
7
eConférence Francophone de MOdélisation et SIMulation - MOSIM’08 - du 31 mars au 2 avril 2008 - Paris - France

«Modélisation, Optimisation et Simulation des Systèmes : Communication, Coopération et Coordination»

AN EXACT COOPERATIVE METHOD FOR SOLVING THE 0-1

MULTIDIMENSIONAL KNAPSACK PROBLEM

V. BOYER, Didier EL BAZ, Moussa ELKIHEL

LAAS-CNRS, Université de Toulouse, 7, Avenue du Colonel Roche - 31077 Toulouse Cedex 4

vboyer@laas.fr, elbaz@laas.fr, elkihel@laas.fr

ABSTRACT: This article presents an exact cooperative method for solving the Multidimensional Knapsack
Problem (MKP) which combines dynamic programming and branch and bound. The first step of our algorithm
tries to find out a good feasible solution of the (MKP) using surrogate relaxation. For this purpose, we
have developed a modified dynamic programming algorithm. The second step is based on a branch and bound
procedure. Our algorithm was tested for several randomly generated test sets and problems in the literature.
Solutions obtained with the first step are compared with results provided by other existing heuristics, finally our
method is compared with a branch and bound algorithm.

KEY WORDS: Multidimensional Knapsack Problems, Dynamic Programming, Branch and Bound,
Surrogate Relaxation, Cooperative Method.

1. INTRODUCTION

The NP-hard multidimensional knapsack problem
(MKP) arises in several practical contexts such
as the capital budgeting, cargo loading, cutting
stock problems and processors allocation in huge dis-
tributed systems.

A multidimensional knapsack is defined by its capaci-
ties (c1, ..., cm), m ∈ N, and n items have to be placed
in. To an item j ∈ N = {1, 2, ..., n}, the following
variables and vectors are associated:

• the decision variable xj ∈ {0, 1} (xj = 1 if the
item j is placed in the knapsack, and xj = 0
otherwise),

• the profit pj ≥ 0 and

• the weights wi,j ≥ 0, i ∈ M = {1, ..., m}.

Then, the multidimensional knapsack problem can be
written as follows:

(MKP)





max
∑

j∈N

pj.xj ,

s.t.
∑

j∈N

wi,j .xj ≤ ci, ∀i ∈ M,

xj ∈ {0, 1}, ∀j ∈ N.

(1)

In the sequel, we shall use the following notation:
given a problem (P), its optimal value will be denoted

by v(P). v(P) and v(P) will represent, respectively,
the value of an upper and a lower bound for v(P).

To avoid any trivial solutions, we assume that:

• ∀j ∈ N and ∀ i ∈ M, wi,j ≤ ci.

• ∀i ∈ M,

n∑

j=1

wi,j > ci.

A special case of (MKP) is the classical knapsack
problem (with m=1). The Knapsack Problem (KP)
has been given a lot of attention in the literature
though it is not, in fact, as difficult as (MKP), more
precisely, it can be solved in a pseudo-polynomial
time (see (Kellerer & al. 2004) and (Plateau &
Elkihel 1985)). Due to the intrinsic difficulty that is
NP-hardness of (MKP), we have tried to transform
the original (MKP) into a (KP) (see also (Gavish
& Pirkul 1985) and (Glover 1968)). To this purpose,
we have used a relaxation technique, that is to say,
surrogate relaxation.

In the sequel, we propose an efficient algorithm based
on dynamic programming in order to find out a good
lower bound of (MKP) by solving a surrogate relax-
ation, and we show how to complete this heuristics
with a branch and bound procedure in order to con-
struct an exact method for solving (MKP).

The main steps of our algorithm can be presented as
follows:

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

Figure 1. Computational scheme.

Section 2 deals with the construction of the surro-
gate constraint. In Section 3, we present the hybrid
dynamic programming algorithm (HDP). Section 4
deals with the the exact cooperative method. Finally,
in section 5, we display and analyze some computa-
tional results obtained for different problems from the
literature and randomly generated problems.

