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Abstract—In this paper we obtain the scaling law for the
mean broadcast time of a file in a P2P network with an initial
population of N nodes. In the model, at Poisson rate λ a node
initiates a contact with another node chosen uniformly at random.
This contact is said to be successful if the contacted node possesses
the file, in which case the initiator downloads the file and can
later upload it to other nodes. In a network with altruistic nodes
(i.e., nodes do not leave the network) we show that the mean
broadcast time is O(log(N)). In a network with free-riding nodes,
our main result shows that a O(log(N)) mean broadcast time
can be achieved if nodes remain connected to the network for
the duration of at least one more contact after downloading the
file, otherwise a significantly worse O(N) time is required to
broadcast the file.

I. INTRODUCTION

Traffic measurements in the Internet suggest that Peer-
to-Peer (P2P) networks are becoming increasingly popular
among Internet users for sharing and distributing files. The
salient features of a P2P architecture are the vast possible
improvements in scalability and robustness compared to the
traditional client-server architecture. In the best-case scenario,
a P2P network can broadcast a file in a time which scales
only logarithmically with the number of nodes in the network,
which compares favourably with the linear scaling for a client-
server network. This vast improvement in the distribution
time can be explained as follows. After downloading the
file, a client node acts as a server and uploads the file to
other client nodes. Thus, the service capacity of the network
actually increases with the number of the nodes in the network.
The presence of several simultaneous servers in the network
significantly reduces the vulnerability of the file distribution
process to attacks on the central server.

Although the P2P architecture is very promising in terms
of scalability, there are several factors which are critical
to achieving the promised performance gains. The foremost
factor is the willingness of each client node to become a server
node. A failure on the part of client nodes to do so (also called
free-riding) would impact both scalability and robustness. As a
simple example, if each client node departs immediately after
having downloaded the entire file, the network will behave
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as a client-server network with the broadcast time scaling
linearly in the number of client nodes. Thus, the impact of free-
riding (i.e., downloading but not uploading) on the broadcast
time needs a detailed investigation. Another factor which is
critical to achieving the performance gains is the connectivity
of the underlying network graph. Again as a simple example,
if the network would be configured in a star topology then
again the time to broadcast would be linear in the number of
nodes which is significantly worse than the logarithmic scaling
possible on a hypercube topology [4].

A detailed study of the impact of these factors on the
performance of a P2P network is thus essential in obtaining
conditions under which P2P architecture can outperform the
client-server architecture. In this paper, we study a closed P2P
network in which N client nodes and one seed node form
a fully connected file sharing network. The purpose of this
network is to broadcast the file which is available at the seed
node. Each node (except the seed node) can leave the network
after downloading the file. The model described above is
suited to study the behaviour of P2P networks when subjected
to flash-crowds, i.e., a large population of nodes joins the
network in a very short interval of time [2]. One of the main
performance measures in such networks is the time required to
broadcast the file. The focus of this paper is to study the impact
of free-riding on the mean broadcast time. Our main result
states that a O(log(N)) mean broadcast time is achievable
in P2P networks with free-riding provided that nodes stay
long enough in the network after having downloaded the file,
otherwise a significantly worse O(N) time is required, thereby
implying a phase transition phenomenon for the scaling law
of the mean broadcast time.

A. Related work

The availability of free P2P software such as BitTorrent
[1] has contributed significantly to the increased popularity of
P2P networks among Internet users, and has also motivated
research in several aspects of the P2P networks. The Bit-
Torrent P2P algorithm achieves a significant improvement in
performance by dividing the file into several chunks. Instead of
downloading a large file from one server, nodes can download
smaller chunks from different servers. A file download is
said to be complete when a node has downloaded all the
corresponding chunks. Previously, low bandwidth nodes were
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reluctant to upload because of large file sizes, and thus
reluctant to participate in P2P networks. However, breaking
the file into smaller chunks provides such users an incentive to
upload data and join a P2P network. In [4], the authors studied
the problem of the optimal broadcast of a set of C messages to
N nodes over a complete graph in a deterministic setting. They
showed that the optimal broadcast time is O(C +log2(N)). In
our present paper, we give an analogous result in a stochastic
setting for the one chunk case and with the more realistic
assumption of nodes being able to leave the network.

