360301.02 357540.59 357444.52 354706.56 355326.44 352325.09 353490.46 348249.91

Heterogeneous
GA 2 (256) 333811.44 328588.75 320091.08 315801.28 312876.46 309713.34 309885.90 306500.03

Va
lu

es
 o

f t
he

 O
bj

ec
tiv

e F
un

ct
io

n

Migration Policy Execution Gap (Generations)

317000

316000

315000

314000

313000

312000

311000

310000

309000

0 100 200 300 400 500 600 700 800

Actual Values
Polynomial Fitting Values

Figure 5:The influence of the migration policy execution gap for the heterogeneous GA.

operator configurations and limited subpopulation sizes.
Following the polynomial fitting values, the best performance
for the tested instance is obtained when the migration policy
execution gap is around 500 generations and we keep this
setting for the remaining tests in this paper.

5.2. Comparison Test on the Solutions’ Quality with Different
Size Problems. The convergence trends of different GAs with
different size problems are illustrated in Figures 6, 7, and 8,
respectively. Although the specific designs of the cellular GA
and the pseudo-GA can help increase population diversity,
each one has a significant shortage. As shown in Figures 6–8,
the objective function value of the cellularGAdecreases faster
than other two methods at the beginning while it is stuck in a
local optimum after several generations. The solution quality
of the pseudo-GA is better than the cellular GA at the end
of the evolution, but its convergence speed is much slower.
The proposed design combines the merits from the cellular
GA and the pseudo-GA while eliminating their shortages by
the independent evolution and the penetration migration. It

is easy to find elbows in the convergence curve of the hetero-
geneous GA and they always appear around the generations
where the migration policy is executed. This phenomenon
witnesses the process of how the premature convergence is
avoided thanks to two heterogeneous islands are connected
by the penetrationmigration.Thus, the proposed design has a
larger chance than the cellular GA to find the global optimum
while it converges faster than the pseudo-GA. Moreover, this
advantage is even more distinguished when this method is
taken to solve larger size problems.

To confirm the conclusion that we have got from the
convergence trend among differentGAs, theWilcoxon signed
ranks test [38] is taken for characterizing the behavior of the
heterogeneous GA, in 1x1 comparisons with the cellular GA
and the pseudo-GA considering different size problems. In
this test, the difference between the performance scores of
the two algorithms on n instances is recorded.The differences
are ranked according to their absolute values. Let R+ be the
sum of ranks for the instances in which the first algorithm
outperforms the second and R− the sum of ranks for the
opposite. T is set to be the smallest of the sums, T =
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Figure 6: The convergence trend among different GAs (job number = 100).
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Figure 7:The convergence trend among different GAs (job number = 200).

min(R+,R−). If T is less than or equal to the value of
the distribution of Wilcoxon for n degrees of freedom, it
means a given algorithm outperforms the other one, with
the p value associated. Table 2 shows the R+, R−, and p
values computed for all the pairwise comparisons concerning
the heterogeneous GA. All values have been computed by
SPSS [39]. As the table states, the heterogeneous GA shows
a significant improvement over the cellular GA and the

pseudo-GA starting from 1500 generations for three different
size problems with a level of significance equals to 0.01. On
the other hand, the cellular GA is better at finding good
solutions at the beginning stages but the R− values keep
decreasing when the generations are increasing. The pseudo-
GA performs worse than the heterogeneous GA in most of
the cases while the R− values become increased at the end of
the evolution.



10 Mathematical Problems in Engineering

Va
lu

es
 o

f t
he

 O
bj

ec
tiv

e F
un

ct
io

n

380000

370000

360000

350000

340000

330000

320000

310000

300000

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

Heterogeneous GA
Cellular GA
Pseudo GA

Generations

Figure 8: The convergence trend among different GAs (job number = 300).
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5.3. Comparison Test on the Solutions’ Quality with Different
Parameters. Considering the existing experiences, the most
appropriate crossover rate ranges between 0.75 and 0.9
[40] and the mutation rate should be much lower than

the crossover rate [41]. Therefore, we firstly compare the
efficiency of the heterogeneous GA with the cellular GA
and the pseudo-GA by three groups of crossover rates and
three groups of mutation rates as shown in Table 3. The
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results state that the crossover rate and the mutation rate do
have some impact on the algorithm performance. However,
the influence is limited. Besides, the heterogeneous GA can
always find better solutions with the average value and the
best value than other two GAs after 500 generations.