2. THE SURROGATE RELAXATION

The surrogate relaxation of (MKP) can be defined
as follows:

(S(u))





max
∑

j∈N

pj.xj ,

s.t.
∑

i∈M

ui.
∑

j∈N

wi,j .xj ≤
∑

i∈M

ui.ci,

xj ∈ {0, 1}, ∀j ∈ N,

(2)

where uT = (u1, ..., um) ≥ 0.

Since (S(u)) is a relaxation of (MKP), we have
v(S(u)) ≥ v(MKP), and the optimal multiplier vec-
tor, u∗, is defined by:

v(S(u∗)) = min
u≥0

{v(S(u))}. (3)

Since solving (3) is a NP hard problem, several
heuristics have been proposed in order to find good
surrogate multipliers (see in particular (Freville &
Plateau 1993), (Gavish & Pirkul 1985) and (Glover
1968)). In practice, it is not important to obtain the
optimal multiplier vector, since in the general case we
have no guarantee that v(S(u∗)) = v(MKP). A rea-
sonable estimation can be computed by dropping the
integrality restrictions in x. In other words, let

(LS(u))





max
∑

j∈N

pj .xj ,

s.t.
∑

i∈M

ui

∑

j∈N

wi,j .xj ≤
∑

i∈M

ui.ci,

xj ∈ [0, 1], ∀j ∈ N.

(4)

be the continuous surrogate relaxation.

The optimal continuous surrogate multipliers are de-
rived from u0, where:

v(LS(u0)) = min
u≥0

v(LS(u)). (5)

In order to compute u0, we consider the linear pro-
graming problem (LP) corresponding to (MKP):

(LP)





max
∑

j∈N

pj .xj ,

s.t.
∑

j∈N

wi,j .xj ≤ ci, ∀i ∈ M,

xj ∈ [0, 1], ∀j ∈ N.

(6)

We denote by λ0 = (λ0
1, λ

0
2, ..., λ

0
m) ≥ 0 the dual opti-

mal variables associated with the constraints

∑

j∈N

wi,j .xj ≤ ci, i ∈ M. (7)

Then, the optimal continuous surrogate multipliers
can be obtained as follows using the equation (5) (see
(Garfinkel & Nemhauser 1972) p. 132).

Theorem: The optimal continuous surrogate multi-
plier vector is generated by u0 = λ0.

Then we have the following order relation v(LP) =
v(LS(u0)) ≥ v(S(u∗)) ≥ v(MKP) (see (Gavish &
Pirkul 1985), (Garfinkel & Nemhauser 1972) p. 130
and (Osario & al. 2002)).

The reader is referred to (Boyer 2004), (Boyer &
al. 2006) and (Boyer & al. 2007) for computational
studies related to bounds obtained with surrogate re-
laxation.

3. HYBRID DYNAMIC PROGRAMMING
(HDP)

For simplicity of presentation, we will denote in the

sequel
∑

i∈M

ui.wi,j by wj and
∑

i∈M

ui.ci by c. Then we

have:

(S(u))





max
∑

j∈N

pj .xj ,

s.t.
∑

j∈N

wj .xj ≤ c,

xj ∈ {0, 1}, ∀j ∈ N.

(8)

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

We apply the dynamic programming algorithm to
(S(u0)) and we keep only the feasible solutions of
(MKP). At each steps, k ∈ N, we update a list
which is defined as follows:

Lk =



(w, p) | w =

k∑

j=1

wj .xj ≤ c, p =
k∑

j=1

pj .xj



 (9)

The use of the concept of dominated states permits
one to reduce drastically the size of lists Lk since dom-
inated states can be eliminated from the list:

Dominated state: Let (w, p) be a couple of weight
and profit, i.e. a state of the problem. If ∃(w′, p′)
such that w′ ≤ w and p′ ≥ p, then (w, p) is
dominated by (w′, p′).

Note that dominated states are saved in a secondary
list denoted by Lsec since they can give rise to an
optimal solution for (MKP). The states are sorted
in Lsec according to their associated upper bound.