In general, the analysis of P2P network in a stochastic
setting (i.e., random node arrival and node departures) is
too complex to permit an exact analysis. Hence approximate
models have been constructed to obtain some insights into
the performance of P2P networks. For example, using a fluid
model Qiu and Srikant [6] have studied the behaviour of the
number of servers and clients in a BitTorrent network with
external arrivals and node departures. The emphasis is on
studying the number of servers and clients in the equilibrium
state. In [3], the authors generalized the above model to be able
to study the spread of chunks within networks. One of their
results shows that chunk selection policies (like rarest first or
random selection) have negligible impact on the performance
of a P2P network. In practice, arrivals to a network may
not occur at a constant rate, and the so-called flash crowd
phenomenon has often been observed [2]. For example, the
latest version of a popular software is solicited by a large
number of users (a flash crowd) close to the release date.
Usually, the interest in this version may taper off as time
progresses, and the critical period of operation is during the
first few days when the interest is large. We note that the
interest may increase again when a new version of the software
is released, for example. Unlike the above mentioned work, our
objective in this paper is to characterize the mean broadcast
time in a closed network. In that respect, our work is an
extension of [4] to stochastic setting with free-riding. However,
the analytical tools (Markov chains and fluid limits) are similar
to those in [6] and [3].

As a first step, we present the analysis for the one chunk
case, i.e., the file is not divided as in BitTorrent. From the
insights obtained using this model, we intend to extend this
analysis to the multiple chunk case and for different network
topologies.

The rest of the paper is organised as follows. In section II,
we describe the model, give the assumptions, and formulate
the problem in terms of the input parameters. The analysis for
a network without free-riding is presented in section III. In
section IV our main result on the mean broadcast time in a
network with free-riding users is derived. Using simulations,
similar results for general values of C are given in section
V. Finally, we conclude with possible research directions in
section VI.

II. PROBLEM FORMULATION

Consider a population of N nodes who want to download a
file which is available at the seed node at time 0. We assume
that the underlying network topology is fully connected, and

that a node, which is present in the network and has the file, is
willing to upload the file to other nodes. In order to download
a file, a node initiates a contact with another node chosen
uniformly at random among the existing nodes. These contacts
are initiated at Poisson rate λ. If the contacted node has the file
then the file transfer is assumed to take place in a time which is
negligible compared to the mean time between contacts. This
model of a contact process for file dissemination is based on
the one analysed in [3] and [5].

In order to model the impatient behaviour of nodes in a
real network, we shall assume that, after having downloaded
the file, a node leaves the network at a Poisson rate ν. The
case ν = 0 corresponds to altruistic nodes who remain in
the network for the duration of the broadcast whereas the
case ν = ∞ corresponds to nodes who leave the network
immediately after downloading the file. Finally, we shall
assume that the seed node remains in the network for the
duration of the broadcast. This assumption guarantees that all
the nodes will be able to download the file eventually. One
could possibly study the number of unsuccessful nodes if the
seed node also had the possibility of leaving the network. Such
an analysis could give clues to the vulnerability of the network
to malicious attacks on the seed node.

Given the above setting, our main interest in this paper is to
study the impact of the departure rate, ν, on the mean time to
broadcast the file to all N nodes. Intuitively, a higher departure
rate of the nodes would translate into fewer servers present in
the network which would then increase the mean broadcast
time. We shall formalize this intuitive result by showing that,
depending on the departure rate, different scaling laws are
possible for the mean broadcast time.