As a next step, we try to divide the population of
the cellular GA and the pseudo-GA into a few relatively
large subpopulations and check their performance as island
cellular GAs and island pseudo-GAs with the heterogeneous
model. In this case, each island works independently as the
regular cellular GA or the regular pseudo-GA. Islands are
interconnected with a single ring. An island can accept an
individual with the best fitness value from the neighbor
to overwrite the one with the worst fitness value as the
migration. The migration interval is kept as 500 generations
as the heterogeneous GA. As the results displayed in Table 4,
the heterogeneous GA overcomes both island cellular GAs
and island pseudo-GAs after 500 generations. Moreover, it
verifies one phenomenon that the finite island size and the
same genetic operator configuration in each island maymake
island GAs be apt to yield premature convergence.

5.4. Comparison Test on the Execution Time. To check the
execution time among these parallel GAs, we consider dif-
ferent population sizes from 512 to 4096. The cellular GA
is fully carried on GPUs. The pseudo-GA is generated on a
four-core CPU with or without SIMD vectorization. The two
islands of the heterogeneousGA are generated onGPUs and a
CPU simultaneously. Similarly, the pseudo-GA from the dual
heterogeneous GA is parallelized on the four-core CPU with
or without SIMD vectorization. The SIMD vectorization is
executed via SSE2 [42], as far as this experiment platform is
available. Concerning results in Figure 9, the heterogeneous
GA on the hybrid platform takes less execution time than
the pseudo-GA on a 4-core CPU as the heterogeneous
design can be well parallelized on both sides simultaneously.
However, it loses to the cellular GA because the number of
individuals executed on GPUs and the threads occupancy
is twice as much as the heterogeneous GA on the hybrid
platform. Fortunately, the performance of the heterogeneous
structure gets improved significantly when the computation
capability on the four-core CPU is enhanced by the SIMD
vectorization. It points out the importance of computation
capability balance between the host and the device when
the proposed approach is implemented where the weak
side may become as a bottleneck and reduces the overall
effectiveness. Finally, because the pseudo-GA only deals with
binary integers whose storage size is small, the contribution
of the SIMD vectorization is impressive and the pseudo-GA
on a four-core CPU with vectorization overcomes the others.

6. Conclusions and Future Works

A dual heterogeneous island GA was proposed in this paper.
It was composed of a cellular GA on GPUs and a pseudo-
GA on a multicore CPU where the 2D variable space of the
cellular GA and the complementary parent strategy of the
pseudo-GA kept the population diversity. This structure was

highly consistent with the underlying architecture which can
be fully parallelized inside or between GPUs and a multicore
CPU. Since the two islands evolved independently in different
ways, a penetration inspired migration was designed to
share information between them and to decrease the risk
of premature convergence. For solving some large instances
of the FFS problem, it firstly found out the importance of
an appropriate migration implementation. Otherwise, the
migration could cause genetic drift and lead to a convergence
towards a local optimum. The second test showed the pro-
posed method obtained better solutions with different size
problems because of the merits from two different islands
and confirmed the efficiency of the penetration migration.
The third test further checks its efficiency by comparing the
results with the cellular GA and the pseudo-GA who both
have tuned parameters. Finally, the effectiveness of the dual
heterogeneous island GA was displayed by comparison tests
with other parallel methods and pointed that the balance of
computation capability between the host and the device had
a great influence on its overall performance.

Threemain areas that deserve further study are identified.
The first issue is to automatically decide the island size on two
platforms according to the computation capability of GPUs
and a multicore CPU. A second line of interest is to analyze
the impact of the migration policy execution gap when it is
carried out asynchronously and compare its influence with
the current synchronous design. As multi-GPU systems and
multi-CPU systems have becomemore andmore common in
recent years, finally we would like to test multi-island cellular
GAs and multi-island pseudo-GAs on a multi-GPU system
and a multi-CPU system with a modified migration policy.
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