Let (w, p) be the state generated at stage k, we define
the sub-problem associated with (w, p) by:

(S(u))(w,p)





max

n∑

j=k+1

pj .xj + p,

s.t.

n∑

j=k+1

wj .xj ≤ c − w,

xj ∈ {0, 1}, j ∈ {k + 1, ..., n}.

(10)

Given a state (w, p), an upper bound, v(w,p), is ob-
tained by solving the linear relaxation of (S(u))(w,p),
i.e. (LS(u))(w,p), with the Martello And Toth al-
gorithm (see (Martello & Toth 1990)) and a lower
bound, v(w,p), is obtained with a greedy algorithm on
(S(u))(w,p).

In a list, all the states are ordered according to their
decreasing upper bound. As mentioned above, our
algorithm consists in applying dynamic programming
(DP) to S(u0). At each stage of dynamic program-
ming, we check the following points at the creation of
a new state (w, p):

• Is the state feasible for (MKP) (this will permit
one to eliminate the unfeasible solutions)? Then,
we try to improve the lower bound of (MKP),
v(MKP), with the value of p.

• Is the state dominated? In this case the state is
saved in the secondary list Lsec.

• Is the upper bound of the state (w, p) smaller
than the current lower bound of S(u0)? Then
the state is saved too in the secondary list Lsec.

For each state (w, p) which has not been eliminated or
saved in the secondary list after these tests, we try to
improve the lower bound of (S(u0)), i.e. v(S(u0)), by
computing a lower bound of the state with a greedy
algorithm.

Dynamic programming algorithm is described below:

Dynamic Programming Algorithm (DP):

Initialisation:

L0 = {(0, 0)}, Lsec = ∅

v(S(u0)) = v(MKP) (where v(MKP) is a lower
bound of (MKP) given by a greedy algorithm)

Computing the lists:

For j:=1 to n

L′
j−1:={(w + wj , p + pj) | (w, p) ∈ Lj−1};

Remove all states (w, p) ∈ L′
j−1 which are unfeasi-

ble for (MKP);
Lj:=MergeLists(Lj−1, L′

j−1);

For each state (w, p) ∈ Lj

Compute v(w,p) and v(w,p);
End For;

Updating the bounds:
pmax:=max {p | (w, p) ∈ Lj} and
vmax:=max {v(w,p) | (w, p) ∈ Lj};
v(MKP):=max {v(MKP), pmax};
v(S(u0)):=max {v(S(u0)), vmax};

Updating Lsec:
D:={(w, p) ∈ Lj | (w, p) is dominated or v(w,p) ≤

v(S(u0))};
Lsec:=Lsec ∪ D and Lj:=Lj −D;

End for.

At the end of the algorithm, we obtain a lower bound
of (MKP), i.e. v(MKP). In order to improve this
lower bound and the efficiency of DP algorithm, we
add to the algorithm a reducing variable process,
which is defined as follow:

Reducing variables rule 1: Let v be a lower
bound of (MKP) and v0

j , v1
j , respectively, be the

upper bounds of (MKP) with xj = 0, xj = 1,

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

respectively. If v > vk
j with k = 0 or 1, then we

can definitively fix xj = 1 − k.

The upper bounds, v0
j and v1

j , j ∈ N , are obtained

via the Martello and Toth algorithm on (S(u0)). We
use this reducing variables rule whenever we improve
v(MKP) during the Dynamic Programming Phase.
When a variable is fixed, we have to update all the
states of the active list and to eliminate all the states
which do not match the fixed variables or which be-
come unfeasible.

We present now a procedure that allows us to im-
prove significantly the lower bound given by DP al-
gorithm. More precisely, we try to obtain better lower
bounds for the states saved in the secondary list. Be-
fore calculating these bounds, we eliminate all the
states that have become unfeasible or which are in-
compatible with the variables that have been yet re-
duced or that have an upper bound smaller than the
current lower bound of (MKP), i.e. v(MKP).