III. MEAN BROADCAST TIME WITH ALTRUISTIC NODES
(ν = 0)

We first take a look at the case ν = 0. Through this analysis
we expect to obtain a lower bound on the mean broadcast time
for ν > 0. In a deterministic setting when the sequence in
which file downloads take place is determined at time 0, file
broadcast can be achieved in O(log(N)) time units. We now
show that this is also the case in the stochastic contact process
model we described earlier. Thus, the mean broadcast time in
a random contact based P2P network is of the same order as
the optimal broadcast time.

For the case of ν = 0, we shall study the network in discrete
time where each time step corresponds to the time between
two contacts. Since no nodes leave the network, contacts are
initiated at rate Nλ (we assume that the seed does not initiate
any contacts). The mean broadcast time can be obtained by
multiplying the mean number of contacts by (Nλ)−1.

Let Yn denote the number of servers in the network after
the nth contact. The dynamics of the process {Yn, n > 0} can
be described as follows.

Yn+1 =
{

Yn w.p. p(Yn)
Yn + 1 w.p. 1− p(Yn) ,

where p(i) = 1− N−i
N

i+1
N . The probability p(i) describes the

probability of an unsuccessful contact when there are i servers
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and one seed present in the network.
Let Ai denote the number of contacts made in state i. The

random variable Ai is geometrically distributed with

P(Ai = k) = (1− p(i))p(i)k−1, k ≥ 1.

nY

n

A

A1

A

0

i

i

Fig. 1. The relation between S and dynamics of Y

.

Let Sj =
∑j

i=0 Ai. The random variable Sj is the number
of contacts needed to distribute the file to j + 1 nodes. This
relation between the processes Sj and Yn is illustrated in figure
1 from which we can infer that P (Yn < j) = P (Sj−1 > n).
Since Aj are independent random variables,

E[Sj ] =
j∑

i=0

E[Ai], j = 0, 1, ..., N − 1,

V ar[Sj ] =
j∑

i=0

V ar[Ai], j = 0, 1, ..., N − 1.

Also, since Ais are geometrically distributed,

E[Ai] =
1

1− p(i)

=
N2

(i + 1)(N − i)
,

V ar[Ai] =
p(i)

(1− p(i))2

=
(

1− i + 1
N

(
N − i

N

))(
N2

(i + 1)(N − i)

)2

.

Therefore, the mean number of contacts to broadcast the file
(i.e., to distribute the file to N nodes) is

E[SN−1] =
N−1∑

i=0

E[Ai]

=
N2

N + 1
(2 log(N) + o(log(N)) .

Let Tj denote the time needed to distribute the file to j
nodes. Then,

Tj =
Sj−1∑

k=0

τk, (1)

where the random variable τk denotes the time between the
kth and the (k + 1)th contact. Since τ1, τ2, ... is a sequence

of i.i.d. exponential random variables with mean (Nλ)−1, we
can use Wald’s lemma and obtain the mean broadcast time as

E[TN ] = E[SN−1]E[τ1]

= 2
N

λ(N + 1)
log(N) + o(log(N)). (2)

IV. MEAN BROADCAST TIME WITH FREE RIDING NODES
(ν > 0)

In the previous section we obtained a mean broadcast time
of O(log(N)) for ν = 0. For the other extreme case of ν = ∞,
we can see that the broadcast time would be O(N) because
the seed would be the only server present in the network, and
every user will have to download the file from the seed node,
which will take O(N) encounters.

In this section we shall obtain the scaling law when 0 < ν <
∞, i.e., nodes leave the network at rate ν after downloading
the file. Let Y (t) (resp. X(t)) denote the number of servers
(resp. downloaders) present in the network at time t. The joint
process {X(t), Y (t)}t≥0 is a two-dimensional Markov process
on {0, 1, 2, ..., N} × {0, 1, 2, ..., N} whose dynamics can be
described as follows

Y (t) →
{

Y (t) + 1 at rate λX(t) Y (t)+1
X(t)+Y (t)

Y (t)− 1 at rate νY (t)
, (3)

X(t) → X(t)− 1 at rate λX(t) Y (t)+1
X(t)+Y (t) , (4)

(5)

with (X(0), Y (0)) = (N, 0). The increase in Y (t) only
happens when downloaders make a successful contact (the +1
in the numerator is due to the presence of the seed). The rate
of decrease of Y (t) is νY (t) independent of the number of
downloaders.

We now study this process in the large initial population
limit i.e., N → ∞. Let (x(t), y(t)) ≡

(
X(t)
N , Y (t)

N

)
be the

rescaled process. Then, y(t) (resp., x(t)) is the fraction of
nodes at time t who do (resp., do not) have the file. For 0 <
ν < ∞, we can write the following fluid equations for the
dynamics x and y,

dy

dt
= −νy + λx

y

x + y
, (6)

dx

dt
= −λx

y

x + y
. (7)

Therefore,
d(x + y)

dt
= −νy. (8)

Combining equations 7 and 8, we get

d

dx
(x + y) =

ν

λ

x + y

x
, (9)

which can be solved to obtain

x + y = c0x
ν
λ . (10)

We can determine c0 by noting that y = 0 when x = 1. Thus,
we can characterize the evolution of the fraction of servers as
a function of the fraction of downloaders in the network as
follows

y = −x + xσ, x ∈ (0, 1), (11)
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where σ = ν/λ. In figure IV, we plot solutions of (10)
for different values of σ = ν/λ. As ν → 0, the solution
approaches the line x+y = 1, which is the case when no nodes
leave the network. The solution to the differential equation
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Fig. 2. Solutions of y = −x + xσ for various values of σ.

obtained above is valid only for σ < 1. For σ > 1 we obtain
negative values for y, which makes the solution infeasible. We
now have the following result.

Theorem 4.1: The mean broadcast time for a file in a P2P
network with free-riding users scales as
• O(N) if σ > 1;
• O(log(N)) if σ < 1.

Thus, there is phase transition in the scaling law at σ = 1.
This suggests that if nodes stay for the duration of one more
contact after downloading the file then a significantly improved
scaling law for the broadcast time prevails even in the presence
of free-riding nodes.

Proof: We first prove that the mean broadcast time is
O(N) for σ > 1. For this case we upper bound Y (t) by
another process which is easier to analyse. Let {Z(t)}t≥0 be
defined as

Z(t) →
{

Z(t) + 1 at rate λZ(t),
Z(t)− 1 at rate νZ(t). (12)

For the same initial conditions, {Y (t)} is stochastically
smaller than {Z(t)}. For σ > 1, P(Z(t) > N) → 0 when
N →∞. Hence, for large N, we can conclude that Z(t) will
not reach O(N) and, consequently, Y(t) will remain o(N).
From (4), when X(t) is on a linear scale it will decrease at a
constant rate. Thus, for large N , the mean time required for
X(t) to go from α1N to α2N will be linear in N . Hence, the
mean broadcast time will be O(N).

For σ < 1, we will follow similar arguments. In order to
determine the mean broadcast time, we divide the analysis in
three phases. The first phase corresponds to the time required
for the number of servers to reach O(N). The second phase
begins when both the number of downloaders and the number
of servers become O(N). In this phase the dynamics of the
rescaled process are governed by the differential equations
given in (7) and (8). The second phase ends when the joint
process becomes o(N), and we call this the final phase. In this
phase the number of dwonloaders eventually goes to zero.

For the time spent in the first phase, we find the mean time
required for Y (t) to exceed level εσN . This level will depend
on σ as not all values of y(t) ∈ (0, 1) are feasible for a given
σ. First, we find a lower bound for the rate of increase of Y (t).
Let γ be the maximal solution of the equation −x + xσ = εσ

in (0, 1). Then

λX(t)
Y (t)

X(t) + Y (t)
> λY (t)

X(t)
X(t) + εσ

> λY (t)
γ

γ + εσ
.