For a state (w, p), let J be the index of free variables.
If the states has been generated at the k-th stage of

DP Algorithm, J = {k + 1, ..., n}, w =

k∑

j=1

wj .xj and

p =
k∑

j=1

pj.xj . Then we defined the new subproblem:

(MKP)(w,p)





max
∑

j∈J

pj.xj + p,

s.t.
∑

j∈J

wi,j .xj ≤ ci, ∀i ∈ M,

xj ∈ {0, 1}, ∀j ∈ J,

(11)

where ci = ci −
k∑

j=1

wi,j .xj , ∀i ∈ M .

Two methods are used in order to evaluate the lower
bound of a state using the subproblem defined above
according to the reduced variables:

• a greedy algorithm;

• an enumerative method when the number n′ =
n−k of variables of the subproblem is sufficiently
small (given by the parameter α: n′ ≤ α).

When all the states are treated the process stops. The
detail of the algorithm is given in what follows:

Procedure ILB:

Assign to v(MKP) the value of the lower bound re-
turned by DP algorithm;

For each state (w, p) ∈ Lsec

Compute v(w,p) a lower bound of (MKP)(w,p);
End For;

vmax:=max {v(w,p) | (w, p) ∈ Lsec};

v(MKP):=max {v(MKP), vmax}.

The combination of the ILB procedure with the DP
algorithm gives the so-called HDP heuristics.

4. COOPERATIVE METHOD (CM)

As mentioned above, the secondary list Lsec can con-
tain an optimal solution of (MKP). We propose an
algorithm based on a branch and bound method in
order to explore the list Lsec.

4.1. Principle

Let (w, p) be the first state of Lsec (the first state
corresponds to the largest upper bound). An upper
bound, v(w,p), is obtained by solving the linear relax-
ation of (MKP)(w,p), using a simplex algorithm. A
lower bound, v(w,p), is obtained with a greedy algo-
rithm on (MKP)(w,p).
We propose the following branching strategy:

Branching rule: Let (w, p) be a state of the prob-
lem (MKP), J the index of the free variables
(the variables that have not been already fixed by

the branch and bound) and X̃J = {x̃j | j ∈ J}
an optimal solution of the linear relaxation of
(MKP)(w,p). Then, the branching variable xk,
k ∈ J , is such that k = arg min

j∈J
{|x̃j − 0.5|}.

Whenever we evaluate an upper bound, we use the
following reducing variables rule (see (Nemhauser &
Wolsey 1988)):

Reducing variables rule 2: Let v be a lower
bound of (MKP). Let ṽ and x̃ = {x̃j | j ∈ N} be
respectively the optimal value and an optimal so-
lution of the linear relaxation of (MKP). Then
we denote by p̃ = {p̃j | j ∈ N}, the reduced prof-
its. For j ∈ N , if x̃j = 0, x̃j = 1, respectively,
and ṽ − |p̃j | ≤ v then there exists an optimal
solution of (MKP) with xj = 0, xj = 1, respec-
tively.

This last rule permits one to reduce significantly the
processing time by reducing the number of states to
explore.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

4.2. Details of the algorithm

The branch and bound method described above is
used in order to explore the states saved in the sec-
ondary list Lsec since this list can contain an optimal
solution of (MKP).

Procedure BB:

Let v be the value of a lower bound of (MKP), and L
a list of states.

While L 6= ∅

Let (w, p) be the first state in L;

L := L− {(w, p)};

Compute v(w,p) an upper bound of (MKP)(w,p);

If v(w,p) > v

Fix variables according to reducing variables rule
2 and update the state (w, p);

Compute v(w,p) a lower bound of (MKP)(w,p);

If v(w,p) > v, v := v(w,p) Endif;

Chose the branching variable and branch on it;

Insert the two resulting states in L if they are
feasible;

Endif;

Endwhile.

The combination of HDP with the procedure BB per-
mits one to obtain an exact solution; it corresponds
to the so-called cooperative method (CM).

Procedure CM:

Step 1:
Compute Lsec and v(MKP) using HDP heuris-
tics.

Step 2:
Use procedure BB with v = v(MKP) and L =
Lsec.

The last value of v returned by BB is the optimal value
of (MKP).

5. COMPUTATIONAL EXPERIENCES

Our algorithm was written in C and compiled with
GNU’s GCC. Computational experiences were carried
out using a Sun Blade 100 (500 MHz). We compare
first our heuristics HDP to the following heuristics of
the literature:

• AGNES of Fréville and Plateau (Freville &
Plateau 1994);

• ADP-based heuristics approach of Bertsimas and
Demir (Bertsimas & Demir 2002);

• Simple Multistage Algorithm (SMA) of Hanafi,
Fréville and El Abdellaoui (Hanafi & al. 1996).

Our tests were made on the following problems:

• Various problems from the literature of Chu
and Beasley (see (Beasley 1990)) composed of
9 instances of 30 problems with different sizes
(100x5, 250x5, 500x5, 100x10, 250x10, 500x10,
100x30, 250x30 and 500x30), numbered respec-
tively from 1 to 9;

• Randomly generated problems with:

– uncorrelated data: the value of the prof-
its and the weights are distributed indepen-
dently and uniformly over [1, 1000],

– correlated data: the value of the weights are
distributed uniformly over [1, 1000] and the
profits are taken as follows:

∀j ∈ N, pj =

m∑

k=1

wk,j

m
+ 100.

The capacity c of the knapsack is generated as

follows: ∀i ∈ M, ci = 0.5.
∑

j∈N

wi,j .

5.1. HDP heuristics

The computational results for the HDP heuristics are
presented in:

• tables 1 and 2, for the instance of Chu & Beasley,

• tables 3 and 4, for randomly generated instance.

Some results for the DP heuristics are presented in
tables 1 and 2.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

Inst. heuristics
DP HDP SMA ADP AGNES

1 1.96 0.69 2.68 1.72 0.88
2 0.58 0.21 1.17 0.58 0.29
3 0.27 0.07 0.59 0.26 0.12
4 2.87 1.25 3.6 1.97 1.54
5 1.03 0.47 1.6 0.76 0.57
6 0.54 0.21 0.8 0.38 0.26
7 4.23 2.05 5.13 2.7 3.22
8 1.7 0.9 2.6 1.18 1.41
9 1.39 0.49 1.45 0.58 0.72

Table 1: Heuristics: problems of Chu and Beasley
(gap to optimal value (%)).

Inst. heuristics
DP HDP SMA ADP AGNES

1 0.03 0.07 0.15 0.12 0.10
2 0.27 0.52 1.94 0.24 0.10
3 1.50 2.07 15.63 1.03 0.34
4 0.05 0.12 0.17 0.15 0.10
5 0.45 0.94 2.39 0.34 0.10
6 2.36 3.81 19.49 1.47 0.44
7 2.49 5.36 0.39 0.24 0.10
8 22.26 36.66 4.79 1.27 0.34
9 81.31 88.07 40.80 4.10 1.03

Table 2: Heuristics: problems of Chu and Beasley
(computational time (s)).

From Tables 1 and 3, we note that the lower bound
given by HDP is better than the one obtained with
other methods. According to tables 2 and 4 the
bounds provided by HDP are obtained at the price
of reasonable computational time.

5.2. Exact methods

In this section, we compare computational results ob-
tained with CM with the one obtained by using the
branch and bound method (BB). Note that if compu-
tational time exceeds 10 minutes, then the methods
stop and return the best value of lower bound they
have obtained. In order to compare these bounds, the

Inst. size heuristics
nxm HDP SMA ADP AGNES

UD 50x25 1.81 5.13 3.31 4.46
UD 100x50 1.19 3.29 1.53 2.86
UD 150x75 0.72 2.15 1.05 1.90
UD 200x100 0.56 1.77 0.78 1.50
UD 250x125 0.52 1.64 0.71 1.53
UD 300x150 0.50 1.48 0.55 1.34
UD 400x200 0.45 1.20 0.48 0.94
UD 500x250 0.36 1.08 0.44 0.87
CD 50x5 1.75 6.43 3.48 4.12
CD 100x10 1.07 3.51 1.50 2.55
CD 150x15 1.15 2.28 1.44 2.85
CD 200x20 0.99 2.05 1.07 2.18
CD 250x25 0.97 1.64 0.98 1.92
UD: Instance with Uncorrelated Data
CD: Instance with Correlated Data

Table 3: Heuristics: Randomly generated problems
(gap to optimal value (%)).