The second inequality follows from the fact that x/(x + 1)
is an increasing function in x, and that if Y (t) < εσN then
X(t) > γN . We now bound Y (t) by Ẑ(t) described by

Ẑ(t) =

{
Ẑ(t) + 1 at rate λ γ

γ+εσ
Ẑ(t),

Ẑ(t)− 1 at rate νẐ(t).
(13)

We choose a γ > σ
1

1−σ which then determines εσ . For this
choice of γ, λ γ

γ+εσ
= λ γ

γσ > λσ = ν. For such a choice of
parameters, Ẑ(t) and, consequently, Y (t) grow exponentially
with time. Hence, the time for Y (t) to reach εσN , say t1, is
O(log(N)).

For the time spent in the second phase, we first solve (7)
to obtain

t(x) =
1

λ(1− r)
log

(
x + xσ

2x

)
. (14)

From this equation, the time for x to start from a fraction γ
and reach a fraction γ∗ is a constant independent of N . Hence
the time spent in the second phase is O(1).

For the time spent in the third phase, we shall bound the
time required for x(t) starting from x(τ) = γ∗ to reach 0. For
a given σ, y > x if x < 1

2(1−σ) . We first fix a γ∗ < 1
2(1−σ) .

For x < γ∗,

λx
y

x + y
>

1
2
λx. (15)

Since x is non-increasing, if x(t2) < γ∗ then x(t) < γ∗ and
y(t) > x(t),∀t > t2. Hence, the above inequality will remain
valid once x is smaller than γ∗. Let {X̂(t)} be described by

X̂(t) → X̂(t)− 1 at rate 1
2λX̂(t) .

From this definition, the process {X(t)} is stochastically
smaller than {X̂(t)}. Since X̂(t) decreases exponentially, we
can conclude that X(t) also decreases to 0 in logarithmic time.

From the above analysis, the time spent in the first phase
is upper bounded by O(log(N)), the time spent in the second
phase is O(1), and the time spent in the final phase is upper
bounded by O(log(N)). Since the time to broadcast cannot be
lower than log(N), we can conclude that the mean broadcast
time is O(log(N)) for σ < 1 .

V. SIMULATIONS

In this section, we present the results of simulations with
C larger than unity. We simulate the same contact model
analysed in this paper but with larger number of chunks. In
particular, for C = 10 and C = 50 we shall obtain the mean
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broadcast time as a function of N and compare the scaling
laws for different values of σ.

In figure 3, the mean broadcast time is shown as a function
of N for C = 10 and two different values of σ smaller than 1.
Figure 4 shows the corresponding function for two different
values of σ larger than 1.
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Fig. 3. Mean broadcast time versus log2(N). C = 10.
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In figures 5 and 6, we plot the mean broadcast time versus
N for C = 50. From these plots we observe that the phase
transition at σ = 1 equal to appears to be true for larger values
of C as well, i.e.. the scaling law is logarithmic scaling when
σ < 1 and linear when σ > 1. Although, these simulations
are not exhaustive, they do point to the plausibility of a strong
dependence of the scaling law on the level of user cooperation
in multi-chunk dissemination networks as well.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we quantified the effect of free-riding users
on the mean broadcast time of a file in a P2P network. Our
main result showed that a logarithmic broadcast time can be
achieved if nodes stay in the network for the duration of
one more contact, i.e., if they upload the file at least once.
Otherwise a significantly worse linear scaling is achieved.
Thus, if nodes stay in the network for the duration of one more
contact, a random contact based P2P network can broadcast a
file in a time which is of the same order as the optimal time.

The main assumptions in this work were on the download
times (assumed to be negligible compared to the inter-contact
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times), graph topology (assumed to be fully-connected) and
the number of chunks (assumed to be equal to unity). Our
future work will seek to characterize the mean broadcast time
in the absence of these assumptions.
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