Inst. size heuristics
nxm HDP SMA ADP AGNES

UD 50x25 0.03 0.07 0.10 0.02
UD 100x50 0.22 0.78 0.53 0.10
UD 150x75 0.50 3.90 1.09 0.30
UD 200x100 3.06 11.39 3.51 0.65
UD 250x125 9.77 25.45 7.35 1.33
UD 300x150 84.46 57.27 14.85 2.44
UD 400x200 227.96 171.74 41.93 5.91
UD 500x250 519.10 1110.55 80.52 12.42
CD 50x5 0.64 0.04 0.06 0.03
CD 100x10 23.26 0.36 0.41 0.18
CD 150x15 30.05 1.41 1.41 0.62
CD 200x20 42.48 3.53 3.53 1.46
CD 250x25 80.90 7.15 7.15 2.81
UD: Instance with Uncorrelated Data
CD: Instance with Correlated Data

Table 4: Heuristics: Randomly generated problems
(computational time (s)).

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

Inst. Gap (%) t BB (s) t CM(s)
1 0,00 166,60 160,06
2 0,0038 501,61 493,56
3 -0,0146 600,00 600,00
4 0,00 533.95 600,00
5 -0,0157 600,00 600,00
6 -0,0525 600,00 600,00
7 -0,0602 600,00 600,00
8 0,0158 600,00 600,00
9 -0.0223 600,00 600,00

Gap: gap between CM & BB
t BB: BB computational time
t CM: CM computational time

Table 5: CM exact method: problems of Chu and
Beasley

gaps displayed is defined as follows:

Gap =
vBB − vCM

vBB

, (12)

where vBB and vCM are the value of the bound
delivered by, respectively, BB and CM. Of course,
when the computational times are under 10 minutes,
vBB = vCM = v(MKP), the optimal value, and
Gap = 0.

We present first preliminary results for problems in
the literature and randomly generated problems.

Table 5 and Table 6 show that the computational
times for BB and CM are similar when they do not
exceed 10 minutes. Concerning the gap, we note that
it is, in most cases, negative, that is to say, when
we stop the process when it exceed 10 minutes, CM
deliver a better bound than BB. According to these
results, CM seems to converge more rapidly toward
the optimal value than BB.

6. CONCLUSION

The main advantage of the HDP heuristics is to ob-
tain a processing time similar to the one of dynamic
programming algorithm applied to a classical (KP)
while having good performance in terms of gap. HDP
seems to be a good heuristics since it gives better so-
lutions than the one obtained with other heuristics
with a quite good processing time.

Inst. nxm Gap (%) t BB (s) t CM (s)
UD 50x25 0.00 0,35 0,33
UD 100x50 0.00 0,81 0,99
UD 150x75 0.00 328,73 329,60
UD 200x100 -0.01 600,00 600,00
UD 300x150 -0.01 600,00 600,00
UD 400x200 0.00 600,00 600,00
UD 500x250 -0.01 600,00 600,00
CD 50x5 -0.02 600,00 600,00
CD 100x10 -0.10 600,00 600,00
CD 150x15 -0.05 600,00 600,00
UD: Instance with Uncorrelated Data
CD: Instance with Correlated Data
Gap: gap between CM & BB
t BB: BB computational time
t CM: CM computational time

Table 6: CM exact method: randomly generated
problems.

Combining a procedure like BB (Branch and Bound)
with HDP permits one to obtain an exact method.
Computing experimentation on problems from the lit-
erature shows that the combination of HDP and BB
gives the same processing times similar to the one of
a classical branch and bound. However, this coopera-
tive method seems to improve the convergence toward
the optimal value.

HDP could be combined easily with other methods,
like a Taboo search for example, in order to improve
its performances to explore the neighborhood of the
states saved in the secondary list. That solution could
be an alternative to limit the processing time.

REFERENCES

Beasley, J. E. (1990). Or-library:
http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/
mknapinfo.html.

Bertsimas, D. & Demir, R. (2002). An approxi-
mate dynamic-programming approach to multi-
dimensional knapsack problem, Management
Science 4: 550–565.

Boyer, V. (2004). Méthodes et/ou mixte pour la pro-
grammation linéaire en variables 0-1, DEA re-
port. LAAS-CNRS Toulouse (France).

Boyer, V. & al. (2006). An efficient heuristics
for the multidimensional knapsack problem,
ROADEF’06, Presses Universitaires de Valen-
ciennes pp. 95–106.

MOSIM’08 – du 31 mars au 2 avril 2008 - Paris - France

Boyer, V. & al. (2007). Heuristics for the 0-1 multidi-
mensional knapsack problem, European Journal
of Operational Research. to appear.

Elkihel, M. (1984). Programmation dynamique
et rotations de contraintes pour les problèmes
d’optimisation entière, Thèse de Doctorat. Uni-
versité des Sciences et Techniques de Lille
(France).

Freville, A. & Plateau, G. (1993). An exact search for
the solution of the surrogate dual of the 0-1 bidi-
mensional knapsack problem, European Journal
of Operational Research 68: 413–421.

Freville, A. & Plateau, G. (1994). An efficient prepro-
cessing procedure for the multidimensional 0-1
knapsack problem, Discrete Applied Mathemat-
ics 49: 189–212.

Fréville, A. (2004). The multidimensional 0-1 knap-
sack problem: An overview, European Journal of
Operational Research 155: 1–21.

Garey, M. R. & Jonhson, D. S. (1979). Computer
and intractability. a guide to the theory of np-
completeness, ISBN 0-7167-1044-7.

Garfinkel, S. & Nemhauser, L. (1972). Integer Pro-
gramming, Wiley Interscience.

Gavish, B. & Pirkul, H. (1985). Efficient algorithms
for solving multiconstraint 0-1 knapsack prob-
lems to optimality, Mathematical Programming
31: 78–205.

Glover, F. (1968). Surrogate constraints, Operations
Research 16: 741–749.

Hanafi, S. & al. (1996). Meta-Heuristics: Theory and
Application, Kluwer Academic, chapter Com-
paraison of heuristics for the 0-1 multidimen-
sional knapsack problem, pp. 446–465.

Kellerer, H. & al. (2004). Knapsack Problems,
Springer.

Martello, S. & al. (2000). New trends in exact algo-
rithms for the 0-1 knapsack problem, European
Journal of Operational Research 123: 325–332.

Martello, S. & Toth, P. (1990). Knapsack Problems -
Algorithms and Computer Implementations, Wi-
ley & Sons.

Nemhauser, L. & Wolsey, A. (1988). Integer and com-
binational optimization, Wiley Interscience.

Osario, M. & al. (2002). Cutting and surrogate con-
straint analysis for improved multidimensional
knapsack solutions, Annals of Operations Re-
search 117: 71–93.

Plateau, G. (1979). Contribution à la résolution des
programmes mathématiques en nombres entiers,
Thèse de Doctorat. Université des Sciences et
Techniques de Lille.

Plateau, G. & Elkihel, M. (1985). A hybrid method
for the 0-1 knapsack problem, Methods of Oper-
ations Research 49: 277–293.

Poirriez, V. & Andonov, R. (1998). Unbounded knap-
sack problem: new results, Algorithms and Ex-
periments, pp. 103–111.

Sherali, D. & Driscoll, J. (2000). Evolution and
state-of-the-art in integer programing, Journal
of Computationnal and Applied Mathematics
124: 319–340.

